/* tda18271-common.c - driver for the Philips / NXP TDA18271 silicon tuner Copyright (C) 2007, 2008 Michael Krufky This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "tda18271-priv.h" static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct tda18271_priv *priv = fe->tuner_priv; enum tda18271_i2c_gate gate; int ret = 0; switch (priv->gate) { case TDA18271_GATE_DIGITAL: case TDA18271_GATE_ANALOG: gate = priv->gate; break; case TDA18271_GATE_AUTO: default: switch (priv->mode) { case TDA18271_DIGITAL: gate = TDA18271_GATE_DIGITAL; break; case TDA18271_ANALOG: default: gate = TDA18271_GATE_ANALOG; break; } } switch (gate) { case TDA18271_GATE_ANALOG: if (fe->ops.analog_ops.i2c_gate_ctrl) ret = fe->ops.analog_ops.i2c_gate_ctrl(fe, enable); break; case TDA18271_GATE_DIGITAL: if (fe->ops.i2c_gate_ctrl) ret = fe->ops.i2c_gate_ctrl(fe, enable); break; default: ret = -EINVAL; break; } return ret; }; /*---------------------------------------------------------------------*/ static void tda18271_dump_regs(struct dvb_frontend *fe, int extended) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; tda_reg("=== TDA18271 REG DUMP ===\n"); tda_reg("ID_BYTE = 0x%02x\n", 0xff & regs[R_ID]); tda_reg("THERMO_BYTE = 0x%02x\n", 0xff & regs[R_TM]); tda_reg("POWER_LEVEL_BYTE = 0x%02x\n", 0xff & regs[R_PL]); tda_reg("EASY_PROG_BYTE_1 = 0x%02x\n", 0xff & regs[R_EP1]); tda_reg("EASY_PROG_BYTE_2 = 0x%02x\n", 0xff & regs[R_EP2]); tda_reg("EASY_PROG_BYTE_3 = 0x%02x\n", 0xff & regs[R_EP3]); tda_reg("EASY_PROG_BYTE_4 = 0x%02x\n", 0xff & regs[R_EP4]); tda_reg("EASY_PROG_BYTE_5 = 0x%02x\n", 0xff & regs[R_EP5]); tda_reg("CAL_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_CPD]); tda_reg("CAL_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_CD1]); tda_reg("CAL_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_CD2]); tda_reg("CAL_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_CD3]); tda_reg("MAIN_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_MPD]); tda_reg("MAIN_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_MD1]); tda_reg("MAIN_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_MD2]); tda_reg("MAIN_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_MD3]); /* only dump extended regs if DBG_ADV is set */ if (!(tda18271_debug & DBG_ADV)) return; /* W indicates write-only registers. * Register dump for write-only registers shows last value written. */ tda_reg("EXTENDED_BYTE_1 = 0x%02x\n", 0xff & regs[R_EB1]); tda_reg("EXTENDED_BYTE_2 = 0x%02x\n", 0xff & regs[R_EB2]); tda_reg("EXTENDED_BYTE_3 = 0x%02x\n", 0xff & regs[R_EB3]); tda_reg("EXTENDED_BYTE_4 = 0x%02x\n", 0xff & regs[R_EB4]); tda_reg("EXTENDED_BYTE_5 = 0x%02x\n", 0xff & regs[R_EB5]); tda_reg("EXTENDED_BYTE_6 = 0x%02x\n", 0xff & regs[R_EB6]); tda_reg("EXTENDED_BYTE_7 = 0x%02x\n", 0xff & regs[R_EB7]); tda_reg("EXTENDED_BYTE_8 = 0x%02x\n", 0xff & regs[R_EB8]); tda_reg("EXTENDED_BYTE_9 W = 0x%02x\n", 0xff & regs[R_EB9]); tda_reg("EXTENDED_BYTE_10 = 0x%02x\n", 0xff & regs[R_EB10]); tda_reg("EXTENDED_BYTE_11 = 0x%02x\n", 0xff & regs[R_EB11]); tda_reg("EXTENDED_BYTE_12 = 0x%02x\n", 0xff & regs[R_EB12]); tda_reg("EXTENDED_BYTE_13 = 0x%02x\n", 0xff & regs[R_EB13]); tda_reg("EXTENDED_BYTE_14 = 0x%02x\n", 0xff & regs[R_EB14]); tda_reg("EXTENDED_BYTE_15 = 0x%02x\n", 0xff & regs[R_EB15]); tda_reg("EXTENDED_BYTE_16 W = 0x%02x\n", 0xff & regs[R_EB16]); tda_reg("EXTENDED_BYTE_17 W = 0x%02x\n", 0xff & regs[R_EB17]); tda_reg("EXTENDED_BYTE_18 = 0x%02x\n", 0xff & regs[R_EB18]); tda_reg("EXTENDED_BYTE_19 W = 0x%02x\n", 0xff & regs[R_EB19]); tda_reg("EXTENDED_BYTE_20 W = 0x%02x\n", 0xff & regs[R_EB20]); tda_reg("EXTENDED_BYTE_21 = 0x%02x\n", 0xff & regs[R_EB21]); tda_reg("EXTENDED_BYTE_22 = 0x%02x\n", 0xff & regs[R_EB22]); tda_reg("EXTENDED_BYTE_23 = 0x%02x\n", 0xff & regs[R_EB23]); } int tda18271_read_regs(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; unsigned char buf = 0x00; int ret; struct i2c_msg msg[] = { { .addr = priv->i2c_props.addr, .flags = 0, .buf = &buf, .len = 1 }, { .addr = priv->i2c_props.addr, .flags = I2C_M_RD, .buf = regs, .len = 16 } }; tda18271_i2c_gate_ctrl(fe, 1); /* read all registers */ ret = i2c_transfer(priv->i2c_props.adap, msg, 2); tda18271_i2c_gate_ctrl(fe, 0); if (ret != 2) tda_err("ERROR: i2c_transfer returned: %d\n", ret); if (tda18271_debug & DBG_REG) tda18271_dump_regs(fe, 0); return (ret == 2 ? 0 : ret); } int tda18271_read_extended(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; unsigned char regdump[TDA18271_NUM_REGS]; unsigned char buf = 0x00; int ret, i; struct i2c_msg msg[] = { { .addr = priv->i2c_props.addr, .flags = 0, .buf = &buf, .len = 1 }, { .addr = priv->i2c_props.addr, .flags = I2C_M_RD, .buf = regdump, .len = TDA18271_NUM_REGS } }; tda18271_i2c_gate_ctrl(fe, 1); /* read all registers */ ret = i2c_transfer(priv->i2c_props.adap, msg, 2); tda18271_i2c_gate_ctrl(fe, 0); if (ret != 2) tda_err("ERROR: i2c_transfer returned: %d\n", ret); for (i = 0; i < TDA18271_NUM_REGS; i++) { /* don't update write-only registers */ if ((i != R_EB9) && (i != R_EB16) && (i != R_EB17) && (i != R_EB19) && (i != R_EB20)) regs[i] = regdump[i]; } if (tda18271_debug & DBG_REG) tda18271_dump_regs(fe, 1); return (ret == 2 ? 0 : ret); } int tda18271_write_regs(struct dvb_frontend *fe, int idx, int len) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; unsigned char buf[TDA18271_NUM_REGS + 1]; struct i2c_msg msg = { .addr = priv->i2c_props.addr, .flags = 0, .buf = buf, .len = len + 1 }; int i, ret; BUG_ON((len == 0) || (idx + len > sizeof(buf))); buf[0] = idx; for (i = 1; i <= len; i++) buf[i] = regs[idx - 1 + i]; tda18271_i2c_gate_ctrl(fe, 1); /* write registers */ ret = i2c_transfer(priv->i2c_props.adap, &msg, 1); tda18271_i2c_gate_ctrl(fe, 0); if (ret != 1) tda_err("ERROR: i2c_transfer returned: %d\n", ret); return (ret == 1 ? 0 : ret); } /*---------------------------------------------------------------------*/ int tda18271_charge_pump_source(struct dvb_frontend *fe, enum tda18271_pll pll, int force) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; int r_cp = (pll == TDA18271_CAL_PLL) ? R_EB7 : R_EB4; regs[r_cp] &= ~0x20; regs[r_cp] |= ((force & 1) << 5); return tda18271_write_regs(fe, r_cp, 1); } int tda18271_init_regs(struct dvb_frontend *fe) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; tda_dbg("initializing registers for device @ %d-%04x\n", i2c_adapter_id(priv->i2c_props.adap), priv->i2c_props.addr); /* initialize registers */ switch (priv->id) { case TDA18271HDC1: regs[R_ID] = 0x83; break; case TDA18271HDC2: regs[R_ID] = 0x84; break; }; regs[R_TM] = 0x08; regs[R_PL] = 0x80; regs[R_EP1] = 0xc6; regs[R_EP2] = 0xdf; regs[R_EP3] = 0x16; regs[R_EP4] = 0x60; regs[R_EP5] = 0x80; regs[R_CPD] = 0x80; regs[R_CD1] = 0x00; regs[R_CD2] = 0x00; regs[R_CD3] = 0x00; regs[R_MPD] = 0x00; regs[R_MD1] = 0x00; regs[R_MD2] = 0x00; regs[R_MD3] = 0x00; switch (priv->id) { case TDA18271HDC1: regs[R_EB1] = 0xff; break; case TDA18271HDC2: regs[R_EB1] = 0xfc; break; }; regs[R_EB2] = 0x01; regs[R_EB3] = 0x84; regs[R_EB4] = 0x41; regs[R_EB5] = 0x01; regs[R_EB6] = 0x84; regs[R_EB7] = 0x40; regs[R_EB8] = 0x07; regs[R_EB9] = 0x00; regs[R_EB10] = 0x00; regs[R_EB11] = 0x96; switch (priv->id) { case TDA18271HDC1: regs[R_EB12] = 0x0f; break; case TDA18271HDC2: regs[R_EB12] = 0x33; break; }; regs[R_EB13] = 0xc1; regs[R_EB14] = 0x00; regs[R_EB15] = 0x8f; regs[R_EB16] = 0x00; regs[R_EB17] = 0x00; switch (priv->id) { case TDA18271HDC1: regs[R_EB18] = 0x00; break; case TDA18271HDC2: regs[R_EB18] = 0x8c; break; }; regs[R_EB19] = 0x00; regs[R_EB20] = 0x20; switch (priv->id) { case TDA18271HDC1: regs[R_EB21] = 0x33; break; case TDA18271HDC2: regs[R_EB21] = 0xb3; break; }; regs[R_EB22] = 0x48; regs[R_EB23] = 0xb0; if (priv->small_i2c) { tda18271_write_regs(fe, 0x00, 0x10); tda18271_write_regs(fe, 0x10, 0x10); tda18271_write_regs(fe, 0x20, 0x07); } else tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS); /* setup agc1 gain */ regs[R_EB17] = 0x00; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB17] = 0x03; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB17] = 0x43; tda18271_write_regs(fe, R_EB17, 1); regs[R_EB17] = 0x4c; tda18271_write_regs(fe, R_EB17, 1); /* setup agc2 gain */ if ((priv->id) == TDA18271HDC1) { regs[R_EB20] = 0xa0; tda18271_write_regs(fe, R_EB20, 1); regs[R_EB20] = 0xa7; tda18271_write_regs(fe, R_EB20, 1); regs[R_EB20] = 0xe7; tda18271_write_regs(fe, R_EB20, 1); regs[R_EB20] = 0xec; tda18271_write_regs(fe, R_EB20, 1); } /* image rejection calibration */ /* low-band */ regs[R_EP3] = 0x1f; regs[R_EP4] = 0x66; regs[R_EP5] = 0x81; regs[R_CPD] = 0xcc; regs[R_CD1] = 0x6c; regs[R_CD2] = 0x00; regs[R_CD3] = 0x00; regs[R_MPD] = 0xcd; regs[R_MD1] = 0x77; regs[R_MD2] = 0x08; regs[R_MD3] = 0x00; tda18271_write_regs(fe, R_EP3, 11); if ((priv->id) == TDA18271HDC2) { /* main pll cp source on */ tda18271_charge_pump_source(fe, TDA18271_MAIN_PLL, 1); msleep(1); /* main pll cp source off */ tda18271_charge_pump_source(fe, TDA18271_MAIN_PLL, 0); } msleep(5); /* pll locking */ /* launch detector */ #if 0 regs[R_EP1] = 0xc6; /* already set */ #endif tda18271_write_regs(fe, R_EP1, 1); msleep(5); /* wanted low measurement */ #if 0 regs[R_EP3] = 0x1f; /* already set */ regs[R_EP4] = 0x66; /* already set */ #endif regs[R_EP5] = 0x85; regs[R_CPD] = 0xcb; regs[R_CD1] = 0x66; regs[R_CD2] = 0x70; #if 0 regs[R_CD3] = 0x00; /* already set */ #endif tda18271_write_regs(fe, R_EP3, 7); msleep(5); /* pll locking */ /* launch optimization algorithm */ #if 0 regs[R_EP2] = 0xdf; /* already set */ #endif tda18271_write_regs(fe, R_EP2, 1); msleep(30); /* image low optimization completion */ /* mid-band */ #if 0 regs[R_EP3] = 0x1f; /* already set */ regs[R_EP4] = 0x66; /* already set */ #endif regs[R_EP5] = 0x82; regs[R_CPD] = 0xa8; #if 0 regs[R_CD1] = 0x66; /* already set */ #endif regs[R_CD2] = 0x00; #if 0 regs[R_CD3] = 0x00; /* already set */ #endif regs[R_MPD] = 0xa9; regs[R_MD1] = 0x73; regs[R_MD2] = 0x1a; #if 0 regs[R_MD3] = 0x00; /* already set */ #endif tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* pll locking */ /* launch detector */ #if 0 regs[R_EP1] = 0xc6; /* already set */ #endif tda18271_write_regs(fe, R_EP1, 1); msleep(5); /* wanted mid measurement */ #if 0 regs[R_EP3] = 0x1f; /* already set */ regs[R_EP4] = 0x66; /* already set */ #endif regs[R_EP5] = 0x86; regs[R_CPD] = 0xa8; regs[R_CD1] = 0x66; regs[R_CD2] = 0xa0; #if 0 regs[R_CD3] = 0x00; /* already set */ #endif tda18271_write_regs(fe, R_EP3, 7); msleep(5); /* pll locking */ /* launch optimization algorithm */ #if 0 regs[R_EP2] = 0xdf; /* already set */ #endif tda18271_write_regs(fe, R_EP2, 1); msleep(30); /* image mid optimization completion */ /* high-band */ #if 0 regs[R_EP3] = 0x1f; /* already set */ regs[R_EP4] = 0x66; /* already set */ #endif regs[R_EP5] = 0x83; regs[R_CPD] = 0x98; regs[R_CD1] = 0x65; regs[R_CD2] = 0x00; #if 0 regs[R_CD3] = 0x00; /* already set */ #endif regs[R_MPD] = 0x99; regs[R_MD1] = 0x71; regs[R_MD2] = 0xcd; #if 0 regs[R_MD3] = 0x00; /* already set */ #endif tda18271_write_regs(fe, R_EP3, 11); msleep(5); /* pll locking */ /* launch detector */ #if 0 regs[R_EP1] = 0xc6; /* already set */ #endif tda18271_write_regs(fe, R_EP1, 1); msleep(5); /* wanted high measurement */ #if 0 regs[R_EP3] = 0x1f; /* already set */ regs[R_EP4] = 0x66; /* already set */ #endif regs[R_EP5] = 0x87; #if 0 regs[R_CPD] = 0x98; /* already set */ #endif regs[R_CD1] = 0x65; regs[R_CD2] = 0x50; #if 0 regs[R_CD3] = 0x00; /* already set */ #endif tda18271_write_regs(fe, R_EP3, 7); msleep(5); /* pll locking */ /* launch optimization algorithm */ #if 0 regs[R_EP2] = 0xdf; /* already set */ #endif tda18271_write_regs(fe, R_EP2, 1); msleep(30); /* image high optimization completion */ /* return to normal mode */ regs[R_EP4] = 0x64; tda18271_write_regs(fe, R_EP4, 1); /* synchronize */ #if 0 regs[R_EP1] = 0xc6; /* already set */ #endif tda18271_write_regs(fe, R_EP1, 1); return 0; } /*---------------------------------------------------------------------*/ /* * Standby modes, EP3 [7:5] * * | SM || SM_LT || SM_XT || mode description * |=====\\=======\\=======\\=================================== * | 0 || 0 || 0 || normal mode * |-----||-------||-------||----------------------------------- * | || || || standby mode w/ slave tuner output * | 1 || 0 || 0 || & loop thru & xtal oscillator on * |-----||-------||-------||----------------------------------- * | 1 || 1 || 0 || standby mode w/ xtal oscillator on * |-----||-------||-------||----------------------------------- * | 1 || 1 || 1 || power off * */ int tda18271_set_standby_mode(struct dvb_frontend *fe, int sm, int sm_lt, int sm_xt) { struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; if (tda18271_debug & DBG_ADV) tda_dbg("sm = %d, sm_lt = %d, sm_xt = %d\n", sm, sm_lt, sm_xt); regs[R_EP3] &= ~0xe0; /* clear sm, sm_lt, sm_xt */ regs[R_EP3] |= (sm ? (1 << 7) : 0) | (sm_lt ? (1 << 6) : 0) | (sm_xt ? (1 << 5) : 0); return tda18271_write_regs(fe, R_EP3, 1); } /*---------------------------------------------------------------------*/ int tda18271_calc_main_pll(struct dvb_frontend *fe, u32 freq) { /* sets main post divider & divider bytes, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 d, pd; u32 div; int ret = tda18271_lookup_pll_map(fe, MAIN_PLL, &freq, &pd, &d); if (tda_fail(ret)) goto fail; regs[R_MPD] = (0x77 & pd); switch (priv->mode) { case TDA18271_ANALOG: regs[R_MPD] &= ~0x08; break; case TDA18271_DIGITAL: regs[R_MPD] |= 0x08; break; } div = ((d * (freq / 1000)) << 7) / 125; regs[R_MD1] = 0x7f & (div >> 16); regs[R_MD2] = 0xff & (div >> 8); regs[R_MD3] = 0xff & div; fail: return ret; } int tda18271_calc_cal_pll(struct dvb_frontend *fe, u32 freq) { /* sets cal post divider & divider bytes, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 d, pd; u32 div; int ret = tda18271_lookup_pll_map(fe, CAL_PLL, &freq, &pd, &d); if (tda_fail(ret)) goto fail; regs[R_CPD] = pd; div = ((d * (freq / 1000)) << 7) / 125; regs[R_CD1] = 0x7f & (div >> 16); regs[R_CD2] = 0xff & (div >> 8); regs[R_CD3] = 0xff & div; fail: return ret; } /*---------------------------------------------------------------------*/ int tda18271_calc_bp_filter(struct dvb_frontend *fe, u32 *freq) { /* sets bp filter bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, BP_FILTER, freq, &val); if (tda_fail(ret)) goto fail; regs[R_EP1] &= ~0x07; /* clear bp filter bits */ regs[R_EP1] |= (0x07 & val); fail: return ret; } int tda18271_calc_km(struct dvb_frontend *fe, u32 *freq) { /* sets K & M bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, RF_CAL_KMCO, freq, &val); if (tda_fail(ret)) goto fail; regs[R_EB13] &= ~0x7c; /* clear k & m bits */ regs[R_EB13] |= (0x7c & val); fail: return ret; } int tda18271_calc_rf_band(struct dvb_frontend *fe, u32 *freq) { /* sets rf band bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, RF_BAND, freq, &val); if (tda_fail(ret)) goto fail; regs[R_EP2] &= ~0xe0; /* clear rf band bits */ regs[R_EP2] |= (0xe0 & (val << 5)); fail: return ret; } int tda18271_calc_gain_taper(struct dvb_frontend *fe, u32 *freq) { /* sets gain taper bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, GAIN_TAPER, freq, &val); if (tda_fail(ret)) goto fail; regs[R_EP2] &= ~0x1f; /* clear gain taper bits */ regs[R_EP2] |= (0x1f & val); fail: return ret; } int tda18271_calc_ir_measure(struct dvb_frontend *fe, u32 *freq) { /* sets IR Meas bits, but does not write them */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, IR_MEASURE, freq, &val); if (tda_fail(ret)) goto fail; regs[R_EP5] &= ~0x07; regs[R_EP5] |= (0x07 & val); fail: return ret; } int tda18271_calc_rf_cal(struct dvb_frontend *fe, u32 *freq) { /* sets rf cal byte (RFC_Cprog), but does not write it */ struct tda18271_priv *priv = fe->tuner_priv; unsigned char *regs = priv->tda18271_regs; u8 val; int ret = tda18271_lookup_map(fe, RF_CAL, freq, &val); /* The TDA18271HD/C1 rf_cal map lookup is expected to go out of range * for frequencies above 61.1 MHz. In these cases, the internal RF * tracking filters calibration mechanism is used. * * There is no need to warn the user about this. */ if (ret < 0) goto fail; regs[R_EB14] = val; fail: return ret; } /* * Overrides for Emacs so that we follow Linus's tabbing style. * --------------------------------------------------------------------------- * Local variables: * c-basic-offset: 8 * End: */