/* Frontend-driver for TwinHan DST Frontend Copyright (C) 2003 Jamie Honan This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "dst_priv.h" #include "dst.h" struct dst_state { struct i2c_adapter* i2c; struct bt878* bt; struct dvb_frontend_ops ops; /* configuration settings */ const struct dst_config* config; struct dvb_frontend frontend; /* private demodulator data */ u8 tx_tuna[10]; u8 rx_tuna[10]; u8 rxbuffer[10]; u8 diseq_flags; u8 dst_type; u32 type_flags; u32 frequency; /* intermediate frequency in kHz for QPSK */ fe_spectral_inversion_t inversion; u32 symbol_rate; /* symbol rate in Symbols per second */ fe_code_rate_t fec; fe_sec_voltage_t voltage; fe_sec_tone_mode_t tone; u32 decode_freq; u8 decode_lock; u16 decode_strength; u16 decode_snr; unsigned long cur_jiff; u8 k22; fe_bandwidth_t bandwidth; }; unsigned int dst_verbose = 0; MODULE_PARM(dst_verbose, "i"); MODULE_PARM_DESC(dst_verbose, "verbose startup messages, default is 1 (yes)"); unsigned int dst_debug = 0; MODULE_PARM(dst_debug, "i"); MODULE_PARM_DESC(dst_debug, "debug messages, default is 0 (no)"); #define dprintk if (dst_debug) printk #define DST_TYPE_IS_SAT 0 #define DST_TYPE_IS_TERR 1 #define DST_TYPE_IS_CABLE 2 #define DST_TYPE_HAS_NEWTUNE 1 #define DST_TYPE_HAS_TS204 2 #define DST_TYPE_HAS_SYMDIV 4 #define HAS_LOCK 1 #define ATTEMPT_TUNE 2 #define HAS_POWER 4 static void dst_packsize(struct dst_state* state, int psize) { union dst_gpio_packet bits; bits.psize = psize; bt878_device_control(state->bt, DST_IG_TS, &bits); } static int dst_gpio_outb(struct dst_state* state, u32 mask, u32 enbb, u32 outhigh) { union dst_gpio_packet enb; union dst_gpio_packet bits; int err; enb.enb.mask = mask; enb.enb.enable = enbb; if ((err = bt878_device_control(state->bt, DST_IG_ENABLE, &enb)) < 0) { dprintk("%s: dst_gpio_enb error (err == %i, mask == 0x%02x, enb == 0x%02x)\n", __FUNCTION__, err, mask, enbb); return -EREMOTEIO; } /* because complete disabling means no output, no need to do output packet */ if (enbb == 0) return 0; bits.outp.mask = enbb; bits.outp.highvals = outhigh; if ((err = bt878_device_control(state->bt, DST_IG_WRITE, &bits)) < 0) { dprintk("%s: dst_gpio_outb error (err == %i, enbb == 0x%02x, outhigh == 0x%02x)\n", __FUNCTION__, err, enbb, outhigh); return -EREMOTEIO; } return 0; } static int dst_gpio_inb(struct dst_state *state, u8 * result) { union dst_gpio_packet rd_packet; int err; *result = 0; if ((err = bt878_device_control(state->bt, DST_IG_READ, &rd_packet)) < 0) { dprintk("%s: dst_gpio_inb error (err == %i)\n", __FUNCTION__, err); return -EREMOTEIO; } *result = (u8) rd_packet.rd.value; return 0; } #define DST_I2C_ENABLE 1 #define DST_8820 2 static int dst_reset8820(struct dst_state *state) { int retval; /* pull 8820 gpio pin low, wait, high, wait, then low */ // dprintk ("%s: reset 8820\n", __FUNCTION__); retval = dst_gpio_outb(state, DST_8820, DST_8820, 0); if (retval < 0) return retval; msleep(10); retval = dst_gpio_outb(state, DST_8820, DST_8820, DST_8820); if (retval < 0) return retval; /* wait for more feedback on what works here * msleep(10); retval = dst_gpio_outb(dst, DST_8820, DST_8820, 0); if (retval < 0) return retval; */ return 0; } static int dst_i2c_enable(struct dst_state *state) { int retval; /* pull I2C enable gpio pin low, wait */ // dprintk ("%s: i2c enable\n", __FUNCTION__); retval = dst_gpio_outb(state, ~0, DST_I2C_ENABLE, 0); if (retval < 0) return retval; // dprintk ("%s: i2c enable delay\n", __FUNCTION__); msleep(33); return 0; } static int dst_i2c_disable(struct dst_state *state) { int retval; /* release I2C enable gpio pin, wait */ // dprintk ("%s: i2c disable\n", __FUNCTION__); retval = dst_gpio_outb(state, ~0, 0, 0); if (retval < 0) return retval; // dprintk ("%s: i2c disable delay\n", __FUNCTION__); msleep(33); return 0; } static int dst_wait_dst_ready(struct dst_state *state) { u8 reply; int retval; int i; for (i = 0; i < 200; i++) { retval = dst_gpio_inb(state, &reply); if (retval < 0) return retval; if ((reply & DST_I2C_ENABLE) == 0) { dprintk("%s: dst wait ready after %d\n", __FUNCTION__, i); return 1; } msleep(5); } dprintk("%s: dst wait NOT ready after %d\n", __FUNCTION__, i); return 0; } static int write_dst(struct dst_state *state, u8 * data, u8 len) { struct i2c_msg msg = { .addr = state->config->demod_address,.flags = 0,.buf = data,.len = len }; int err; int cnt; if (dst_debug && dst_verbose) { u8 i; dprintk("%s writing", __FUNCTION__); for (i = 0; i < len; i++) { dprintk(" 0x%02x", data[i]); } dprintk("\n"); } msleep(30); for (cnt = 0; cnt < 4; cnt++) { if ((err = i2c_transfer(state->i2c, &msg, 1)) < 0) { dprintk("%s: write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", __FUNCTION__, err, len, data[0]); dst_i2c_disable(state); msleep(500); dst_i2c_enable(state); msleep(500); continue; } else break; } if (cnt >= 4) return -EREMOTEIO; return 0; } static int read_dst(struct dst_state *state, u8 * ret, u8 len) { struct i2c_msg msg = {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = ret,.len = len }; int err; int cnt; for (cnt = 0; cnt < 4; cnt++) { if ((err = i2c_transfer(state->i2c, &msg, 1)) < 0) { dprintk("%s: read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", __FUNCTION__, err, len, ret[0]); dst_i2c_disable(state); dst_i2c_enable(state); continue; } else break; } if (cnt >= 4) return -EREMOTEIO; dprintk("%s reply is 0x%x\n", __FUNCTION__, ret[0]); if (dst_debug && dst_verbose) { for (err = 1; err < len; err++) dprintk(" 0x%x", ret[err]); if (err > 1) dprintk("\n"); } return 0; } static int dst_set_freq(struct dst_state *state, u32 freq) { u8 *val; state->frequency = freq; // dprintk("%s: set frequency %u\n", __FUNCTION__, freq); if (state->dst_type == DST_TYPE_IS_SAT) { freq = freq / 1000; if (freq < 950 || freq > 2150) return -EINVAL; val = &state->tx_tuna[0]; val[2] = (freq >> 8) & 0x7f; val[3] = (u8) freq; val[4] = 1; val[8] &= ~4; if (freq < 1531) val[8] |= 4; } else if (state->dst_type == DST_TYPE_IS_TERR) { freq = freq / 1000; if (freq < 137000 || freq > 858000) return -EINVAL; val = &state->tx_tuna[0]; val[2] = (freq >> 16) & 0xff; val[3] = (freq >> 8) & 0xff; val[4] = (u8) freq; val[5] = 0; switch (state->bandwidth) { case BANDWIDTH_6_MHZ: val[6] = 6; break; case BANDWIDTH_7_MHZ: case BANDWIDTH_AUTO: val[6] = 7; break; case BANDWIDTH_8_MHZ: val[6] = 8; break; } val[7] = 0; val[8] = 0; } else if (state->dst_type == DST_TYPE_IS_CABLE) { /* guess till will get one */ freq = freq / 1000; val = &state->tx_tuna[0]; val[2] = (freq >> 16) & 0xff; val[3] = (freq >> 8) & 0xff; val[4] = (u8) freq; } else return -EINVAL; return 0; } static int dst_set_bandwidth(struct dst_state* state, fe_bandwidth_t bandwidth) { u8 *val; state->bandwidth = bandwidth; if (state->dst_type != DST_TYPE_IS_TERR) return 0; val = &state->tx_tuna[0]; switch (bandwidth) { case BANDWIDTH_6_MHZ: val[6] = 6; break; case BANDWIDTH_7_MHZ: val[6] = 7; break; case BANDWIDTH_8_MHZ: val[6] = 8; break; default: return -EINVAL; } return 0; } static int dst_set_inversion(struct dst_state* state, fe_spectral_inversion_t inversion) { u8 *val; state->inversion = inversion; val = &state->tx_tuna[0]; val[8] &= ~0x80; switch (inversion) { case INVERSION_OFF: break; case INVERSION_ON: val[8] |= 0x80; break; default: return -EINVAL; } return 0; } static int dst_set_fec(struct dst_state* state, fe_code_rate_t fec) { state->fec = fec; return 0; } static fe_code_rate_t dst_get_fec(struct dst_state* state) { return state->fec; } static int dst_set_symbolrate(struct dst_state* state, u32 srate) { u8 *val; u32 symcalc; u64 sval; state->symbol_rate = srate; if (state->dst_type == DST_TYPE_IS_TERR) { return 0; } // dprintk("%s: set srate %u\n", __FUNCTION__, srate); srate /= 1000; val = &state->tx_tuna[0]; if (state->type_flags & DST_TYPE_HAS_SYMDIV) { sval = srate; sval <<= 20; do_div(sval, 88000); symcalc = (u32) sval; // dprintk("%s: set symcalc %u\n", __FUNCTION__, symcalc); val[5] = (u8) (symcalc >> 12); val[6] = (u8) (symcalc >> 4); val[7] = (u8) (symcalc << 4); } else { val[5] = (u8) (srate >> 16) & 0x7f; val[6] = (u8) (srate >> 8); val[7] = (u8) srate; } val[8] &= ~0x20; if (srate > 8000) val[8] |= 0x20; return 0; } static u8 dst_check_sum(u8 * buf, u32 len) { u32 i; u8 val = 0; if (!len) return 0; for (i = 0; i < len; i++) { val += buf[i]; } return ((~val) + 1); } typedef struct dst_types { char *mstr; int offs; u8 dst_type; u32 type_flags; } DST_TYPES; struct dst_types dst_tlist[] = { {"DST-020", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_SYMDIV}, {"DST-030", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_TS204 | DST_TYPE_HAS_NEWTUNE}, {"DST-03T", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_SYMDIV | DST_TYPE_HAS_TS204}, {"DST-MOT", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_SYMDIV}, {"DST-CI", 1, DST_TYPE_IS_SAT, DST_TYPE_HAS_TS204 | DST_TYPE_HAS_NEWTUNE}, {"DSTMCI", 1, DST_TYPE_IS_SAT, DST_TYPE_HAS_NEWTUNE}, {"DSTFCI", 1, DST_TYPE_IS_SAT, DST_TYPE_HAS_NEWTUNE}, {"DCTNEW", 1, DST_TYPE_IS_CABLE, DST_TYPE_HAS_NEWTUNE}, {"DCT_CI", 1, DST_TYPE_IS_CABLE, DST_TYPE_HAS_NEWTUNE | DST_TYPE_HAS_TS204}, {"DTTDIG", 1, DST_TYPE_IS_TERR, 0} }; /* DCTNEW and DCT-CI are guesses */ static void dst_type_flags_print(u32 type_flags) { printk("DST type flags :"); if (type_flags & DST_TYPE_HAS_NEWTUNE) printk(" 0x%x newtuner", DST_TYPE_HAS_NEWTUNE); if (type_flags & DST_TYPE_HAS_TS204) printk(" 0x%x ts204", DST_TYPE_HAS_TS204); if (type_flags & DST_TYPE_HAS_SYMDIV) printk(" 0x%x symdiv", DST_TYPE_HAS_SYMDIV); printk("\n"); } static int dst_type_print(u8 type) { char *otype; switch (type) { case DST_TYPE_IS_SAT: otype = "satellite"; break; case DST_TYPE_IS_TERR: otype = "terrestial TV"; break; case DST_TYPE_IS_CABLE: otype = "terrestial TV"; break; default: printk("%s: invalid dst type %d\n", __FUNCTION__, type); return -EINVAL; } printk("DST type : %s\n", otype); return 0; } static int dst_check_ci(struct dst_state *state) { u8 txbuf[8]; u8 rxbuf[8]; int retval; int i; struct dst_types *dsp; u8 use_dst_type; u32 use_type_flags; memset(txbuf, 0, sizeof(txbuf)); txbuf[1] = 6; txbuf[7] = dst_check_sum(txbuf, 7); dst_i2c_enable(state); dst_reset8820(state); retval = write_dst(state, txbuf, 8); if (retval < 0) { dst_i2c_disable(state); dprintk("%s: write not successful, maybe no card?\n", __FUNCTION__); return retval; } msleep(3); retval = read_dst(state, rxbuf, 1); dst_i2c_disable(state); if (retval < 0) { dprintk("%s: read not successful, maybe no card?\n", __FUNCTION__); return retval; } if (rxbuf[0] != 0xff) { dprintk("%s: write reply not 0xff, not ci (%02x)\n", __FUNCTION__, rxbuf[0]); return retval; } if (!dst_wait_dst_ready(state)) return 0; // dst_i2c_enable(i2c); Dimitri retval = read_dst(state, rxbuf, 8); dst_i2c_disable(state); if (retval < 0) { dprintk("%s: read not successful\n", __FUNCTION__); return retval; } if (rxbuf[7] != dst_check_sum(rxbuf, 7)) { dprintk("%s: checksum failure\n", __FUNCTION__); return retval; } rxbuf[7] = '\0'; for (i = 0, dsp = &dst_tlist[0]; i < sizeof(dst_tlist) / sizeof(dst_tlist[0]); i++, dsp++) { if (!strncmp(&rxbuf[dsp->offs], dsp->mstr, strlen(dsp->mstr))) { use_type_flags = dsp->type_flags; use_dst_type = dsp->dst_type; printk("%s: recognize %s\n", __FUNCTION__, dsp->mstr); break; } } if (i >= sizeof(dst_tlist) / sizeof(dst_tlist[0])) { printk("%s: unable to recognize %s or %s\n", __FUNCTION__, &rxbuf[0], &rxbuf[1]); printk("%s please email linux-dvb@linuxtv.org with this type in\n", __FUNCTION__); use_dst_type = DST_TYPE_IS_SAT; use_type_flags = DST_TYPE_HAS_SYMDIV; } dst_type_print(use_dst_type); state->type_flags = use_type_flags; state->dst_type = use_dst_type; dst_type_flags_print(state->type_flags); if (state->type_flags & DST_TYPE_HAS_TS204) { dst_packsize(state, 204); } return 0; } static int dst_command(struct dst_state* state, u8 * data, u8 len) { int retval; u8 reply; dst_i2c_enable(state); dst_reset8820(state); retval = write_dst(state, data, len); if (retval < 0) { dst_i2c_disable(state); dprintk("%s: write not successful\n", __FUNCTION__); return retval; } msleep(33); retval = read_dst(state, &reply, 1); dst_i2c_disable(state); if (retval < 0) { dprintk("%s: read verify not successful\n", __FUNCTION__); return retval; } if (reply != 0xff) { dprintk("%s: write reply not 0xff 0x%02x \n", __FUNCTION__, reply); return 0; } if (len >= 2 && data[0] == 0 && (data[1] == 1 || data[1] == 3)) return 0; if (!dst_wait_dst_ready(state)) return 0; // dst_i2c_enable(i2c); Per dimitri retval = read_dst(state, state->rxbuffer, 8); dst_i2c_disable(state); if (retval < 0) { dprintk("%s: read not successful\n", __FUNCTION__); return 0; } if (state->rxbuffer[7] != dst_check_sum(state->rxbuffer, 7)) { dprintk("%s: checksum failure\n", __FUNCTION__); return 0; } return 0; } static int dst_get_signal(struct dst_state* state) { int retval; u8 get_signal[] = { 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb }; if ((state->diseq_flags & ATTEMPT_TUNE) == 0) { state->decode_lock = state->decode_strength = state->decode_snr = 0; return 0; } if (0 == (state->diseq_flags & HAS_LOCK)) { state->decode_lock = state->decode_strength = state->decode_snr = 0; return 0; } if (time_after_eq(jiffies, state->cur_jiff + (HZ / 5))) { retval = dst_command(state, get_signal, 8); if (retval < 0) return retval; if (state->dst_type == DST_TYPE_IS_SAT) { state->decode_lock = ((state->rxbuffer[6] & 0x10) == 0) ? 1 : 0; state->decode_strength = state->rxbuffer[5] << 8; state->decode_snr = state->rxbuffer[2] << 8 | state->rxbuffer[3]; } else if ((state->dst_type == DST_TYPE_IS_TERR) || (state->dst_type == DST_TYPE_IS_CABLE)) { state->decode_lock = (state->rxbuffer[1]) ? 1 : 0; state->decode_strength = state->rxbuffer[4] << 8; state->decode_snr = state->rxbuffer[3] << 8; } state->cur_jiff = jiffies; } return 0; } static int dst_tone_power_cmd(struct dst_state* state) { u8 paket[8] = { 0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00 }; if (state->dst_type == DST_TYPE_IS_TERR) return 0; if (state->voltage == SEC_VOLTAGE_OFF) paket[4] = 0; else paket[4] = 1; if (state->tone == SEC_TONE_ON) paket[2] = state->k22; else paket[2] = 0; paket[7] = dst_check_sum(&paket[0], 7); dst_command(state, paket, 8); return 0; } static int dst_get_tuna(struct dst_state* state) { int retval; if ((state->diseq_flags & ATTEMPT_TUNE) == 0) return 0; state->diseq_flags &= ~(HAS_LOCK); if (!dst_wait_dst_ready(state)) return 0; if (state->type_flags & DST_TYPE_HAS_NEWTUNE) { /* how to get variable length reply ???? */ retval = read_dst(state, state->rx_tuna, 10); } else { retval = read_dst(state, &state->rx_tuna[2], 8); } if (retval < 0) { dprintk("%s: read not successful\n", __FUNCTION__); return 0; } if (state->type_flags & DST_TYPE_HAS_NEWTUNE) { if (state->rx_tuna[9] != dst_check_sum(&state->rx_tuna[0], 9)) { dprintk("%s: checksum failure?\n", __FUNCTION__); return 0; } } else { if (state->rx_tuna[9] != dst_check_sum(&state->rx_tuna[2], 7)) { dprintk("%s: checksum failure?\n", __FUNCTION__); return 0; } } if (state->rx_tuna[2] == 0 && state->rx_tuna[3] == 0) return 0; state->decode_freq = ((state->rx_tuna[2] & 0x7f) << 8) + state->rx_tuna[3]; state->decode_lock = 1; /* dst->decode_n1 = (dst->rx_tuna[4] << 8) + (dst->rx_tuna[5]); dst->decode_n2 = (dst->rx_tuna[8] << 8) + (dst->rx_tuna[7]); */ state->diseq_flags |= HAS_LOCK; /* dst->cur_jiff = jiffies; */ return 1; } static int dst_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage); static int dst_write_tuna(struct dvb_frontend* fe) { struct dst_state* state = (struct dst_state*) fe->demodulator_priv; int retval; u8 reply; dprintk("%s: type_flags 0x%x \n", __FUNCTION__, state->type_flags); state->decode_freq = 0; state->decode_lock = state->decode_strength = state->decode_snr = 0; if (state->dst_type == DST_TYPE_IS_SAT) { if (!(state->diseq_flags & HAS_POWER)) dst_set_voltage(fe, SEC_VOLTAGE_13); } state->diseq_flags &= ~(HAS_LOCK | ATTEMPT_TUNE); dst_i2c_enable(state); if (state->type_flags & DST_TYPE_HAS_NEWTUNE) { dst_reset8820(state); state->tx_tuna[9] = dst_check_sum(&state->tx_tuna[0], 9); retval = write_dst(state, &state->tx_tuna[0], 10); } else { state->tx_tuna[9] = dst_check_sum(&state->tx_tuna[2], 7); retval = write_dst(state, &state->tx_tuna[2], 8); } if (retval < 0) { dst_i2c_disable(state); dprintk("%s: write not successful\n", __FUNCTION__); return retval; } msleep(3); retval = read_dst(state, &reply, 1); dst_i2c_disable(state); if (retval < 0) { dprintk("%s: read verify not successful\n", __FUNCTION__); return retval; } if (reply != 0xff) { dprintk("%s: write reply not 0xff 0x%02x \n", __FUNCTION__, reply); return 0; } state->diseq_flags |= ATTEMPT_TUNE; return dst_get_tuna(state); } /* * line22k0 0x00, 0x09, 0x00, 0xff, 0x01, 0x00, 0x00, 0x00 * line22k1 0x00, 0x09, 0x01, 0xff, 0x01, 0x00, 0x00, 0x00 * line22k2 0x00, 0x09, 0x02, 0xff, 0x01, 0x00, 0x00, 0x00 * tone 0x00, 0x09, 0xff, 0x00, 0x01, 0x00, 0x00, 0x00 * data 0x00, 0x09, 0xff, 0x01, 0x01, 0x00, 0x00, 0x00 * power_off 0x00, 0x09, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 * power_on 0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00 * Diseqc 1 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec * Diseqc 2 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf4, 0xe8 * Diseqc 3 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf8, 0xe4 * Diseqc 4 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xfc, 0xe0 */ static int dst_set_diseqc(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd* cmd) { struct dst_state* state = (struct dst_state*) fe->demodulator_priv; u8 paket[8] = { 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec }; if (state->dst_type == DST_TYPE_IS_TERR) return 0; if (cmd->msg_len == 0 || cmd->msg_len > 4) return -EINVAL; memcpy(&paket[3], cmd->msg, cmd->msg_len); paket[7] = dst_check_sum(&paket[0], 7); dst_command(state, paket, 8); return 0; } static int dst_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage) { u8 *val; int need_cmd; struct dst_state* state = (struct dst_state*) fe->demodulator_priv; state->voltage = voltage; if (state->dst_type == DST_TYPE_IS_TERR) return 0; need_cmd = 0; val = &state->tx_tuna[0]; val[8] &= ~0x40; switch (voltage) { case SEC_VOLTAGE_13: if ((state->diseq_flags & HAS_POWER) == 0) need_cmd = 1; state->diseq_flags |= HAS_POWER; break; case SEC_VOLTAGE_18: if ((state->diseq_flags & HAS_POWER) == 0) need_cmd = 1; state->diseq_flags |= HAS_POWER; val[8] |= 0x40; break; case SEC_VOLTAGE_OFF: need_cmd = 1; state->diseq_flags &= ~(HAS_POWER | HAS_LOCK | ATTEMPT_TUNE); break; default: return -EINVAL; } if (need_cmd) { dst_tone_power_cmd(state); } return 0; } static int dst_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone) { u8 *val; struct dst_state* state = (struct dst_state*) fe->demodulator_priv; state->tone = tone; if (state->dst_type == DST_TYPE_IS_TERR) return 0; val = &state->tx_tuna[0]; val[8] &= ~0x1; switch (tone) { case SEC_TONE_OFF: break; case SEC_TONE_ON: val[8] |= 1; break; default: return -EINVAL; } dst_tone_power_cmd(state); return 0; } static int dst_init(struct dvb_frontend* fe) { struct dst_state* state = (struct dst_state*) fe->demodulator_priv; static u8 ini_satci_tuna[] = { 9, 0, 3, 0xb6, 1, 0, 0x73, 0x21, 0, 0 }; static u8 ini_satfta_tuna[] = { 0, 0, 3, 0xb6, 1, 0x55, 0xbd, 0x50, 0, 0 }; static u8 ini_tvfta_tuna[] = { 0, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 }; static u8 ini_tvci_tuna[] = { 9, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 }; static u8 ini_cabfta_tuna[] = { 0, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 }; static u8 ini_cabci_tuna[] = { 9, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 }; state->inversion = INVERSION_ON; state->voltage = SEC_VOLTAGE_13; state->tone = SEC_TONE_OFF; state->symbol_rate = 29473000; state->fec = FEC_AUTO; state->diseq_flags = 0; state->k22 = 0x02; state->bandwidth = BANDWIDTH_7_MHZ; state->cur_jiff = jiffies; if (state->dst_type == DST_TYPE_IS_SAT) { state->frequency = 950000; memcpy(state->tx_tuna, ((state->type_flags & DST_TYPE_HAS_NEWTUNE) ? ini_satci_tuna : ini_satfta_tuna), sizeof(ini_satfta_tuna)); } else if (state->dst_type == DST_TYPE_IS_TERR) { state->frequency = 137000000; memcpy(state->tx_tuna, ((state->type_flags & DST_TYPE_HAS_NEWTUNE) ? ini_tvci_tuna : ini_tvfta_tuna), sizeof(ini_tvfta_tuna)); } else if (state->dst_type == DST_TYPE_IS_CABLE) { state->frequency = 51000000; memcpy(state->tx_tuna, ((state->type_flags & DST_TYPE_HAS_NEWTUNE) ? ini_cabci_tuna : ini_cabfta_tuna), sizeof(ini_cabfta_tuna)); } return 0; } static int dst_read_status(struct dvb_frontend* fe, fe_status_t* status) { struct dst_state* state = (struct dst_state*) fe->demodulator_priv; *status = 0; if (state->diseq_flags & HAS_LOCK) { dst_get_signal(state); if (state->decode_lock) *status |= FE_HAS_LOCK | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_SYNC | FE_HAS_VITERBI; } return 0; } static int dst_read_signal_strength(struct dvb_frontend* fe, u16* strength) { struct dst_state* state = (struct dst_state*) fe->demodulator_priv; dst_get_signal(state); *strength = state->decode_strength; return 0; } static int dst_read_snr(struct dvb_frontend* fe, u16* snr) { struct dst_state* state = (struct dst_state*) fe->demodulator_priv; dst_get_signal(state); *snr = state->decode_snr; return 0; } static int dst_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct dst_state* state = (struct dst_state*) fe->demodulator_priv; dst_set_freq(state, p->frequency); dst_set_inversion(state, p->inversion); if (state->dst_type == DST_TYPE_IS_SAT) { dst_set_fec(state, p->u.qpsk.fec_inner); dst_set_symbolrate(state, p->u.qpsk.symbol_rate); } else if (state->dst_type == DST_TYPE_IS_TERR) { dst_set_bandwidth(state, p->u.ofdm.bandwidth); } else if (state->dst_type == DST_TYPE_IS_CABLE) { dst_set_fec(state, p->u.qam.fec_inner); dst_set_symbolrate(state, p->u.qam.symbol_rate); } dst_write_tuna(fe); return 0; } static int dst_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct dst_state* state = (struct dst_state*) fe->demodulator_priv; p->frequency = state->decode_freq; p->inversion = state->inversion; if (state->dst_type == DST_TYPE_IS_SAT) { p->u.qpsk.symbol_rate = state->symbol_rate; p->u.qpsk.fec_inner = dst_get_fec(state); } else if (state->dst_type == DST_TYPE_IS_TERR) { p->u.ofdm.bandwidth = state->bandwidth; } else if (state->dst_type == DST_TYPE_IS_CABLE) { p->u.qam.symbol_rate = state->symbol_rate; p->u.qam.fec_inner = dst_get_fec(state); p->u.qam.modulation = QAM_AUTO; } return 0; } static void dst_release(struct dvb_frontend* fe) { struct dst_state* state = (struct dst_state*) fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops dst_dvbt_ops; static struct dvb_frontend_ops dst_dvbs_ops; static struct dvb_frontend_ops dst_dvbc_ops; struct dvb_frontend* dst_attach(const struct dst_config* config, struct i2c_adapter* i2c, struct bt878 *bt) { struct dst_state* state = NULL; /* allocate memory for the internal state */ state = (struct dst_state*) kmalloc(sizeof(struct dst_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->bt = bt; /* check if the demod is there */ if (dst_check_ci(state) < 0) goto error; /* determine settings based on type */ switch (state->dst_type) { case DST_TYPE_IS_TERR: memcpy(&state->ops, &dst_dvbt_ops, sizeof(struct dvb_frontend_ops)); break; case DST_TYPE_IS_CABLE: memcpy(&state->ops, &dst_dvbc_ops, sizeof(struct dvb_frontend_ops)); break; case DST_TYPE_IS_SAT: memcpy(&state->ops, &dst_dvbs_ops, sizeof(struct dvb_frontend_ops)); break; default: printk("dst: unknown frontend type. please report to the LinuxTV.org DVB mailinglist.\n"); goto error; } /* create dvb_frontend */ state->frontend.ops = &state->ops; state->frontend.demodulator_priv = state; return &state->frontend; error: if (state) kfree(state); return NULL; } static struct dvb_frontend_ops dst_dvbt_ops = { .info = { .name = "DST DVB-T", .type = FE_OFDM, .frequency_min = 137000000, .frequency_max = 858000000, .frequency_stepsize = 166667, .caps = FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO }, .release = dst_release, .init = dst_init, .set_frontend = dst_set_frontend, .get_frontend = dst_get_frontend, .read_status = dst_read_status, .read_signal_strength = dst_read_signal_strength, .read_snr = dst_read_snr, }; static struct dvb_frontend_ops dst_dvbs_ops = { .info = { .name = "DST DVB-S", .type = FE_QPSK, .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 1000, /* kHz for QPSK frontends */ .frequency_tolerance = 29500, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, /* . symbol_rate_tolerance = ???,*/ .caps = FE_CAN_FEC_AUTO | FE_CAN_QPSK }, .release = dst_release, .init = dst_init, .set_frontend = dst_set_frontend, .get_frontend = dst_get_frontend, .read_status = dst_read_status, .read_signal_strength = dst_read_signal_strength, .read_snr = dst_read_snr, .diseqc_send_master_cmd = dst_set_diseqc, .set_voltage = dst_set_voltage, .set_tone = dst_set_tone, }; static struct dvb_frontend_ops dst_dvbc_ops = { .info = { .name = "DST DVB-C", .type = FE_QAM, .frequency_stepsize = 62500, .frequency_min = 51000000, .frequency_max = 858000000, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, /* . symbol_rate_tolerance = ???,*/ .caps = FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO }, .release = dst_release, .init = dst_init, .set_frontend = dst_set_frontend, .get_frontend = dst_get_frontend, .read_status = dst_read_status, .read_signal_strength = dst_read_signal_strength, .read_snr = dst_read_snr, }; MODULE_DESCRIPTION("DST DVB-S/T/C Combo Frontend driver"); MODULE_AUTHOR("Jamie Honan"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(dst_attach);