/* * skystar2.c - driver for the Technisat SkyStar2 PCI DVB card * based on the FlexCopII by B2C2,Inc. * * Copyright (C) 2003 Vadim Catana, skystar@moldova.cc * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include "dvb_i2c.h" #include "dvb_frontend.h" #include #include #include "dvb_demux.h" #include "dmxdev.h" #include "dvb_filter.h" #include "dvbdev.h" #include "demux.h" #include "dvb_net.h" #include "dvb_functions.h" static int debug = 0; #define dprintk(x...) do { if (debug) printk(x); } while (0) #define SizeOfBufDMA1 0x3AC00 #define SizeOfBufDMA2 0x758 struct dmaq { u32 bus_addr; u32 head; u32 tail; u32 buffer_size; u8 *buffer; }; struct packet_header { u32 sync_byte; u32 transport_error_indicator; u32 payload_unit_start_indicator; u32 transport_priority; u32 pid; u32 transport_scrambling_control; u32 adaptation_field_control; u32 continuity_counter; }; struct adapter { struct pci_dev *pdev; u8 card_revision; u32 b2c2_revision; u32 PidFilterMax; u32 MacFilterMax; u32 irq; unsigned long io_mem; unsigned long io_port; u8 mac_addr[8]; u32 dwSramType; struct dvb_adapter *dvb_adapter; struct dvb_demux demux; struct dmxdev dmxdev; struct dmx_frontend hw_frontend; struct dmx_frontend mem_frontend; struct dvb_i2c_bus *i2c_bus; struct dvb_net dvbnet; struct semaphore i2c_sem; struct dmaq dmaq1; struct dmaq dmaq2; u32 dma_ctrl; u32 dma_status; u32 capturing; spinlock_t lock; u16 pids[0x27]; u32 mac_filter; }; #define WriteRegDW(adapter,reg,value) writel(value, adapter->io_mem + reg) #define ReadRegDW(adapter,reg) readl(adapter->io_mem + reg) static void WriteRegOp(struct adapter *adapter, u32 reg, u32 operation, u32 andvalue, u32 orvalue) { u32 tmp; tmp = ReadRegDW(adapter, reg); if (operation == 1) tmp = tmp | orvalue; if (operation == 2) tmp = tmp & andvalue; if (operation == 3) tmp = (tmp & andvalue) | orvalue; WriteRegDW(adapter, reg, tmp); } /* i2c functions */ static int i2cMainWriteForFlex2(struct adapter * adapter, u32 command, u8 * buf, u32 retries) { u32 i; u32 value; WriteRegDW(adapter, 0x100, 0); WriteRegDW(adapter, 0x100, command); for (i = 0; i < retries; i++) { value = ReadRegDW(adapter, 0x100); if ((value & 0x40000000) == 0) { if ((value & 0x81000000) == 0x80000000) { if (buf != 0) *buf = (value >> 0x10) & 0xff; return 1; } } else { WriteRegDW(adapter, 0x100, 0); WriteRegDW(adapter, 0x100, command); } } return 0; } /* device = 0x10000000 for tuner, 0x20000000 for eeprom */ static void i2cMainSetup(u32 device, u32 chip_addr, u8 op, u8 addr, u32 value, u32 len, u32 *command) { *command = device | ((len - 1) << 26) | (value << 16) | (addr << 8) | chip_addr; if (op != 0) *command = *command | 0x03000000; else *command = *command | 0x01000000; } static int FlexI2cRead4(struct adapter * adapter, u32 device, u32 chip_addr, u16 addr, u8 * buf, u8 len) { u32 command; u32 value; int result, i; i2cMainSetup(device, chip_addr, 1, addr, 0, len, &command); result = i2cMainWriteForFlex2(adapter, command, buf, 100000); if ((result & 0xff) != 0) { if (len > 1) { value = ReadRegDW(adapter, 0x104); for (i = 1; i < len; i++) { buf[i] = value & 0xff; value = value >> 8; } } } return result; } static int FlexI2cWrite4(struct adapter * adapter, u32 device, u32 chip_addr, u32 addr, u8 * buf, u8 len) { u32 command; u32 value; int i; if (len > 1) { value = 0; for (i = len; i > 1; i--) { value = value << 8; value = value | buf[i - 1]; } WriteRegDW(adapter, 0x104, value); } i2cMainSetup(device, chip_addr, 0, addr, buf[0], len, &command); return i2cMainWriteForFlex2(adapter, command, 0, 100000); } static void fixchipaddr(u32 device, u32 bus, u32 addr, u32 *ret) { if (device == 0x20000000) *ret = bus | ((addr >> 8) & 3); *ret = bus; } static u32 FLEXI2C_read(struct adapter * adapter, u32 device, u32 bus, u32 addr, u8 * buf, u32 len) { u32 chipaddr; u32 bytes_to_transfer; u8 *start; dprintk("%s:\n", __FUNCTION__); start = buf; while (len != 0) { bytes_to_transfer = len; if (bytes_to_transfer > 4) bytes_to_transfer = 4; fixchipaddr(device, bus, addr, &chipaddr); if (FlexI2cRead4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) return buf - start; buf = buf + bytes_to_transfer; addr = addr + bytes_to_transfer; len = len - bytes_to_transfer; }; return buf - start; } static u32 FLEXI2C_write(struct adapter * adapter, u32 device, u32 bus, u32 addr, u8 * buf, u32 len) { u32 chipaddr; u32 bytes_to_transfer; u8 *start; dprintk("%s:\n", __FUNCTION__); start = buf; while (len != 0) { bytes_to_transfer = len; if (bytes_to_transfer > 4) bytes_to_transfer = 4; fixchipaddr(device, bus, addr, &chipaddr); if (FlexI2cWrite4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) return buf - start; buf = buf + bytes_to_transfer; addr = addr + bytes_to_transfer; len = len - bytes_to_transfer; } return buf - start; } static int master_xfer(struct dvb_i2c_bus *i2c, const struct i2c_msg *msgs, int num) { struct adapter *tmp = i2c->data; int i, ret = 0; if (down_interruptible(&tmp->i2c_sem)) return -ERESTARTSYS; dprintk("%s: %d messages to transfer\n", __FUNCTION__, num); for (i = 0; i < num; i++) { dprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); /* allow only the mt312 and stv0299 frontends to access the bus */ if ((msgs[i].addr != 0x0E) && (msgs[i].addr != 0x68) && (msgs[i].addr != 0x61) ) { up(&tmp->i2c_sem); return -EREMOTEIO; } } // read command if ( (num == 2) && (msgs[0].flags == 0) && (msgs[1].flags == I2C_M_RD) && (msgs[0].buf != NULL) && (msgs[1].buf != NULL) ) { ret = FLEXI2C_read(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], msgs[1].buf, msgs[1].len); up(&tmp->i2c_sem); if (ret != msgs[1].len) { printk("%s: read error !\n", __FUNCTION__); printk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); return -EREMOTEIO; } return num; } // write command for (i = 0; i < num; i++) { if ( (msgs[i].flags != 0) || (msgs[i].buf == NULL) || ( msgs[i].len < 2 ) ) return -EINVAL; ret = FLEXI2C_write(tmp, 0x10000000, msgs[i].addr, msgs[i].buf[0], &msgs[i].buf[1], msgs[i].len - 1); up(&tmp->i2c_sem); if (ret != msgs[0].len - 1) { printk("%s: write error %i !\n", __FUNCTION__, ret); printk("message %d: flags=0x%x, addr=0x%x, buf[0]=0x%x, len=%d \n", i, msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); return -EREMOTEIO; } return num; } printk("%s: unknown command format !\n", __FUNCTION__); return -EINVAL; } /* SRAM (Skystar2 rev2.3 has one "ISSI IS61LV256" chip on board, but it seems that FlexCopII can work with more than one chip) */ static void SRAMSetNetDest(struct adapter * adapter, u8 dest) { u32 tmp; udelay(1000); tmp = (ReadRegDW(adapter, 0x714) & 0xFFFFFFFC) | (dest & 3); udelay(1000); WriteRegDW(adapter, 0x714, tmp); WriteRegDW(adapter, 0x714, tmp); udelay(1000); /* return value is never used? */ /* return tmp; */ } static void SRAMSetCaiDest(struct adapter * adapter, u8 dest) { u32 tmp; udelay(1000); tmp = (ReadRegDW(adapter, 0x714) & 0xFFFFFFF3) | ((dest & 3) << 2); udelay(1000); udelay(1000); WriteRegDW(adapter, 0x714, tmp); WriteRegDW(adapter, 0x714, tmp); udelay(1000); /* return value is never used? */ /* return tmp; */ } static void SRAMSetCaoDest(struct adapter * adapter, u8 dest) { u32 tmp; udelay(1000); tmp = (ReadRegDW(adapter, 0x714) & 0xFFFFFFCF) | ((dest & 3) << 4); udelay(1000); udelay(1000); WriteRegDW(adapter, 0x714, tmp); WriteRegDW(adapter, 0x714, tmp); udelay(1000); /* return value is never used? */ /* return tmp; */ } static void SRAMSetMediaDest(struct adapter * adapter, u8 dest) { u32 tmp; udelay(1000); tmp = (ReadRegDW(adapter, 0x714) & 0xFFFFFF3F) | ((dest & 3) << 6); udelay(1000); udelay(1000); WriteRegDW(adapter, 0x714, tmp); WriteRegDW(adapter, 0x714, tmp); udelay(1000); /* return value is never used? */ /* return tmp; */ } /* SRAM memory is accessed through a buffer register in the FlexCop chip (0x700). This register has the following structure: bits 0-14 : address bit 15 : read/write flag bits 16-23 : 8-bit word to write bits 24-27 : = 4 bits 28-29 : memory bank selector bit 31 : busy flag */ static void FlexSramWrite(struct adapter *adapter, u32 bank, u32 addr, u8 * buf, u32 len) { u32 i, command, retries; for (i = 0; i < len; i++) { command = bank | addr | 0x04000000 | (*buf << 0x10); retries = 2; while (((ReadRegDW(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { mdelay(1); retries--; }; if (retries == 0) printk("%s: SRAM timeout\n", __FUNCTION__); WriteRegDW(adapter, 0x700, command); buf++; addr++; } } static void FlexSramRead(struct adapter *adapter, u32 bank, u32 addr, u8 * buf, u32 len) { u32 i, command, value, retries; for (i = 0; i < len; i++) { command = bank | addr | 0x04008000; retries = 10000; while (((ReadRegDW(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { mdelay(1); retries--; }; if (retries == 0) printk("%s: SRAM timeout\n", __FUNCTION__); WriteRegDW(adapter, 0x700, command); retries = 10000; while (((ReadRegDW(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { mdelay(1); retries--; }; if (retries == 0) printk("%s: SRAM timeout\n", __FUNCTION__); value = ReadRegDW(adapter, 0x700) >> 0x10; *buf = (value & 0xff); addr++; buf++; } } static void SRAM_writeChunk(struct adapter *adapter, u32 addr, u8 * buf, u16 len) { u32 bank; bank = 0; if (adapter->dwSramType == 0x20000) { bank = (addr & 0x18000) << 0x0D; } if (adapter->dwSramType == 0x00000) { if ((addr >> 0x0F) == 0) bank = 0x20000000; else bank = 0x10000000; } FlexSramWrite(adapter, bank, addr & 0x7FFF, buf, len); } static void SRAM_readChunk(struct adapter *adapter, u32 addr, u8 * buf, u16 len) { u32 bank; bank = 0; if (adapter->dwSramType == 0x20000) { bank = (addr & 0x18000) << 0x0D; } if (adapter->dwSramType == 0x00000) { if ((addr >> 0x0F) == 0) bank = 0x20000000; else bank = 0x10000000; } FlexSramRead(adapter, bank, addr & 0x7FFF, buf, len); } static void SRAM_read(struct adapter *adapter, u32 addr, u8 * buf, u32 len) { u32 length; while (len != 0) { length = len; // check if the address range belongs to the same // 32K memory chip. If not, the data is read from // one chip at a time. if ((addr >> 0x0F) != ((addr + len - 1) >> 0x0F)) { length = (((addr >> 0x0F) + 1) << 0x0F) - addr; } SRAM_readChunk(adapter, addr, buf, length); addr = addr + length; buf = buf + length; len = len - length; } } static void SRAM_write(struct adapter *adapter, u32 addr, u8 * buf, u32 len) { u32 length; while (len != 0) { length = len; // check if the address range belongs to the same // 32K memory chip. If not, the data is written to // one chip at a time. if ((addr >> 0x0F) != ((addr + len - 1) >> 0x0F)) { length = (((addr >> 0x0F) + 1) << 0x0F) - addr; } SRAM_writeChunk(adapter, addr, buf, length); addr = addr + length; buf = buf + length; len = len - length; } } static void SRAM_setSize(struct adapter *adapter, u32 mask) { WriteRegDW(adapter, 0x71C, (mask | (~0x30000 & ReadRegDW(adapter, 0x71C)))); } static void SRAM_init(struct adapter *adapter) { u32 tmp; tmp = ReadRegDW(adapter, 0x71C); WriteRegDW(adapter, 0x71C, 1); if (ReadRegDW(adapter, 0x71C) != 0) { WriteRegDW(adapter, 0x71C, tmp); adapter->dwSramType = tmp & 0x30000; dprintk("%s: dwSramType = %x\n", __FUNCTION__, adapter->dwSramType); } else { adapter->dwSramType = 0x10000; dprintk("%s: dwSramType = %x\n", __FUNCTION__, adapter->dwSramType); } /* return value is never used? */ /* return adapter->dwSramType; */ } static int SRAM_testLocation(struct adapter *adapter, u32 mask, u32 addr) { u8 tmp1, tmp2; dprintk("%s: mask = %x, addr = %x\n", __FUNCTION__, mask, addr); SRAM_setSize(adapter, mask); SRAM_init(adapter); tmp2 = 0xA5; tmp1 = 0x4F; SRAM_write(adapter, addr, &tmp2, 1); SRAM_write(adapter, addr + 4, &tmp1, 1); tmp2 = 0; mdelay(20); SRAM_read(adapter, addr, &tmp2, 1); SRAM_read(adapter, addr, &tmp2, 1); dprintk("%s: wrote 0xA5, read 0x%2x\n", __FUNCTION__, tmp2); if (tmp2 != 0xA5) return 0; tmp2 = 0x5A; tmp1 = 0xF4; SRAM_write(adapter, addr, &tmp2, 1); SRAM_write(adapter, addr + 4, &tmp1, 1); tmp2 = 0; mdelay(20); SRAM_read(adapter, addr, &tmp2, 1); SRAM_read(adapter, addr, &tmp2, 1); dprintk("%s: wrote 0x5A, read 0x%2x\n", __FUNCTION__, tmp2); if (tmp2 != 0x5A) return 0; return 1; } static u32 SRAM_length(struct adapter * adapter) { if (adapter->dwSramType == 0x10000) return 32768; // 32K if (adapter->dwSramType == 0x00000) return 65536; // 64K if (adapter->dwSramType == 0x20000) return 131072; // 128K return 32768; // 32K } /* FlexcopII can work with 32K, 64K or 128K of external SRAM memory. - for 128K there are 4x32K chips at bank 0,1,2,3. - for 64K there are 2x32K chips at bank 1,2. - for 32K there is one 32K chip at bank 0. FlexCop works only with one bank at a time. The bank is selected by bits 28-29 of the 0x700 register. bank 0 covers addresses 0x00000-0x07FFF bank 1 covers addresses 0x08000-0x0FFFF bank 2 covers addresses 0x10000-0x17FFF bank 3 covers addresses 0x18000-0x1FFFF */ static int SramDetectForFlex2(struct adapter *adapter) { u32 tmp, tmp2, tmp3; dprintk("%s:\n", __FUNCTION__); tmp = ReadRegDW(adapter, 0x208); WriteRegDW(adapter, 0x208, 0); tmp2 = ReadRegDW(adapter, 0x71C); dprintk("%s: tmp2 = %x\n", __FUNCTION__, tmp2); WriteRegDW(adapter, 0x71C, 1); tmp3 = ReadRegDW(adapter, 0x71C); dprintk("%s: tmp3 = %x\n", __FUNCTION__, tmp3); WriteRegDW(adapter, 0x71C, tmp2); // check for internal SRAM ??? tmp3--; if (tmp3 != 0) { SRAM_setSize(adapter, 0x10000); SRAM_init(adapter); WriteRegDW(adapter, 0x208, tmp); dprintk("%s: sram size = 32K\n", __FUNCTION__); return 32; } if (SRAM_testLocation(adapter, 0x20000, 0x18000) != 0) { SRAM_setSize(adapter, 0x20000); SRAM_init(adapter); WriteRegDW(adapter, 0x208, tmp); dprintk("%s: sram size = 128K\n", __FUNCTION__); return 128; } if (SRAM_testLocation(adapter, 0x00000, 0x10000) != 0) { SRAM_setSize(adapter, 0x00000); SRAM_init(adapter); WriteRegDW(adapter, 0x208, tmp); dprintk("%s: sram size = 64K\n", __FUNCTION__); return 64; } if (SRAM_testLocation(adapter, 0x10000, 0x00000) != 0) { SRAM_setSize(adapter, 0x10000); SRAM_init(adapter); WriteRegDW(adapter, 0x208, tmp); dprintk("%s: sram size = 32K\n", __FUNCTION__); return 32; } SRAM_setSize(adapter, 0x10000); SRAM_init(adapter); WriteRegDW(adapter, 0x208, tmp); dprintk("%s: SRAM detection failed. Set to 32K \n", __FUNCTION__); return 0; } static void SLL_detectSramSize(struct adapter *adapter) { SramDetectForFlex2(adapter); } /* EEPROM (Skystar2 has one "24LC08B" chip on board) */ /* static int EEPROM_write(struct adapter *adapter, u16 addr, u8 * buf, u16 len) { return FLEXI2C_write(adapter, 0x20000000, 0x50, addr, buf, len); } */ static int EEPROM_read(struct adapter *adapter, u16 addr, u8 * buf, u16 len) { return FLEXI2C_read(adapter, 0x20000000, 0x50, addr, buf, len); } u8 calc_LRC(u8 * buf, u32 len) { u32 i; u8 sum; sum = 0; for (i = 0; i < len; i++) sum = sum ^ buf[i]; return sum; } static int EEPROM_LRC_read(struct adapter *adapter, u32 addr, u32 len, u8 * buf, u32 retries) { int i; for (i = 0; i < retries; i++) { if (EEPROM_read(adapter, addr, buf, len) == len) { if (calc_LRC(buf, len - 1) == buf[len - 1]) return 1; } } return 0; } /* static int EEPROM_LRC_write(struct adapter *adapter, u32 addr, u32 len, u8 * wbuf, u8 * rbuf, u32 retries) { int i; for (i = 0; i < retries; i++) { if (EEPROM_write(adapter, addr, wbuf, len) == len) { if (EEPROM_LRC_read(adapter, addr, len, rbuf, retries) == 1) return 1; } } return 0; } */ /* These functions could be used to unlock SkyStar2 cards. */ /* static int EEPROM_writeKey(struct adapter *adapter, u8 * key, u32 len) { u8 rbuf[20]; u8 wbuf[20]; if (len != 16) return 0; memcpy(wbuf, key, len); wbuf[16] = 0; wbuf[17] = 0; wbuf[18] = 0; wbuf[19] = calc_LRC(wbuf, 19); return EEPROM_LRC_write(adapter, 0x3E4, 20, wbuf, rbuf, 4); } static int EEPROM_readKey(struct adapter *adapter, u8 * key, u32 len) { u8 buf[20]; if (len != 16) return 0; if (EEPROM_LRC_read(adapter, 0x3E4, 20, buf, 4) == 0) return 0; memcpy(key, buf, len); return 1; } */ static int EEPROM_getMacAddr(struct adapter *adapter, char type, u8 * mac) { u8 tmp[8]; if (EEPROM_LRC_read(adapter, 0x3F8, 8, tmp, 4) != 0) { if (type != 0) { mac[0] = tmp[0]; mac[1] = tmp[1]; mac[2] = tmp[2]; mac[3] = 0xFE; mac[4] = 0xFF; mac[5] = tmp[3]; mac[6] = tmp[4]; mac[7] = tmp[5]; } else { mac[0] = tmp[0]; mac[1] = tmp[1]; mac[2] = tmp[2]; mac[3] = tmp[3]; mac[4] = tmp[4]; mac[5] = tmp[5]; } return 1; } else { if (type == 0) { memset(mac, 0, 6); } else { memset(mac, 0, 8); } return 0; } } /* static char EEPROM_setMacAddr(struct adapter *adapter, char type, u8 * mac) { u8 tmp[8]; if (type != 0) { tmp[0] = mac[0]; tmp[1] = mac[1]; tmp[2] = mac[2]; tmp[3] = mac[5]; tmp[4] = mac[6]; tmp[5] = mac[7]; } else { tmp[0] = mac[0]; tmp[1] = mac[1]; tmp[2] = mac[2]; tmp[3] = mac[3]; tmp[4] = mac[4]; tmp[5] = mac[5]; } tmp[6] = 0; tmp[7] = calc_LRC(tmp, 7); if (EEPROM_write(adapter, 0x3F8, tmp, 8) == 8) return 1; return 0; } */ /* PID filter */ static void FilterEnableStream1Filter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00000001, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00000001); } } static void FilterEnableStream2Filter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00000002, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00000002); } } static void FilterEnablePcrFilter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00000004, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00000004); } } static void FilterEnablePmtFilter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00000008, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00000008); } } static void FilterEnableEmmFilter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00000010, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00000010); } } static void FilterEnableEcmFilter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00000020, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00000020); } } /* static void FilterEnableNullFilter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00000040, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00000040); } } */ static void FilterEnableMaskFilter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00000080, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00000080); } } static void CtrlEnableMAC(struct adapter *adapter, u32 op) { if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00004000, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00004000); } } static int CASetMacDstAddrFilter(struct adapter *adapter, u8 * mac) { u32 tmp1, tmp2; tmp1 = (mac[3] << 0x18) | (mac[2] << 0x10) | (mac[1] << 0x08) | mac[0]; tmp2 = (mac[5] << 0x08) | mac[4]; WriteRegDW(adapter, 0x418, tmp1); WriteRegDW(adapter, 0x41C, tmp2); return 0; } /* static void SetIgnoreMACFilter(struct adapter *adapter, u8 op) { if (op != 0) { WriteRegOp(adapter, 0x208, 2, ~0x00004000, 0); adapter->mac_filter = 1; } else { if (adapter->mac_filter != 0) { adapter->mac_filter = 0; WriteRegOp(adapter, 0x208, 1, 0, 0x00004000); } } } */ /* static void CheckNullFilterEnable(struct adapter *adapter) { FilterEnableNullFilter(adapter, 1); FilterEnableMaskFilter(adapter, 1); } */ static void InitPIDsInfo(struct adapter *adapter) { int i; for (i = 0; i < 0x27; i++) adapter->pids[i] = 0x1FFF; } static int CheckPID(struct adapter *adapter, u16 pid) { u32 i; if (pid == 0x1FFF) return 0; for (i = 0; i < 0x27; i++) { if (adapter->pids[i] == pid) return 1; } return 0; } static void PidSetGroupPID(struct adapter * adapter, u32 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = (pid & 0x3FFF) | (ReadRegDW(adapter, 0x30C) & 0xFFFF0000); WriteRegDW(adapter, 0x30C, value); /* return value is never used? */ /* return value; */ } static void PidSetGroupMASK(struct adapter * adapter, u32 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = ((pid & 0x3FFF) << 0x10) | (ReadRegDW(adapter, 0x30C) & 0xFFFF); WriteRegDW(adapter, 0x30C, value); /* return value is never used? */ /* return value; */ } static void PidSetStream1PID(struct adapter * adapter, u32 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = (pid & 0x3FFF) | (ReadRegDW(adapter, 0x300) & 0xFFFFC000); WriteRegDW(adapter, 0x300, value); /* return value is never used? */ /* return value; */ } static void PidSetStream2PID(struct adapter * adapter, u32 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = ((pid & 0x3FFF) << 0x10) | (ReadRegDW(adapter, 0x300) & 0xFFFF); WriteRegDW(adapter, 0x300, value); /* return value is never used? */ /* return value; */ } static void PidSetPcrPID(struct adapter * adapter, u32 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = (pid & 0x3FFF) | (ReadRegDW(adapter, 0x304) & 0xFFFFC000); WriteRegDW(adapter, 0x304, value); /* return value is never used? */ /* return value; */ } static void PidSetPmtPID(struct adapter * adapter, u32 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = ((pid & 0x3FFF) << 0x10) | (ReadRegDW(adapter, 0x304) & 0x3FFF); WriteRegDW(adapter, 0x304, value); /* return value is never used? */ /* return value; */ } static void PidSetEmmPID(struct adapter * adapter, u32 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = (pid & 0xFFFF) | (ReadRegDW(adapter, 0x308) & 0xFFFF0000); WriteRegDW(adapter, 0x308, value); /* return value is never used? */ /* return value; */ } static void PidSetEcmPID(struct adapter * adapter, u32 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = (pid << 0x10) | (ReadRegDW(adapter, 0x308) & 0xFFFF); WriteRegDW(adapter, 0x308, value); /* return value is never used? */ /* return value; */ } static int PidGetStream1PID(struct adapter * adapter) { return ReadRegDW(adapter, 0x300) & 0x00001FFF; } static int PidGetStream2PID(struct adapter * adapter) { return (ReadRegDW(adapter, 0x300) >> 0x10)& 0x00001FFF; } static int PidGetPcrPID(struct adapter * adapter) { return ReadRegDW(adapter, 0x304) & 0x00001FFF; } static int PidGetPmtPID(struct adapter * adapter) { return (ReadRegDW(adapter, 0x304) >> 0x10)& 0x00001FFF; } static int PidGetEmmPID(struct adapter * adapter) { return ReadRegDW(adapter, 0x308) & 0x00001FFF; } static int PidGetEcmPID(struct adapter * adapter) { return (ReadRegDW(adapter, 0x308) >> 0x10)& 0x00001FFF; } static int PidGetGroupPID(struct adapter * adapter) { return ReadRegDW(adapter, 0x30C) & 0x00001FFF; } static int PidGetGroupMASK(struct adapter * adapter) { return (ReadRegDW(adapter, 0x30C) >> 0x10)& 0x00001FFF; } /* static void ResetHardwarePIDFilter(struct adapter *adapter) { PidSetStream1PID(adapter, 0x1FFF); PidSetStream2PID(adapter, 0x1FFF); FilterEnableStream2Filter(adapter, 0); PidSetPcrPID(adapter, 0x1FFF); FilterEnablePcrFilter(adapter, 0); PidSetPmtPID(adapter, 0x1FFF); FilterEnablePmtFilter(adapter, 0); PidSetEcmPID(adapter, 0x1FFF); FilterEnableEcmFilter(adapter, 0); PidSetEmmPID(adapter, 0x1FFF); FilterEnableEmmFilter(adapter, 0); } */ static void OpenWholeBandwidth(struct adapter *adapter) { PidSetGroupPID(adapter, 0); PidSetGroupMASK(adapter, 0); FilterEnableMaskFilter(adapter, 1); } static int AddHwPID(struct adapter *adapter, u32 pid) { dprintk("%s: pid=%d\n", __FUNCTION__, pid); if (pid <= 0x1F) return 1; if ((PidGetGroupMASK(adapter) == 0) && (PidGetGroupPID(adapter) == 0)) return 0; if (PidGetStream1PID(adapter) == 0x1FFF) { PidSetStream1PID(adapter, pid & 0xFFFF); FilterEnableStream1Filter(adapter, 1); return 1; } if (PidGetStream2PID(adapter) == 0x1FFF) { PidSetStream2PID(adapter, (pid & 0xFFFF)); FilterEnableStream2Filter(adapter, 1); return 1; } if (PidGetPcrPID(adapter) == 0x1FFF) { PidSetPcrPID(adapter, (pid & 0xFFFF)); FilterEnablePcrFilter(adapter, 1); return 1; } if ((PidGetPmtPID(adapter) & 0x1FFF) == 0x1FFF) { PidSetPmtPID(adapter, (pid & 0xFFFF)); FilterEnablePmtFilter(adapter, 1); return 1; } if ((PidGetEmmPID(adapter) & 0x1FFF) == 0x1FFF) { PidSetEmmPID(adapter, (pid & 0xFFFF)); FilterEnableEmmFilter(adapter, 1); return 1; } if ((PidGetEcmPID(adapter) & 0x1FFF) == 0x1FFF) { PidSetEcmPID(adapter, (pid & 0xFFFF)); FilterEnableEcmFilter(adapter, 1); return 1; } return -1; } static int RemoveHwPID(struct adapter *adapter, u32 pid) { dprintk("%s: pid=%d\n", __FUNCTION__, pid); if (pid <= 0x1F) return 1; if (PidGetStream1PID(adapter) == pid) { PidSetStream1PID(adapter, 0x1FFF); return 1; } if (PidGetStream2PID(adapter) == pid) { PidSetStream2PID(adapter, 0x1FFF); FilterEnableStream2Filter(adapter, 0); return 1; } if (PidGetPcrPID(adapter) == pid) { PidSetPcrPID(adapter, 0x1FFF); FilterEnablePcrFilter(adapter, 0); return 1; } if (PidGetPmtPID(adapter) == pid) { PidSetPmtPID(adapter, 0x1FFF); FilterEnablePmtFilter(adapter, 0); return 1; } if (PidGetEmmPID(adapter) == pid) { PidSetEmmPID(adapter, 0x1FFF); FilterEnableEmmFilter(adapter, 0); return 1; } if (PidGetEcmPID(adapter) == pid) { PidSetEcmPID(adapter, 0x1FFF); FilterEnableEcmFilter(adapter, 0); return 1; } return -1; } static int AddPID(struct adapter *adapter, u32 pid) { int i; dprintk("%s: pid=%d\n", __FUNCTION__, pid); if (pid > 0x1FFE) return -1; if (CheckPID(adapter, pid) == 1) return 1; for (i = 0; i < 0x27; i++) { if (adapter->pids[i] == 0x1FFF) // find free pid filter { adapter->pids[i] = pid; if (AddHwPID(adapter, pid) < 0) OpenWholeBandwidth(adapter); return 1; } } return -1; } static int RemovePID(struct adapter *adapter, u32 pid) { u32 i; dprintk("%s: pid=%d\n", __FUNCTION__, pid); if (pid > 0x1FFE) return -1; for (i = 0; i < 0x27; i++) { if (adapter->pids[i] == pid) { adapter->pids[i] = 0x1FFF; RemoveHwPID(adapter, pid); return 1; } } return -1; } /* dma & irq */ static void CtrlEnableSmc(struct adapter *adapter, u32 op) { if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00000800, 0); } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00000800); } } static void DmaEnableDisableIrq(struct adapter *adapter, u32 flag1, u32 flag2, u32 flag3) { adapter->dma_ctrl = adapter->dma_ctrl & 0x000F0000; if (flag1 == 0) { if (flag2 == 0) adapter->dma_ctrl = adapter->dma_ctrl & ~0x00010000; else adapter->dma_ctrl = adapter->dma_ctrl | 0x00010000; if (flag3 == 0) adapter->dma_ctrl = adapter->dma_ctrl & ~0x00020000; else adapter->dma_ctrl = adapter->dma_ctrl | 0x00020000; } else { if (flag2 == 0) adapter->dma_ctrl = adapter->dma_ctrl & ~0x00040000; else adapter->dma_ctrl = adapter->dma_ctrl | 0x00040000; if (flag3 == 0) adapter->dma_ctrl = adapter->dma_ctrl & ~0x00080000; else adapter->dma_ctrl = adapter->dma_ctrl | 0x00080000; } } static void IrqDmaEnableDisableIrq(struct adapter * adapter, u32 op) { u32 value; value = ReadRegDW(adapter, 0x208) & 0xFFF0FFFF; if (op != 0) value = value | (adapter->dma_ctrl & 0x000F0000); WriteRegDW(adapter, 0x208, value); } /* FlexCopII has 2 dma channels. DMA1 is used to transfer TS data to system memory. The DMA1 buffer is divided in 2 subbuffers of equal size. FlexCopII will transfer TS data to one subbuffer, signal an interrupt when the subbuffer is full and continue fillig the second subbuffer. For DMA1: subbuffer size in 32-bit words is stored in the first 24 bits of register 0x004. The last 8 bits of register 0x004 contain the number of subbuffers. the first 30 bits of register 0x000 contain the address of the first subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, when dma1 is enabled. the first 30 bits of register 0x00C contain the address of the second subbuffer. the last 2 bits contain 1. register 0x008 will contain the address of the subbuffer that was filled with TS data, when FlexCopII will generate an interrupt. For DMA2: subbuffer size in 32-bit words is stored in the first 24 bits of register 0x014. The last 8 bits of register 0x014 contain the number of subbuffers. the first 30 bits of register 0x010 contain the address of the first subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, when dma1 is enabled. the first 30 bits of register 0x01C contain the address of the second subbuffer. the last 2 bits contain 1. register 0x018 contains the address of the subbuffer that was filled with TS data, when FlexCopII generates an interrupt. */ static int DmaInitDMA(struct adapter *adapter, u32 dma_channel) { u32 subbuffers, subbufsize, subbuf0, subbuf1; if (dma_channel == 0) { dprintk("%s: Initializing DMA1 channel\n", __FUNCTION__); subbuffers = 2; subbufsize = (((adapter->dmaq1.buffer_size / 2) / 4) << 8) | subbuffers; subbuf0 = adapter->dmaq1.bus_addr & 0xFFFFFFFC; subbuf1 = ((adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) & 0xFFFFFFFC) | 1; dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); udelay(1000); WriteRegDW(adapter, 0x000, subbuf0); dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); udelay(1000); WriteRegDW(adapter, 0x004, subbufsize); dprintk("%s: second subbuffer address = 0x%x\n", __FUNCTION__, subbuf1); udelay(1000); WriteRegDW(adapter, 0x00C, subbuf1); dprintk("%s: counter = 0x%x\n", __FUNCTION__, adapter->dmaq1.bus_addr & 0xFFFFFFFC); WriteRegDW(adapter, 0x008, adapter->dmaq1.bus_addr & 0xFFFFFFFC); udelay(1000); if (subbuffers == 0) DmaEnableDisableIrq(adapter, 0, 1, 0); else DmaEnableDisableIrq(adapter, 0, 1, 1); IrqDmaEnableDisableIrq(adapter, 1); SRAMSetMediaDest(adapter, 1); SRAMSetNetDest(adapter, 1); SRAMSetCaiDest(adapter, 2); SRAMSetCaoDest(adapter, 2); } if (dma_channel == 1) { dprintk("%s: Initializing DMA2 channel\n", __FUNCTION__); subbuffers = 2; subbufsize = (((adapter->dmaq2.buffer_size / 2) / 4) << 8) | subbuffers; subbuf0 = adapter->dmaq2.bus_addr & 0xFFFFFFFC; subbuf1 = ((adapter->dmaq2.bus_addr + adapter->dmaq2.buffer_size / 2) & 0xFFFFFFFC) | 1; dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); udelay(1000); WriteRegDW(adapter, 0x010, subbuf0); dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); udelay(1000); WriteRegDW(adapter, 0x014, subbufsize); dprintk("%s: second buffer address = 0x%x\n", __FUNCTION__, subbuf1); udelay(1000); WriteRegDW(adapter, 0x01C, subbuf1); SRAMSetCaiDest(adapter, 2); } return 0; } static void CtrlEnableReceiveData(struct adapter *adapter, u32 op) { if (op == 0) { WriteRegOp(adapter, 0x208, 2, ~0x00008000, 0); adapter->dma_status = adapter->dma_status & ~0x00000004; } else { WriteRegOp(adapter, 0x208, 1, 0, 0x00008000); adapter->dma_status = adapter->dma_status | 0x00000004; } } /* bit 0 of dma_mask is set to 1 if dma1 channel has to be enabled/disabled bit 1 of dma_mask is set to 1 if dma2 channel has to be enabled/disabled */ static void DmaStartStop0x2102(struct adapter *adapter, u32 dma_mask, u32 start_stop) { u32 dma_enable, dma1_enable, dma2_enable; dprintk("%s: dma_mask=%x\n", __FUNCTION__, dma_mask); if (start_stop == 1) { dprintk("%s: starting dma\n", __FUNCTION__); dma1_enable = 0; dma2_enable = 0; if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) == 0) && (adapter->dmaq1.bus_addr != 0)) { adapter->dma_status = adapter->dma_status | 1; dma1_enable = 1; } if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) == 0) && (adapter->dmaq2.bus_addr != 0)) { adapter->dma_status = adapter->dma_status | 2; dma2_enable = 1; } // enable dma1 and dma2 if ((dma1_enable == 1) && (dma2_enable == 1)) { WriteRegDW(adapter, 0x000, adapter->dmaq1.bus_addr | 1); WriteRegDW(adapter, 0x00C, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); WriteRegDW(adapter, 0x010, adapter->dmaq2.bus_addr | 1); CtrlEnableReceiveData(adapter, 1); return; } // enable dma1 if ((dma1_enable == 1) && (dma2_enable == 0)) { WriteRegDW(adapter, 0x000, adapter->dmaq1.bus_addr | 1); WriteRegDW(adapter, 0x00C, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); CtrlEnableReceiveData(adapter, 1); return; } // enable dma2 if ((dma1_enable == 0) && (dma2_enable == 1)) { WriteRegDW(adapter, 0x010, adapter->dmaq2.bus_addr | 1); CtrlEnableReceiveData(adapter, 1); return; } // start dma if ((dma1_enable == 0) && (dma2_enable == 0)) { CtrlEnableReceiveData(adapter, 1); return; } } else { dprintk("%s: stoping dma\n", __FUNCTION__); dma_enable = adapter->dma_status & 0x00000003; if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0)) { dma_enable = dma_enable & 0xFFFFFFFE; } if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0)) { dma_enable = dma_enable & 0xFFFFFFFD; } //stop dma if ((dma_enable == 0) && ((adapter->dma_status & 4) != 0)) { CtrlEnableReceiveData(adapter, 0); udelay(3000); } //disable dma1 if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0) && (adapter->dmaq1.bus_addr != 0)) { WriteRegDW(adapter, 0x000, adapter->dmaq1.bus_addr); WriteRegDW(adapter, 0x00C, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); adapter->dma_status = adapter->dma_status & ~0x00000001; } //disable dma2 if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0) && (adapter->dmaq2.bus_addr != 0)) { WriteRegDW(adapter, 0x010, adapter->dmaq2.bus_addr); adapter->dma_status = adapter->dma_status & ~0x00000002; } } } static void OpenStream(struct adapter *adapter, u32 pid) { u32 dma_mask; if (adapter->capturing == 0) adapter->capturing = 1; FilterEnableMaskFilter(adapter, 1); AddPID(adapter, pid); dprintk("%s: adapter->dma_status=%x\n", __FUNCTION__, adapter->dma_status); if ((adapter->dma_status & 7) != 7) { dma_mask = 0; if (((adapter->dma_status & 0x10000000) != 0) && ((adapter->dma_status & 1) == 0)) { dma_mask = dma_mask | 1; adapter->dmaq1.head = 0; adapter->dmaq1.tail = 0; memset(adapter->dmaq1.buffer, 0, adapter->dmaq1.buffer_size); } if (((adapter->dma_status & 0x20000000) != 0) && ((adapter->dma_status & 2) == 0)) { dma_mask = dma_mask | 2; adapter->dmaq2.head = 0; adapter->dmaq2.tail = 0; } if (dma_mask != 0) { IrqDmaEnableDisableIrq(adapter, 1); DmaStartStop0x2102(adapter, dma_mask, 1); } } } static void CloseStream(struct adapter *adapter, u32 pid) { u32 dma_mask; if (adapter->capturing != 0) adapter->capturing = 0; dprintk("%s: dma_status=%x\n", __FUNCTION__, adapter->dma_status); dma_mask = 0; if ((adapter->dma_status & 1) != 0) dma_mask = dma_mask | 0x00000001; if ((adapter->dma_status & 2) != 0) dma_mask = dma_mask | 0x00000002; if (dma_mask != 0) { DmaStartStop0x2102(adapter, dma_mask, 0); } RemovePID(adapter, pid); } static void InterruptServiceDMA1(struct adapter *adapter) { struct dvb_demux *dvbdmx = &adapter->demux; struct packet_header packet_header; int nCurDmaCounter; u32 nNumBytesParsed; u32 nNumNewBytesTransferred; u32 dwDefaultPacketSize = 188; u8 gbTmpBuffer[188]; u8 *pbDMABufCurPos; nCurDmaCounter = readl(adapter->io_mem + 0x008) - adapter->dmaq1.bus_addr; nCurDmaCounter = (nCurDmaCounter / dwDefaultPacketSize) * dwDefaultPacketSize; if ((nCurDmaCounter < 0) || (nCurDmaCounter > adapter->dmaq1.buffer_size)) { dprintk("%s: dma counter outside dma buffer\n", __FUNCTION__); return; } adapter->dmaq1.head = nCurDmaCounter; if (adapter->dmaq1.tail <= nCurDmaCounter) { nNumNewBytesTransferred = nCurDmaCounter - adapter->dmaq1.tail; } else { nNumNewBytesTransferred = (adapter->dmaq1.buffer_size - adapter->dmaq1.tail) + nCurDmaCounter; } dprintk("%s: nCurDmaCounter = %d\n" , __FUNCTION__, nCurDmaCounter); dprintk("%s: dmaq1.tail = %d\n" , __FUNCTION__, adapter->dmaq1.tail); dprintk("%s: BytesTransferred = %d\n" , __FUNCTION__, nNumNewBytesTransferred); if (nNumNewBytesTransferred < dwDefaultPacketSize) return; nNumBytesParsed = 0; while (nNumBytesParsed < nNumNewBytesTransferred) { pbDMABufCurPos = adapter->dmaq1.buffer + adapter->dmaq1.tail; if (adapter->dmaq1.buffer + adapter->dmaq1.buffer_size < adapter->dmaq1.buffer + adapter->dmaq1.tail + 188) { memcpy(gbTmpBuffer, adapter->dmaq1.buffer + adapter->dmaq1.tail, adapter->dmaq1.buffer_size - adapter->dmaq1.tail); memcpy(gbTmpBuffer + (adapter->dmaq1.buffer_size - adapter->dmaq1.tail), adapter->dmaq1.buffer, (188 - (adapter->dmaq1.buffer_size - adapter->dmaq1.tail))); pbDMABufCurPos = gbTmpBuffer; } if (adapter->capturing != 0) { u32 *dq = (u32 *) pbDMABufCurPos; packet_header.sync_byte = *dq & 0x000000FF; packet_header.transport_error_indicator = *dq & 0x00008000; packet_header.payload_unit_start_indicator = *dq & 0x00004000; packet_header.transport_priority = *dq & 0x00002000; packet_header.pid = ((*dq & 0x00FF0000) >> 0x10) | (*dq & 0x00001F00); packet_header.transport_scrambling_control = *dq >> 0x1E; packet_header.adaptation_field_control = (*dq & 0x30000000) >> 0x1C; packet_header.continuity_counter = (*dq & 0x0F000000) >> 0x18; if ((packet_header.sync_byte == 0x47) && (packet_header.transport_error_indicator == 0) && (packet_header.pid != 0x1FFF)) { if (CheckPID(adapter, packet_header.pid & 0x0000FFFF) != 0) { dvb_dmx_swfilter_packets(dvbdmx, pbDMABufCurPos, dwDefaultPacketSize / 188); } else { dprintk("%s: pid=%x\n", __FUNCTION__, packet_header.pid); } } } nNumBytesParsed = nNumBytesParsed + dwDefaultPacketSize; adapter->dmaq1.tail = adapter->dmaq1.tail + dwDefaultPacketSize; if (adapter->dmaq1.tail >= adapter->dmaq1.buffer_size) adapter->dmaq1.tail = adapter->dmaq1.tail - adapter->dmaq1.buffer_size; }; } static void InterruptServiceDMA2(struct adapter *adapter) { printk("%s:\n", __FUNCTION__); } static irqreturn_t isr(int irq, void *dev_id, struct pt_regs *regs) { struct adapter *tmp = dev_id; u32 value; dprintk("%s:\n", __FUNCTION__); spin_lock_irq(&tmp->lock); if (0 == ((value = ReadRegDW(tmp, 0x20C)) & 0x0F)) { spin_unlock_irq(&tmp->lock); return IRQ_NONE; } while (value != 0) { if ((value & 0x03) != 0) InterruptServiceDMA1(tmp); if ((value & 0x0C) != 0) InterruptServiceDMA2(tmp); value = ReadRegDW(tmp, 0x20C) & 0x0F; } spin_unlock_irq(&tmp->lock); return IRQ_HANDLED; } static void Initdmaqueue(struct adapter *adapter) { dma_addr_t dma_addr; if (adapter->dmaq1.buffer != 0) return; adapter->dmaq1.head = 0; adapter->dmaq1.tail = 0; adapter->dmaq1.buffer = 0; adapter->dmaq1.buffer = pci_alloc_consistent(adapter->pdev, SizeOfBufDMA1 + 0x80, &dma_addr); if (adapter->dmaq1.buffer != 0) { memset(adapter->dmaq1.buffer, 0, SizeOfBufDMA1); adapter->dmaq1.bus_addr = dma_addr; adapter->dmaq1.buffer_size = SizeOfBufDMA1; DmaInitDMA(adapter, 0); adapter->dma_status = adapter->dma_status | 0x10000000; dprintk("%s: allocated dma buffer at 0x%p, length=%d\n", __FUNCTION__, adapter->dmaq1.buffer, SizeOfBufDMA1); } else { adapter->dma_status = adapter->dma_status & ~0x10000000; } if (adapter->dmaq2.buffer != 0) return; adapter->dmaq2.head = 0; adapter->dmaq2.tail = 0; adapter->dmaq2.buffer = 0; adapter->dmaq2.buffer = pci_alloc_consistent(adapter->pdev, SizeOfBufDMA2 + 0x80, &dma_addr); if (adapter->dmaq2.buffer != 0) { memset(adapter->dmaq2.buffer, 0, SizeOfBufDMA2); adapter->dmaq2.bus_addr = dma_addr; adapter->dmaq2.buffer_size = SizeOfBufDMA2; DmaInitDMA(adapter, 1); adapter->dma_status = adapter->dma_status | 0x20000000; dprintk("%s: allocated dma buffer at 0x%p, length=%d\n", __FUNCTION__, adapter->dmaq2.buffer, (int) SizeOfBufDMA2); } else { adapter->dma_status = adapter->dma_status & ~0x20000000; } } static void Freedmaqueue(struct adapter *adapter) { if (adapter->dmaq1.buffer != 0) { pci_free_consistent(adapter->pdev, SizeOfBufDMA1 + 0x80, adapter->dmaq1.buffer, adapter->dmaq1.bus_addr); adapter->dmaq1.bus_addr = 0; adapter->dmaq1.head = 0; adapter->dmaq1.tail = 0; adapter->dmaq1.buffer_size = 0; adapter->dmaq1.buffer = 0; } if (adapter->dmaq2.buffer != 0) { pci_free_consistent(adapter->pdev, SizeOfBufDMA2 + 0x80, adapter->dmaq2.buffer, adapter->dmaq2.bus_addr); adapter->dmaq2.bus_addr = 0; adapter->dmaq2.head = 0; adapter->dmaq2.tail = 0; adapter->dmaq2.buffer_size = 0; adapter->dmaq2.buffer = 0; } } static void FreeAdapterObject(struct adapter *adapter) { dprintk("%s:\n", __FUNCTION__); CloseStream(adapter, 0); if (adapter->irq != 0) free_irq(adapter->irq, adapter); Freedmaqueue(adapter); if (adapter->io_mem != 0) iounmap((void *) adapter->io_mem); if (adapter != 0) kfree(adapter); } static struct pci_driver skystar2_pci_driver; static int ClaimAdapter(struct adapter *adapter) { struct pci_dev *pdev = adapter->pdev; u16 var; if (!request_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1), skystar2_pci_driver.name)) return -EBUSY; if (!request_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0), skystar2_pci_driver.name)) return -EBUSY; pci_read_config_byte(pdev, PCI_CLASS_REVISION, &adapter->card_revision); dprintk("%s: card revision %x \n", __FUNCTION__, adapter->card_revision); if (pci_enable_device(pdev)) return -EIO; pci_read_config_word(pdev, 4, &var); if ((var & 4) == 0) pci_set_master(pdev); adapter->io_port = pdev->resource[1].start; adapter->io_mem = (unsigned long) ioremap(pdev->resource[0].start, 0x800); if (adapter->io_mem == 0) { dprintk("%s: can not map io memory\n", __FUNCTION__); return 2; } dprintk("%s: io memory maped at %lx\n", __FUNCTION__, adapter->io_mem); return 1; } /* static int SLL_reset_FlexCOP(struct adapter *adapter) { WriteRegDW(adapter, 0x208, 0); WriteRegDW(adapter, 0x210, 0xB2FF); return 0; } */ static int DriverInitialize(struct pci_dev * pdev) { struct adapter *adapter; u32 tmp; if (!(adapter = kmalloc(sizeof(struct adapter), GFP_KERNEL))) { dprintk("%s: out of memory!\n", __FUNCTION__); return -ENOMEM; } memset(adapter, 0, sizeof(struct adapter)); pci_set_drvdata(pdev,adapter); adapter->pdev = pdev; adapter->irq = pdev->irq; if ((ClaimAdapter(adapter)) != 1) { FreeAdapterObject(adapter); return -ENODEV; } IrqDmaEnableDisableIrq(adapter, 0); if (request_irq(pdev->irq, isr, 0x4000000, "Skystar2", adapter) != 0) { dprintk("%s: unable to allocate irq=%d !\n", __FUNCTION__, pdev->irq); FreeAdapterObject(adapter); return -ENODEV; } ReadRegDW(adapter, 0x208); WriteRegDW(adapter, 0x208, 0); WriteRegDW(adapter, 0x210, 0xB2FF); WriteRegDW(adapter, 0x208, 0x40); InitPIDsInfo(adapter); PidSetGroupPID(adapter, 0); PidSetGroupMASK(adapter, 0x1FE0); PidSetStream1PID(adapter, 0x1FFF); PidSetStream2PID(adapter, 0x1FFF); PidSetPmtPID(adapter, 0x1FFF); PidSetPcrPID(adapter, 0x1FFF); PidSetEcmPID(adapter, 0x1FFF); PidSetEmmPID(adapter, 0x1FFF); Initdmaqueue(adapter); if ((adapter->dma_status & 0x30000000) == 0) { FreeAdapterObject(adapter); return -ENODEV; } adapter->b2c2_revision = (ReadRegDW(adapter, 0x204) >> 0x18); if ((adapter->b2c2_revision != 0x82) && (adapter->b2c2_revision != 0xC3)) if (adapter->b2c2_revision != 0x82) { dprintk("%s: The revision of the FlexCopII chip on your card is - %d\n", __FUNCTION__, adapter->b2c2_revision); dprintk("%s: This driver works now only with FlexCopII(rev.130) and FlexCopIIB(rev.195).\n", __FUNCTION__); FreeAdapterObject(adapter); return -ENODEV; } tmp = ReadRegDW(adapter, 0x204); WriteRegDW(adapter, 0x204, 0); mdelay(20); WriteRegDW(adapter, 0x204, tmp); mdelay(10); tmp = ReadRegDW(adapter, 0x308); WriteRegDW(adapter, 0x308, 0x4000 | tmp); adapter->dwSramType = 0x10000; SLL_detectSramSize(adapter); dprintk("%s sram length = %d, sram type= %x\n", __FUNCTION__, SRAM_length(adapter), adapter->dwSramType); SRAMSetMediaDest(adapter, 1); SRAMSetNetDest(adapter, 1); CtrlEnableSmc(adapter, 0); SRAMSetCaiDest(adapter, 2); SRAMSetCaoDest(adapter, 2); DmaEnableDisableIrq(adapter, 1, 0, 0); if (EEPROM_getMacAddr(adapter, 0, adapter->mac_addr) != 0) { printk("%s MAC address = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x \n", __FUNCTION__, adapter->mac_addr[0], adapter->mac_addr[1], adapter->mac_addr[2], adapter->mac_addr[3], adapter->mac_addr[4], adapter->mac_addr[5], adapter->mac_addr[6], adapter->mac_addr[7] ); CASetMacDstAddrFilter(adapter, adapter->mac_addr); CtrlEnableMAC(adapter, 1); } adapter->lock = SPIN_LOCK_UNLOCKED; return 0; } static void DriverHalt(struct pci_dev *pdev) { struct adapter *adapter; adapter = pci_get_drvdata(pdev); IrqDmaEnableDisableIrq(adapter, 0); CtrlEnableReceiveData(adapter, 0); FreeAdapterObject(adapter); pci_set_drvdata(pdev, NULL); release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); } static int dvb_start_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct adapter *adapter = (struct adapter *) dvbdmx->priv; dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); OpenStream(adapter, dvbdmxfeed->pid); return 0; } static int dvb_stop_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct adapter *adapter = (struct adapter *) dvbdmx->priv; dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); CloseStream(adapter, dvbdmxfeed->pid); return 0; } /* lnb control */ static void set_tuner_tone(struct adapter *adapter, u8 tone) { u16 wzHalfPeriodFor45MHz[] = { 0x01FF, 0x0154, 0x00FF, 0x00CC }; u16 ax; dprintk("%s: %u\n", __FUNCTION__, tone); switch (tone) { case 1: ax = wzHalfPeriodFor45MHz[0]; break; case 2: ax = wzHalfPeriodFor45MHz[1]; break; case 3: ax = wzHalfPeriodFor45MHz[2]; break; case 4: ax = wzHalfPeriodFor45MHz[3]; break; default: ax = 0; } if (ax != 0) { WriteRegDW(adapter, 0x200, ((ax << 0x0F) + (ax & 0x7FFF)) | 0x40000000); } else { WriteRegDW(adapter, 0x200, 0x40FF8000); } } static void set_tuner_polarity(struct adapter *adapter, u8 polarity) { u32 var; dprintk("%s : polarity = %u \n", __FUNCTION__, polarity); var = ReadRegDW(adapter, 0x204); if (polarity == 0) { dprintk("%s: LNB power off\n", __FUNCTION__); var = var | 1; }; if (polarity == 1) { var = var & ~1; var = var & ~4; }; if (polarity == 2) { var = var & ~1; var = var | 4; } WriteRegDW(adapter, 0x204, var); } static int flexcop_diseqc_ioctl(struct dvb_frontend *fe, unsigned int cmd, void *arg) { struct adapter *adapter = fe->before_after_data; struct dvb_frontend_info info; switch (cmd) { case FE_SLEEP: { dprintk("%s: FE_SLEEP\n", __FUNCTION__); set_tuner_polarity(adapter, 0); // return -EOPNOTSUPP, to make DVB core also send "FE_SLEEP" command to frontend. return -EOPNOTSUPP; } case FE_SET_VOLTAGE: { dprintk("%s: FE_SET_VOLTAGE\n", __FUNCTION__); switch ((fe_sec_voltage_t) arg) { case SEC_VOLTAGE_13: dprintk("%s: SEC_VOLTAGE_13, %x\n", __FUNCTION__, SEC_VOLTAGE_13); set_tuner_polarity(adapter, 1); return 0; case SEC_VOLTAGE_18: dprintk("%s: SEC_VOLTAGE_18, %x\n", __FUNCTION__, SEC_VOLTAGE_18); set_tuner_polarity(adapter, 2); return 0; default: return -EINVAL; }; } case FE_SET_TONE: { dprintk("%s: FE_SET_TONE\n", __FUNCTION__); fe->ioctl(fe, FE_GET_INFO, &info); if ( strcmp(info.name, "Zarlink MT312") == 0) { dprintk("%s: FE_SET_TONE for %s frontend\n", __FUNCTION__, info.name); switch ((fe_sec_tone_mode_t) arg) { case SEC_TONE_ON: dprintk("%s: SEC_TONE_ON, %x\n", __FUNCTION__, SEC_TONE_ON); set_tuner_tone(adapter, 1); return 0; case SEC_TONE_OFF: dprintk("%s: SEC_TONE_OFF, %x\n", __FUNCTION__, SEC_TONE_OFF); set_tuner_tone(adapter, 0); return 0; default: return -EINVAL; }; }; if ( strcmp(info.name, "STV0299/TSA5059/SL1935 based") == 0) { dprintk("%s: FE_SET_TONE for %s frontend\n", __FUNCTION__, info.name); /* allow the frontend driver to handle this command*/ return -EOPNOTSUPP; }; printk("%s: FE_SET_TONE unknown frontend : %s\n", __FUNCTION__, info.name); return -EINVAL; } default: return -EOPNOTSUPP; }; return 0; } static int skystar2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct adapter *adapter; struct dvb_adapter *dvb_adapter; struct dvb_demux *dvbdemux; int ret; if (pdev == NULL) return -ENODEV; if (DriverInitialize(pdev) != 0) return -ENODEV; dvb_register_adapter(&dvb_adapter, skystar2_pci_driver.name); if (dvb_adapter == NULL) { printk("%s: Error registering DVB adapter\n", __FUNCTION__); DriverHalt(pdev); return -ENODEV; } adapter = (struct adapter *) pci_get_drvdata(pdev); adapter->dvb_adapter = dvb_adapter; init_MUTEX(&adapter->i2c_sem); adapter->i2c_bus = dvb_register_i2c_bus(master_xfer, adapter, adapter->dvb_adapter, 0); if (!adapter->i2c_bus) return -ENOMEM; dvb_add_frontend_ioctls(adapter->dvb_adapter, flexcop_diseqc_ioctl, NULL, adapter); dvbdemux = &adapter->demux; dvbdemux->priv = (void *) adapter; dvbdemux->filternum = 32; dvbdemux->feednum = 32; dvbdemux->start_feed = dvb_start_feed; dvbdemux->stop_feed = dvb_stop_feed; dvbdemux->write_to_decoder = 0; dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING); dvb_dmx_init(&adapter->demux); adapter->hw_frontend.source = DMX_FRONTEND_0; adapter->dmxdev.filternum = 32; adapter->dmxdev.demux = &dvbdemux->dmx; adapter->dmxdev.capabilities = 0; dvb_dmxdev_init(&adapter->dmxdev, adapter->dvb_adapter); ret = dvbdemux->dmx.add_frontend(&dvbdemux->dmx, &adapter->hw_frontend); if (ret < 0) return ret; adapter->mem_frontend.source = DMX_MEMORY_FE; ret = dvbdemux->dmx.add_frontend(&dvbdemux->dmx, &adapter->mem_frontend); if (ret < 0) return ret; ret = dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, &adapter->hw_frontend); if (ret < 0) return ret; dvb_net_init(adapter->dvb_adapter, &adapter->dvbnet, &dvbdemux->dmx); return 0; } static void skystar2_remove(struct pci_dev *pdev) { struct adapter *adapter; struct dvb_demux *dvbdemux; if (pdev == NULL) return; adapter = pci_get_drvdata(pdev); if (adapter != NULL) { dvb_net_release(&adapter->dvbnet); dvbdemux = &adapter->demux; dvbdemux->dmx.close(&dvbdemux->dmx); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->hw_frontend); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->mem_frontend); dvb_dmxdev_release(&adapter->dmxdev); dvb_dmx_release(&adapter->demux); if (adapter->dvb_adapter != NULL) { dvb_remove_frontend_ioctls(adapter->dvb_adapter, flexcop_diseqc_ioctl, NULL); if (adapter->i2c_bus != NULL) dvb_unregister_i2c_bus(master_xfer, adapter->i2c_bus->adapter, adapter->i2c_bus->id); dvb_unregister_adapter(adapter->dvb_adapter); } DriverHalt(pdev); } } static struct pci_device_id skystar2_pci_tbl[] = { {0x000013D0, 0x00002103, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000}, {0,}, }; static struct pci_driver skystar2_pci_driver = { .name = "Technisat SkyStar2 driver", .id_table = skystar2_pci_tbl, .probe = skystar2_probe, .remove = skystar2_remove, }; static int skystar2_init(void) { return pci_module_init(&skystar2_pci_driver); } static void skystar2_cleanup(void) { pci_unregister_driver(&skystar2_pci_driver); } module_init(skystar2_init); module_exit(skystar2_cleanup); MODULE_DESCRIPTION("Technisat SkyStar2 DVB PCI Driver"); MODULE_LICENSE("GPL");