/* * DVB USB Linux driver for Afatech AF9015 DVB-T USB2.0 receiver * * Copyright (C) 2007 Antti Palosaari * * Thanks to Afatech who kindly provided information. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "af9013_priv.h" #include "af9013.h" #include "compat.h" int af9013_debug; struct af9013_state { struct i2c_adapter *i2c; struct dvb_frontend frontend; struct af9013_config config; u16 signal_strength; u32 ber; u32 ucblocks; u16 snr; u32 frequency; unsigned long next_statistics_check; }; static u8 regmask[8] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff }; static int af9013_write_regs(struct af9013_state *state, u8 mbox, u16 reg, u8 *val, u8 len) { u8 buf[3+len]; struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0, .len = sizeof(buf), .buf = buf }; buf[0] = reg >> 8; buf[1] = reg & 0xff; buf[2] = mbox; memcpy(&buf[3], val, len); if (i2c_transfer(state->i2c, &msg, 1) != 1) { warn("I2C write failed reg:%04x len:%d", reg, len); return -EREMOTEIO; } return 0; } static int af9013_write_ofdm_regs(struct af9013_state *state, u16 reg, u8 *val, u8 len) { u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(0 << 6)|(0 << 7); return af9013_write_regs(state, mbox, reg, val, len); } static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val, u8 len) { u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(1 << 6)|(1 << 7); return af9013_write_regs(state, mbox, reg, val, len); } /* write single register */ static int af9013_write_reg(struct af9013_state *state, u16 reg, u8 val) { return af9013_write_ofdm_regs(state, reg, &val, 1); } /* read single register */ static int af9013_read_reg(struct af9013_state *state, u16 reg, u8 *val) { u8 obuf[3] = { reg >> 8, reg & 0xff, 0 }; u8 ibuf[1]; struct i2c_msg msg[2] = { { .addr = state->config.demod_address, .flags = 0, .len = sizeof(obuf), .buf = obuf }, { .addr = state->config.demod_address, .flags = I2C_M_RD, .len = sizeof(ibuf), .buf = ibuf } }; if (i2c_transfer(state->i2c, msg, 2) != 2) { warn("I2C read failed reg:%04x", reg); return -EREMOTEIO; } *val = ibuf[0]; return 0; } static int af9013_write_reg_bits(struct af9013_state *state, u16 reg, u8 pos, u8 len, u8 val) { int ret; u8 tmp, mask; ret = af9013_read_reg(state, reg, &tmp); if (ret) return ret; mask = regmask[len - 1] << pos; tmp = (tmp & ~mask) | ((val << pos) & mask); return af9013_write_reg(state, reg, tmp); } static int af9013_read_reg_bits(struct af9013_state *state, u16 reg, u8 pos, u8 len, u8 *val) { int ret; u8 tmp; ret = af9013_read_reg(state, reg, &tmp); if (ret) return ret; *val = (tmp >> pos) & regmask[len - 1]; return 0; } static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval) { int ret; u8 pos; u16 addr; deb_info("%s: gpio:%d gpioval:%02x\n", __func__, gpio, gpioval); /* GPIO0 & GPIO1 0xd735 GPIO2 & GPIO3 0xd736 */ switch (gpio) { case 0: case 1: addr = 0xd735; break; case 2: case 3: addr = 0xd736; break; default: err("invalid gpio:%d\n", gpio); ret = -EINVAL; goto error; }; switch (gpio) { case 0: case 2: pos = 0; break; case 1: case 3: default: pos = 4; break; }; ret = af9013_write_reg_bits(state, addr, pos, 4, gpioval); error: return ret; } static u32 af913_div(u32 a, u32 b, u32 x) { u32 r = 0, c = 0, i; deb_info("%s: a:%d b:%d x:%d\n", __func__, a, b, x); if (a > b) { c = a / b; a = a - c * b; } for (i = 0; i < x; i++) { if (a >= b) { r += 1; a -= b; } a <<= 1; r <<= 1; } r = (c << (u32)x) + r; deb_info("%s: a:%d b:%d x:%d r:%d r:%x\n", __func__, a, b, x, r, r); return r; } static int af9013_set_coeff(struct af9013_state *state, fe_bandwidth_t bw) { int ret = 0; u8 i = 0; u8 buf[24]; u32 uninitialized_var(ns_coeff1_2048nu); u32 uninitialized_var(ns_coeff1_8191nu); u32 uninitialized_var(ns_coeff1_8192nu); u32 uninitialized_var(ns_coeff1_8193nu); u32 uninitialized_var(ns_coeff2_2k); u32 uninitialized_var(ns_coeff2_8k); deb_info("%s: adc_clock:%d bw:%d\n", __func__, state->config.adc_clock, bw); switch (state->config.adc_clock) { case 28800: /* 28.800 MHz */ switch (bw) { case BANDWIDTH_6_MHZ: ns_coeff1_2048nu = 0x01e79e7a; ns_coeff1_8191nu = 0x0079eb6e; ns_coeff1_8192nu = 0x0079e79e; ns_coeff1_8193nu = 0x0079e3cf; ns_coeff2_2k = 0x00f3cf3d; ns_coeff2_8k = 0x003cf3cf; break; case BANDWIDTH_7_MHZ: ns_coeff1_2048nu = 0x0238e38e; ns_coeff1_8191nu = 0x008e3d55; ns_coeff1_8192nu = 0x008e38e4; ns_coeff1_8193nu = 0x008e3472; ns_coeff2_2k = 0x011c71c7; ns_coeff2_8k = 0x00471c72; break; case BANDWIDTH_8_MHZ: ns_coeff1_2048nu = 0x028a28a3; ns_coeff1_8191nu = 0x00a28f3d; ns_coeff1_8192nu = 0x00a28a29; ns_coeff1_8193nu = 0x00a28514; ns_coeff2_2k = 0x01451451; ns_coeff2_8k = 0x00514514; break; default: ret = -EINVAL; } break; case 20480: /* 20.480 MHz */ switch (bw) { case BANDWIDTH_6_MHZ: ns_coeff1_2048nu = 0x02adb6dc; ns_coeff1_8191nu = 0x00ab7313; ns_coeff1_8192nu = 0x00ab6db7; ns_coeff1_8193nu = 0x00ab685c; ns_coeff2_2k = 0x0156db6e; ns_coeff2_8k = 0x0055b6dc; break; case BANDWIDTH_7_MHZ: ns_coeff1_2048nu = 0x03200001; ns_coeff1_8191nu = 0x00c80640; ns_coeff1_8192nu = 0x00c80000; ns_coeff1_8193nu = 0x00c7f9c0; ns_coeff2_2k = 0x01900000; ns_coeff2_8k = 0x00640000; break; case BANDWIDTH_8_MHZ: ns_coeff1_2048nu = 0x03924926; ns_coeff1_8191nu = 0x00e4996e; ns_coeff1_8192nu = 0x00e49249; ns_coeff1_8193nu = 0x00e48b25; ns_coeff2_2k = 0x01c92493; ns_coeff2_8k = 0x00724925; break; default: ret = -EINVAL; } break; case 28000: /* 28.000 MHz */ switch (bw) { case BANDWIDTH_6_MHZ: ns_coeff1_2048nu = 0x01f58d10; ns_coeff1_8191nu = 0x007d672f; ns_coeff1_8192nu = 0x007d6344; ns_coeff1_8193nu = 0x007d5f59; ns_coeff2_2k = 0x00fac688; ns_coeff2_8k = 0x003eb1a2; break; case BANDWIDTH_7_MHZ: ns_coeff1_2048nu = 0x02492492; ns_coeff1_8191nu = 0x00924db7; ns_coeff1_8192nu = 0x00924925; ns_coeff1_8193nu = 0x00924492; ns_coeff2_2k = 0x01249249; ns_coeff2_8k = 0x00492492; break; case BANDWIDTH_8_MHZ: ns_coeff1_2048nu = 0x029cbc15; ns_coeff1_8191nu = 0x00a7343f; ns_coeff1_8192nu = 0x00a72f05; ns_coeff1_8193nu = 0x00a729cc; ns_coeff2_2k = 0x014e5e0a; ns_coeff2_8k = 0x00539783; break; default: ret = -EINVAL; } break; case 25000: /* 25.000 MHz */ switch (bw) { case BANDWIDTH_6_MHZ: ns_coeff1_2048nu = 0x0231bcb5; ns_coeff1_8191nu = 0x008c7391; ns_coeff1_8192nu = 0x008c6f2d; ns_coeff1_8193nu = 0x008c6aca; ns_coeff2_2k = 0x0118de5b; ns_coeff2_8k = 0x00463797; break; case BANDWIDTH_7_MHZ: ns_coeff1_2048nu = 0x028f5c29; ns_coeff1_8191nu = 0x00a3dc29; ns_coeff1_8192nu = 0x00a3d70a; ns_coeff1_8193nu = 0x00a3d1ec; ns_coeff2_2k = 0x0147ae14; ns_coeff2_8k = 0x0051eb85; break; case BANDWIDTH_8_MHZ: ns_coeff1_2048nu = 0x02ecfb9d; ns_coeff1_8191nu = 0x00bb44c1; ns_coeff1_8192nu = 0x00bb3ee7; ns_coeff1_8193nu = 0x00bb390d; ns_coeff2_2k = 0x01767dce; ns_coeff2_8k = 0x005d9f74; break; default: ret = -EINVAL; } break; default: err("invalid xtal"); return -EINVAL; } if (ret) { err("invalid bandwidth"); return ret; } buf[i++] = (u8) ((ns_coeff1_2048nu & 0x03000000) >> 24); buf[i++] = (u8) ((ns_coeff1_2048nu & 0x00ff0000) >> 16); buf[i++] = (u8) ((ns_coeff1_2048nu & 0x0000ff00) >> 8); buf[i++] = (u8) ((ns_coeff1_2048nu & 0x000000ff)); buf[i++] = (u8) ((ns_coeff2_2k & 0x01c00000) >> 22); buf[i++] = (u8) ((ns_coeff2_2k & 0x003fc000) >> 14); buf[i++] = (u8) ((ns_coeff2_2k & 0x00003fc0) >> 6); buf[i++] = (u8) ((ns_coeff2_2k & 0x0000003f)); buf[i++] = (u8) ((ns_coeff1_8191nu & 0x03000000) >> 24); buf[i++] = (u8) ((ns_coeff1_8191nu & 0x00ffc000) >> 16); buf[i++] = (u8) ((ns_coeff1_8191nu & 0x0000ff00) >> 8); buf[i++] = (u8) ((ns_coeff1_8191nu & 0x000000ff)); buf[i++] = (u8) ((ns_coeff1_8192nu & 0x03000000) >> 24); buf[i++] = (u8) ((ns_coeff1_8192nu & 0x00ffc000) >> 16); buf[i++] = (u8) ((ns_coeff1_8192nu & 0x0000ff00) >> 8); buf[i++] = (u8) ((ns_coeff1_8192nu & 0x000000ff)); buf[i++] = (u8) ((ns_coeff1_8193nu & 0x03000000) >> 24); buf[i++] = (u8) ((ns_coeff1_8193nu & 0x00ffc000) >> 16); buf[i++] = (u8) ((ns_coeff1_8193nu & 0x0000ff00) >> 8); buf[i++] = (u8) ((ns_coeff1_8193nu & 0x000000ff)); buf[i++] = (u8) ((ns_coeff2_8k & 0x01c00000) >> 22); buf[i++] = (u8) ((ns_coeff2_8k & 0x003fc000) >> 14); buf[i++] = (u8) ((ns_coeff2_8k & 0x00003fc0) >> 6); buf[i++] = (u8) ((ns_coeff2_8k & 0x0000003f)); deb_info("%s: coeff:", __func__); debug_dump(buf, sizeof(buf), deb_info); /* program */ for (i = 0; i < sizeof(buf); i++) { ret = af9013_write_reg(state, 0xae00 + i, buf[i]); if (ret) break; } return ret; } static int af9013_set_adc_ctrl(struct af9013_state *state) { int ret; u8 buf[3], tmp, i; u32 adc_cw; deb_info("%s: adc_clock:%d\n", __func__, state->config.adc_clock); /* adc frequency type */ switch (state->config.adc_clock) { case 28800: /* 28.800 MHz */ tmp = 0; break; case 20480: /* 20.480 MHz */ tmp = 1; break; case 28000: /* 28.000 MHz */ tmp = 2; break; case 25000: /* 25.000 MHz */ tmp = 3; break; default: err("invalid xtal"); return -EINVAL; } adc_cw = af913_div(state->config.adc_clock*1000, 1000000ul, 19ul); buf[0] = (u8) ((adc_cw & 0x000000ff)); buf[1] = (u8) ((adc_cw & 0x0000ff00) >> 8); buf[2] = (u8) ((adc_cw & 0x00ff0000) >> 16); deb_info("%s: adc_cw:", __func__); debug_dump(buf, sizeof(buf), deb_info); /* program */ for (i = 0; i < sizeof(buf); i++) { ret = af9013_write_reg(state, 0xd180 + i, buf[i]); if (ret) goto error; } ret = af9013_write_reg_bits(state, 0x9bd2, 0, 4, tmp); error: return ret; } static int af9013_set_freq_ctrl(struct af9013_state *state, fe_bandwidth_t bw) { int ret; u16 addr; u8 buf[3], i, j; u32 adc_freq, freq_cw; s8 bfs_spec_inv; int if_sample_freq; for (j = 0; j < 3; j++) { if (j == 0) { addr = 0xd140; /* fcw normal */ bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1; } else if (j == 1) { addr = 0x9be7; /* fcw dummy ram */ bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1; } else { addr = 0x9bea; /* fcw inverted */ bfs_spec_inv = state->config.rf_spec_inv ? 1 : -1; } adc_freq = state->config.adc_clock * 1000; if_sample_freq = state->config.tuner_if * 1000; /* TDA18271 uses different sampling freq for every bw */ if (state->config.tuner == AF9013_TUNER_TDA18271) { switch (bw) { case BANDWIDTH_6_MHZ: if_sample_freq = 3300000; /* 3.3 MHz */ break; case BANDWIDTH_7_MHZ: if_sample_freq = 3800000; /* 3.8 MHz */ break; case BANDWIDTH_8_MHZ: default: if_sample_freq = 4300000; /* 4.3 MHz */ break; } } while (if_sample_freq > (adc_freq / 2)) if_sample_freq = if_sample_freq - adc_freq; if (if_sample_freq >= 0) bfs_spec_inv = bfs_spec_inv * (-1); else if_sample_freq = if_sample_freq * (-1); freq_cw = af913_div(if_sample_freq, adc_freq, 23ul); if (bfs_spec_inv == -1) freq_cw = 0x00800000 - freq_cw; buf[0] = (u8) ((freq_cw & 0x000000ff)); buf[1] = (u8) ((freq_cw & 0x0000ff00) >> 8); buf[2] = (u8) ((freq_cw & 0x007f0000) >> 16); deb_info("%s: freq_cw:", __func__); debug_dump(buf, sizeof(buf), deb_info); /* program */ for (i = 0; i < sizeof(buf); i++) { ret = af9013_write_reg(state, addr++, buf[i]); if (ret) goto error; } } error: return ret; } static int af9013_set_ofdm_params(struct af9013_state *state, struct dvb_ofdm_parameters *params, u8 *auto_mode) { int ret; u8 i, buf[3] = {0, 0, 0}; *auto_mode = 0; /* set if parameters are requested to auto set */ /* Try auto-detect transmission parameters in case of AUTO requested or garbage parameters given by application for compatibility. MPlayer seems to provide garbage parameters currently. */ switch (params->transmission_mode) { case TRANSMISSION_MODE_AUTO: *auto_mode = 1; case TRANSMISSION_MODE_2K: break; case TRANSMISSION_MODE_8K: buf[0] |= (1 << 0); break; default: deb_info("%s: invalid transmission_mode\n", __func__); *auto_mode = 1; } switch (params->guard_interval) { case GUARD_INTERVAL_AUTO: *auto_mode = 1; case GUARD_INTERVAL_1_32: break; case GUARD_INTERVAL_1_16: buf[0] |= (1 << 2); break; case GUARD_INTERVAL_1_8: buf[0] |= (2 << 2); break; case GUARD_INTERVAL_1_4: buf[0] |= (3 << 2); break; default: deb_info("%s: invalid guard_interval\n", __func__); *auto_mode = 1; } switch (params->hierarchy_information) { case HIERARCHY_AUTO: *auto_mode = 1; case HIERARCHY_NONE: break; case HIERARCHY_1: buf[0] |= (1 << 4); break; case HIERARCHY_2: buf[0] |= (2 << 4); break; case HIERARCHY_4: buf[0] |= (3 << 4); break; default: deb_info("%s: invalid hierarchy_information\n", __func__); *auto_mode = 1; }; switch (params->constellation) { case QAM_AUTO: *auto_mode = 1; case QPSK: break; case QAM_16: buf[1] |= (1 << 6); break; case QAM_64: buf[1] |= (2 << 6); break; default: deb_info("%s: invalid constellation\n", __func__); *auto_mode = 1; } /* Use HP. How and which case we can switch to LP? */ buf[1] |= (1 << 4); switch (params->code_rate_HP) { case FEC_AUTO: *auto_mode = 1; case FEC_1_2: break; case FEC_2_3: buf[2] |= (1 << 0); break; case FEC_3_4: buf[2] |= (2 << 0); break; case FEC_5_6: buf[2] |= (3 << 0); break; case FEC_7_8: buf[2] |= (4 << 0); break; default: deb_info("%s: invalid code_rate_HP\n", __func__); *auto_mode = 1; } switch (params->code_rate_LP) { case FEC_AUTO: /* if HIERARCHY_NONE and FEC_NONE then LP FEC is set to FEC_AUTO by dvb_frontend.c for compatibility */ if (params->hierarchy_information != HIERARCHY_NONE) *auto_mode = 1; case FEC_1_2: break; case FEC_2_3: buf[2] |= (1 << 3); break; case FEC_3_4: buf[2] |= (2 << 3); break; case FEC_5_6: buf[2] |= (3 << 3); break; case FEC_7_8: buf[2] |= (4 << 3); break; case FEC_NONE: if (params->hierarchy_information == HIERARCHY_AUTO) break; default: deb_info("%s: invalid code_rate_LP\n", __func__); *auto_mode = 1; } switch (params->bandwidth) { case BANDWIDTH_6_MHZ: break; case BANDWIDTH_7_MHZ: buf[1] |= (1 << 2); break; case BANDWIDTH_8_MHZ: buf[1] |= (2 << 2); break; default: deb_info("%s: invalid bandwidth\n", __func__); buf[1] |= (2 << 2); /* cannot auto-detect BW, try 8 MHz */ } /* program */ for (i = 0; i < sizeof(buf); i++) { ret = af9013_write_reg(state, 0xd3c0 + i, buf[i]); if (ret) break; } return ret; } static int af9013_reset(struct af9013_state *state, u8 sleep) { int ret; u8 tmp, i; deb_info("%s\n", __func__); /* enable OFDM reset */ ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 1); if (ret) goto error; /* start reset mechanism */ ret = af9013_write_reg(state, 0xaeff, 1); if (ret) goto error; /* reset is done when bit 1 is set */ for (i = 0; i < 150; i++) { ret = af9013_read_reg_bits(state, 0xd417, 1, 1, &tmp); if (ret) goto error; if (tmp) break; /* reset done */ msleep(10); } if (!tmp) return -ETIMEDOUT; /* don't clear reset when going to sleep */ if (!sleep) { /* clear OFDM reset */ ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0); if (ret) goto error; /* disable OFDM reset */ ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0); } error: return ret; } static int af9013_power_ctrl(struct af9013_state *state, u8 onoff) { int ret; deb_info("%s: onoff:%d\n", __func__, onoff); if (onoff) { /* power on */ ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 0); if (ret) goto error; ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0); if (ret) goto error; ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0); } else { /* power off */ ret = af9013_reset(state, 1); if (ret) goto error; ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 1); } error: return ret; } static int af9013_lock_led(struct af9013_state *state, u8 onoff) { deb_info("%s: onoff:%d\n", __func__, onoff); return af9013_write_reg_bits(state, 0xd730, 0, 1, onoff); } static int af9013_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *params) { struct af9013_state *state = fe->demodulator_priv; int ret; u8 auto_mode; /* auto set TPS */ deb_info("%s: freq:%d bw:%d\n", __func__, params->frequency, params->u.ofdm.bandwidth); state->frequency = params->frequency; /* program CFOE coefficients */ ret = af9013_set_coeff(state, params->u.ofdm.bandwidth); if (ret) goto error; /* program frequency control */ ret = af9013_set_freq_ctrl(state, params->u.ofdm.bandwidth); if (ret) goto error; /* clear TPS lock flag (inverted flag) */ ret = af9013_write_reg_bits(state, 0xd330, 3, 1, 1); if (ret) goto error; /* clear MPEG2 lock flag */ ret = af9013_write_reg_bits(state, 0xd507, 6, 1, 0); if (ret) goto error; /* empty channel function */ ret = af9013_write_reg_bits(state, 0x9bfe, 0, 1, 0); if (ret) goto error; /* empty DVB-T channel function */ ret = af9013_write_reg_bits(state, 0x9bc2, 0, 1, 0); if (ret) goto error; /* program tuner */ if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe, params); /* program TPS and bandwidth, check if auto mode needed */ ret = af9013_set_ofdm_params(state, ¶ms->u.ofdm, &auto_mode); if (ret) goto error; if (auto_mode) { /* clear easy mode flag */ ret = af9013_write_reg(state, 0xaefd, 0); deb_info("%s: auto TPS\n", __func__); } else { /* set easy mode flag */ ret = af9013_write_reg(state, 0xaefd, 1); if (ret) goto error; ret = af9013_write_reg(state, 0xaefe, 0); deb_info("%s: manual TPS\n", __func__); } if (ret) goto error; /* everything is set, lets try to receive channel - OFSM GO! */ ret = af9013_write_reg(state, 0xffff, 0); if (ret) goto error; error: return ret; } static int af9013_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct af9013_state *state = fe->demodulator_priv; int ret; u8 i, buf[3]; deb_info("%s\n", __func__); /* read TPS registers */ for (i = 0; i < 3; i++) { ret = af9013_read_reg(state, 0xd3c0 + i, &buf[i]); if (ret) goto error; } switch ((buf[1] >> 6) & 3) { case 0: p->u.ofdm.constellation = QPSK; break; case 1: p->u.ofdm.constellation = QAM_16; break; case 2: p->u.ofdm.constellation = QAM_64; break; } switch ((buf[0] >> 0) & 3) { case 0: p->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; case 1: p->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; } switch ((buf[0] >> 2) & 3) { case 0: p->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; case 1: p->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; case 2: p->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; case 3: p->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; } switch ((buf[0] >> 4) & 7) { case 0: p->u.ofdm.hierarchy_information = HIERARCHY_NONE; break; case 1: p->u.ofdm.hierarchy_information = HIERARCHY_1; break; case 2: p->u.ofdm.hierarchy_information = HIERARCHY_2; break; case 3: p->u.ofdm.hierarchy_information = HIERARCHY_4; break; } switch ((buf[2] >> 0) & 7) { case 0: p->u.ofdm.code_rate_HP = FEC_1_2; break; case 1: p->u.ofdm.code_rate_HP = FEC_2_3; break; case 2: p->u.ofdm.code_rate_HP = FEC_3_4; break; case 3: p->u.ofdm.code_rate_HP = FEC_5_6; break; case 4: p->u.ofdm.code_rate_HP = FEC_7_8; break; } switch ((buf[2] >> 3) & 7) { case 0: p->u.ofdm.code_rate_LP = FEC_1_2; break; case 1: p->u.ofdm.code_rate_LP = FEC_2_3; break; case 2: p->u.ofdm.code_rate_LP = FEC_3_4; break; case 3: p->u.ofdm.code_rate_LP = FEC_5_6; break; case 4: p->u.ofdm.code_rate_LP = FEC_7_8; break; } switch ((buf[1] >> 2) & 3) { case 0: p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ; break; case 1: p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ; break; case 2: p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ; break; } p->inversion = INVERSION_AUTO; p->frequency = state->frequency; error: return ret; } static int af9013_update_ber_unc(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret; u8 buf[3], i; u32 error_bit_count = 0; u32 total_bit_count = 0; u32 abort_packet_count = 0; state->ber = 0; /* check if error bit count is ready */ ret = af9013_read_reg_bits(state, 0xd391, 4, 1, &buf[0]); if (ret) goto error; if (!buf[0]) goto exit; /* get RSD packet abort count */ for (i = 0; i < 2; i++) { ret = af9013_read_reg(state, 0xd38a + i, &buf[i]); if (ret) goto error; } abort_packet_count = (buf[1] << 8) + buf[0]; /* get error bit count */ for (i = 0; i < 3; i++) { ret = af9013_read_reg(state, 0xd387 + i, &buf[i]); if (ret) goto error; } error_bit_count = (buf[2] << 16) + (buf[1] << 8) + buf[0]; error_bit_count = error_bit_count - abort_packet_count * 8 * 8; /* get used RSD counting period (10000 RSD packets used) */ for (i = 0; i < 2; i++) { ret = af9013_read_reg(state, 0xd385 + i, &buf[i]); if (ret) goto error; } total_bit_count = (buf[1] << 8) + buf[0]; total_bit_count = total_bit_count - abort_packet_count; total_bit_count = total_bit_count * 204 * 8; if (total_bit_count) state->ber = error_bit_count * 1000000000 / total_bit_count; state->ucblocks += abort_packet_count; deb_info("%s: err bits:%d total bits:%d abort count:%d\n", __func__, error_bit_count, total_bit_count, abort_packet_count); /* set BER counting range */ ret = af9013_write_reg(state, 0xd385, 10000 & 0xff); if (ret) goto error; ret = af9013_write_reg(state, 0xd386, 10000 >> 8); if (ret) goto error; /* reset and start BER counter */ ret = af9013_write_reg_bits(state, 0xd391, 4, 1, 1); if (ret) goto error; exit: error: return ret; } static int af9013_update_snr(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret; u8 buf[3], i, len; u32 quant = 0; struct snr_table *uninitialized_var(snr_table); /* check if quantizer ready (for snr) */ ret = af9013_read_reg_bits(state, 0xd2e1, 3, 1, &buf[0]); if (ret) goto error; if (buf[0]) { /* quantizer ready - read it */ for (i = 0; i < 3; i++) { ret = af9013_read_reg(state, 0xd2e3 + i, &buf[i]); if (ret) goto error; } quant = (buf[2] << 16) + (buf[1] << 8) + buf[0]; /* read current constellation */ ret = af9013_read_reg(state, 0xd3c1, &buf[0]); if (ret) goto error; switch ((buf[0] >> 6) & 3) { case 0: len = ARRAY_SIZE(qpsk_snr_table); snr_table = qpsk_snr_table; break; case 1: len = ARRAY_SIZE(qam16_snr_table); snr_table = qam16_snr_table; break; case 2: len = ARRAY_SIZE(qam64_snr_table); snr_table = qam64_snr_table; break; default: len = 0; break; } if (len) { for (i = 0; i < len; i++) { if (quant < snr_table[i].val) { state->snr = snr_table[i].snr * 10; break; } } } /* set quantizer super frame count */ ret = af9013_write_reg(state, 0xd2e2, 1); if (ret) goto error; /* check quantizer availability */ for (i = 0; i < 10; i++) { msleep(10); ret = af9013_read_reg_bits(state, 0xd2e6, 0, 1, &buf[0]); if (ret) goto error; if (!buf[0]) break; } /* reset quantizer */ ret = af9013_write_reg_bits(state, 0xd2e1, 3, 1, 1); if (ret) goto error; } error: return ret; } static int af9013_update_signal_strength(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret; u8 tmp0; u8 rf_gain, rf_50, rf_80, if_gain, if_50, if_80; int signal_strength; deb_info("%s\n", __func__); state->signal_strength = 0; ret = af9013_read_reg_bits(state, 0x9bee, 0, 1, &tmp0); if (ret) goto error; if (tmp0) { ret = af9013_read_reg(state, 0x9bbd, &rf_50); if (ret) goto error; ret = af9013_read_reg(state, 0x9bd0, &rf_80); if (ret) goto error; ret = af9013_read_reg(state, 0x9be2, &if_50); if (ret) goto error; ret = af9013_read_reg(state, 0x9be4, &if_80); if (ret) goto error; ret = af9013_read_reg(state, 0xd07c, &rf_gain); if (ret) goto error; ret = af9013_read_reg(state, 0xd07d, &if_gain); if (ret) goto error; signal_strength = (0xffff / (9 * (rf_50 + if_50) - \ 11 * (rf_80 + if_80))) * (10 * (rf_gain + if_gain) - \ 11 * (rf_80 + if_80)); if (signal_strength < 0) signal_strength = 0; else if (signal_strength > 0xffff) signal_strength = 0xffff; state->signal_strength = signal_strength; } error: return ret; } static int af9013_update_statistics(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret; if (time_before(jiffies, state->next_statistics_check)) return 0; /* set minimum statistic update interval */ state->next_statistics_check = jiffies + msecs_to_jiffies(1200); ret = af9013_update_signal_strength(fe); if (ret) goto error; ret = af9013_update_snr(fe); if (ret) goto error; ret = af9013_update_ber_unc(fe); if (ret) goto error; error: return ret; } static int af9013_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *fesettings) { fesettings->min_delay_ms = 800; fesettings->step_size = 0; fesettings->max_drift = 0; return 0; } static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status) { struct af9013_state *state = fe->demodulator_priv; int ret = 0; u8 tmp; *status = 0; /* TPS lock */ ret = af9013_read_reg_bits(state, 0xd330, 3, 1, &tmp); if (ret) goto error; if (tmp) *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL; /* MPEG2 lock */ ret = af9013_read_reg_bits(state, 0xd507, 6, 1, &tmp); if (ret) goto error; if (tmp) *status |= FE_HAS_SYNC | FE_HAS_LOCK; if (!(*status & FE_HAS_SIGNAL)) { /* AGC lock */ ret = af9013_read_reg_bits(state, 0xd1a0, 6, 1, &tmp); if (ret) goto error; if (tmp) *status |= FE_HAS_SIGNAL; } if (!(*status & FE_HAS_CARRIER)) { /* CFO lock */ ret = af9013_read_reg_bits(state, 0xd333, 7, 1, &tmp); if (ret) goto error; if (tmp) *status |= FE_HAS_CARRIER; } if (!(*status & FE_HAS_CARRIER)) { /* SFOE lock */ ret = af9013_read_reg_bits(state, 0xd334, 6, 1, &tmp); if (ret) goto error; if (tmp) *status |= FE_HAS_CARRIER; } ret = af9013_update_statistics(fe); error: return ret; } static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber) { struct af9013_state *state = fe->demodulator_priv; int ret; ret = af9013_update_statistics(fe); *ber = state->ber; return ret; } static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct af9013_state *state = fe->demodulator_priv; int ret; ret = af9013_update_statistics(fe); *strength = state->signal_strength; return ret; } static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr) { struct af9013_state *state = fe->demodulator_priv; int ret; ret = af9013_update_statistics(fe); *snr = state->snr; return ret; } static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct af9013_state *state = fe->demodulator_priv; int ret; ret = af9013_update_statistics(fe); *ucblocks = state->ucblocks; return ret; } static int af9013_sleep(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret; deb_info("%s\n", __func__); ret = af9013_lock_led(state, 0); if (ret) goto error; ret = af9013_power_ctrl(state, 0); error: return ret; } static int af9013_init(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret, i, len; u8 tmp0, tmp1; struct regdesc *init; deb_info("%s\n", __func__); /* reset OFDM */ ret = af9013_reset(state, 0); if (ret) goto error; /* power on */ ret = af9013_power_ctrl(state, 1); if (ret) goto error; /* enable ADC */ ret = af9013_write_reg(state, 0xd73a, 0xa4); if (ret) goto error; /* write API version to firmware */ for (i = 0; i < sizeof(state->config.api_version); i++) { ret = af9013_write_reg(state, 0x9bf2 + i, state->config.api_version[i]); if (ret) goto error; } /* program ADC control */ ret = af9013_set_adc_ctrl(state); if (ret) goto error; /* set I2C master clock */ ret = af9013_write_reg(state, 0xd416, 0x14); if (ret) goto error; /* set 16 embx */ ret = af9013_write_reg_bits(state, 0xd700, 1, 1, 1); if (ret) goto error; /* set no trigger */ ret = af9013_write_reg_bits(state, 0xd700, 2, 1, 0); if (ret) goto error; /* set read-update bit for constellation */ ret = af9013_write_reg_bits(state, 0xd371, 1, 1, 1); if (ret) goto error; /* enable FEC monitor */ ret = af9013_write_reg_bits(state, 0xd392, 1, 1, 1); if (ret) goto error; /* load OFSM settings */ deb_info("%s: load ofsm settings\n", __func__); len = ARRAY_SIZE(ofsm_init); init = ofsm_init; for (i = 0; i < len; i++) { ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos, init[i].len, init[i].val); if (ret) goto error; } /* load tuner specific settings */ deb_info("%s: load tuner specific settings\n", __func__); switch (state->config.tuner) { case AF9013_TUNER_MXL5003D: len = ARRAY_SIZE(tuner_init_mxl5003d); init = tuner_init_mxl5003d; break; case AF9013_TUNER_MXL5005D: case AF9013_TUNER_MXL5005R: len = ARRAY_SIZE(tuner_init_mxl5005); init = tuner_init_mxl5005; break; case AF9013_TUNER_ENV77H11D5: len = ARRAY_SIZE(tuner_init_env77h11d5); init = tuner_init_env77h11d5; break; case AF9013_TUNER_MT2060: len = ARRAY_SIZE(tuner_init_mt2060); init = tuner_init_mt2060; break; case AF9013_TUNER_MC44S803: len = ARRAY_SIZE(tuner_init_mc44s803); init = tuner_init_mc44s803; break; case AF9013_TUNER_QT1010: case AF9013_TUNER_QT1010A: len = ARRAY_SIZE(tuner_init_qt1010); init = tuner_init_qt1010; break; case AF9013_TUNER_MT2060_2: len = ARRAY_SIZE(tuner_init_mt2060_2); init = tuner_init_mt2060_2; break; case AF9013_TUNER_TDA18271: len = ARRAY_SIZE(tuner_init_tda18271); init = tuner_init_tda18271; break; case AF9013_TUNER_UNKNOWN: default: len = ARRAY_SIZE(tuner_init_unknown); init = tuner_init_unknown; break; } for (i = 0; i < len; i++) { ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos, init[i].len, init[i].val); if (ret) goto error; } /* set TS mode */ deb_info("%s: setting ts mode\n", __func__); tmp0 = 0; /* parallel mode */ tmp1 = 0; /* serial mode */ switch (state->config.output_mode) { case AF9013_OUTPUT_MODE_PARALLEL: tmp0 = 1; break; case AF9013_OUTPUT_MODE_SERIAL: tmp1 = 1; break; case AF9013_OUTPUT_MODE_USB: /* usb mode for AF9015 */ default: break; } ret = af9013_write_reg_bits(state, 0xd500, 1, 1, tmp0); /* parallel */ if (ret) goto error; ret = af9013_write_reg_bits(state, 0xd500, 2, 1, tmp1); /* serial */ if (ret) goto error; /* enable lock led */ ret = af9013_lock_led(state, 1); if (ret) goto error; error: return ret; } static struct dvb_frontend_ops af9013_ops; static int af9013_download_firmware(struct af9013_state *state) { int i, len, packets, remainder, ret; const struct firmware *fw; u16 addr = 0x5100; /* firmware start address */ u16 checksum = 0; u8 val; u8 fw_params[4]; u8 *data; u8 *fw_file = AF9013_DEFAULT_FIRMWARE; msleep(100); /* check whether firmware is already running */ ret = af9013_read_reg(state, 0x98be, &val); if (ret) goto error; else deb_info("%s: firmware status:%02x\n", __func__, val); if (val == 0x0c) /* fw is running, no need for download */ goto exit; info("found a '%s' in cold state, will try to load a firmware", af9013_ops.info.name); /* request the firmware, this will block and timeout */ ret = request_firmware(&fw, fw_file, state->i2c->dev.parent); if (ret) { err("did not find the firmware file. (%s) " "Please see linux/Documentation/dvb/ for more details" \ " on firmware-problems. (%d)", fw_file, ret); goto error; } info("downloading firmware from file '%s'", fw_file); /* calc checksum */ for (i = 0; i < fw->size; i++) checksum += fw->data[i]; fw_params[0] = checksum >> 8; fw_params[1] = checksum & 0xff; fw_params[2] = fw->size >> 8; fw_params[3] = fw->size & 0xff; /* write fw checksum & size */ ret = af9013_write_ofsm_regs(state, 0x50fc, fw_params, sizeof(fw_params)); if (ret) goto error_release; #define FW_PACKET_MAX_DATA 16 packets = fw->size / FW_PACKET_MAX_DATA; remainder = fw->size % FW_PACKET_MAX_DATA; len = FW_PACKET_MAX_DATA; for (i = 0; i <= packets; i++) { if (i == packets) /* set size of the last packet */ len = remainder; data = (u8 *)(fw->data + i * FW_PACKET_MAX_DATA); ret = af9013_write_ofsm_regs(state, addr, data, len); addr += FW_PACKET_MAX_DATA; if (ret) { err("firmware download failed at %d with %d", i, ret); goto error_release; } } /* request boot firmware */ ret = af9013_write_reg(state, 0xe205, 1); if (ret) goto error_release; for (i = 0; i < 15; i++) { msleep(100); /* check firmware status */ ret = af9013_read_reg(state, 0x98be, &val); if (ret) goto error_release; deb_info("%s: firmware status:%02x\n", __func__, val); if (val == 0x0c || val == 0x04) /* success or fail */ break; } if (val == 0x04) { err("firmware did not run"); ret = -1; } else if (val != 0x0c) { err("firmware boot timeout"); ret = -1; } error_release: release_firmware(fw); error: exit: if (!ret) info("found a '%s' in warm state.", af9013_ops.info.name); return ret; } static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { int ret; struct af9013_state *state = fe->demodulator_priv; deb_info("%s: enable:%d\n", __func__, enable); if (state->config.output_mode == AF9013_OUTPUT_MODE_USB) ret = af9013_write_reg_bits(state, 0xd417, 3, 1, enable); else ret = af9013_write_reg_bits(state, 0xd607, 2, 1, enable); return ret; } static void af9013_release(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops af9013_ops; struct dvb_frontend *af9013_attach(const struct af9013_config *config, struct i2c_adapter *i2c) { int ret; struct af9013_state *state = NULL; u8 buf[3], i; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->i2c = i2c; memcpy(&state->config, config, sizeof(struct af9013_config)); /* chip version */ ret = af9013_read_reg_bits(state, 0xd733, 4, 4, &buf[2]); if (ret) goto error; /* ROM version */ for (i = 0; i < 2; i++) { ret = af9013_read_reg(state, 0x116b + i, &buf[i]); if (ret) goto error; } deb_info("%s: chip version:%d ROM version:%d.%d\n", __func__, buf[2], buf[0], buf[1]); /* download firmware */ if (state->config.output_mode != AF9013_OUTPUT_MODE_USB) { ret = af9013_download_firmware(state); if (ret) goto error; } /* firmware version */ for (i = 0; i < 3; i++) { ret = af9013_read_reg(state, 0x5103 + i, &buf[i]); if (ret) goto error; } info("firmware version:%d.%d.%d", buf[0], buf[1], buf[2]); /* settings for mp2if */ if (state->config.output_mode == AF9013_OUTPUT_MODE_USB) { /* AF9015 split PSB to 1.5k + 0.5k */ ret = af9013_write_reg_bits(state, 0xd50b, 2, 1, 1); } else { /* AF9013 change the output bit to data7 */ ret = af9013_write_reg_bits(state, 0xd500, 3, 1, 1); if (ret) goto error; /* AF9013 set mpeg to full speed */ ret = af9013_write_reg_bits(state, 0xd502, 4, 1, 1); } if (ret) goto error; ret = af9013_write_reg_bits(state, 0xd520, 4, 1, 1); if (ret) goto error; /* set GPIOs */ for (i = 0; i < sizeof(state->config.gpio); i++) { ret = af9013_set_gpio(state, i, state->config.gpio[i]); if (ret) goto error; } /* create dvb_frontend */ memcpy(&state->frontend.ops, &af9013_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(af9013_attach); static struct dvb_frontend_ops af9013_ops = { .info = { .name = "Afatech AF9013 DVB-T", .type = FE_OFDM, .frequency_min = 174000000, .frequency_max = 862000000, .frequency_stepsize = 250000, .frequency_tolerance = 0, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS }, .release = af9013_release, .init = af9013_init, .sleep = af9013_sleep, .i2c_gate_ctrl = af9013_i2c_gate_ctrl, .set_frontend = af9013_set_frontend, .get_frontend = af9013_get_frontend, .get_tune_settings = af9013_get_tune_settings, .read_status = af9013_read_status, .read_ber = af9013_read_ber, .read_signal_strength = af9013_read_signal_strength, .read_snr = af9013_read_snr, .read_ucblocks = af9013_read_ucblocks, }; module_param_named(debug, af9013_debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_AUTHOR("Antti Palosaari "); MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver"); MODULE_LICENSE("GPL");