/* * Frontend driver for mobile DVB-T demodulator DiBcom 3000-MB * DiBcom (http://www.dibcom.fr/) * * Copyright (C) 2004 Patrick Boettcher (patrick.boettcher@desy.de) * * based on GPL code from DibCom, which has * * Copyright (C) 2004 Amaury Demol for DiBcom (ademol@dibcom.fr) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. * * Acknowledgements * * Amaury Demol (ademol@dibcom.fr) from DiBcom for providing specs and driver * sources, on which this driver (and the dvb-dibusb) are based. * * see Documentation/dvb/README.dibusb for more information * */ #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "dib3000-common.h" #include "dib3000mb_priv.h" #include "dib3000.h" struct dib3000mb_state { struct i2c_adapter* i2c; struct dvb_frontend_ops ops; /* configuration settings */ const struct dib3000_config* config; spinlock_t pid_list_lock; struct dib3000_pid pid_list[DIB3000MB_NUM_PIDS]; int feedcount; struct dvb_frontend frontend; }; /* debug */ #ifdef CONFIG_DVB_DIBCOM_DEBUG #define dprintk(level,args...) \ do { if ((debug & level)) { printk(args); } } while (0) static int debug; module_param(debug, int, 0x644); MODULE_PARM_DESC(debug, "set debugging level (1=info,2=xfer,4=alotmore,8=setfe,16=getfe (|-able))."); #else #define dprintk(args...) do { } while (0); #endif #define deb_info(args...) dprintk(0x01,args) #define deb_xfer(args...) dprintk(0x02,args) #define deb_alot(args...) dprintk(0x04,args) #define deb_setf(args...) dprintk(0x08,args) #define deb_getf(args...) dprintk(0x10,args) /* Version information */ #define DRIVER_VERSION "0.1" #define DRIVER_DESC "DiBcom 3000-MB DVB-T demodulator driver" #define DRIVER_AUTHOR "Patrick Boettcher, patrick.boettcher@desy.de" /* handy shortcuts */ #define rd(reg) dib3000mb_read_reg(state,reg) #define wr(reg,val) if (dib3000mb_write_reg(state,reg,val)) \ { err("while sending 0x%04x to 0x%04x.",val,reg); return -EREMOTEIO; } #define wr_foreach(a,v) { int i; \ deb_alot("sizeof: %d %d\n",sizeof(a),sizeof(v));\ for (i=0; i < sizeof(a)/sizeof(u16); i++) \ wr(a[i],v[i]); \ } static int dib3000mb_read_reg(struct dib3000mb_state *state, u16 reg) { u8 wb[] = { ((reg >> 8) | 0x80) & 0xff, reg & 0xff }; u8 rb[2]; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = wb, .len = 2 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = rb, .len = 2 }, }; deb_alot("reading from i2c bus (reg: %d)\n",reg); if (i2c_transfer(state->i2c, msg, 2) != 2) deb_alot("i2c read error\n"); return (rb[0] << 8) | rb[1]; } static int dib3000mb_write_reg(struct dib3000mb_state *state, u16 reg, u16 val) { u8 b[] = { (reg >> 8) & 0xff, reg & 0xff, (val >> 8) & 0xff, val & 0xff, }; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 4 } }; deb_alot("writing to i2c bus (reg: %d, val: %d)\n",reg,val); return i2c_transfer(state->i2c,msg, 1) != 1 ? -EREMOTEIO : 0; } static int dib3000mb_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep, int tuner); static int dib3000mb_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep); static int dib3000mb_fe_read_search_status(struct dvb_frontend* fe) { u16 irq; struct dvb_frontend_parameters fep; struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; irq = rd(DIB3000MB_REG_AS_IRQ_PENDING); if (irq & 0x02) { if (rd(DIB3000MB_REG_LOCK2_VALUE) & 0x01) { if (dib3000mb_get_frontend(fe, &fep) == 0) { deb_setf("reading tuning data from frontend succeeded.\n"); return dib3000mb_set_frontend(fe, &fep, 0) == 0; } else { deb_setf("reading tuning data failed -> tuning failed.\n"); return 0; } } else { deb_setf("AS IRQ was pending, but LOCK2 was not & 0x01.\n"); return 0; } } else if (irq & 0x01) { deb_setf("Autosearch failed.\n"); return 0; } return -1; } static int dib3000mb_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep, int tuner) { struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm; fe_code_rate_t fe_cr = FEC_NONE; int search_state, seq; if (tuner) { wr(DIB3000MB_REG_TUNER, DIB3000_TUNER_WRITE_ENABLE(state->config->pll_addr)); state->config->pll_set(fe, fep); wr(DIB3000MB_REG_TUNER, DIB3000_TUNER_WRITE_DISABLE(state->config->pll_addr)); deb_setf("bandwidth: "); switch (ofdm->bandwidth) { case BANDWIDTH_8_MHZ: deb_setf("8 MHz\n"); wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[2]); wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_8mhz); break; case BANDWIDTH_7_MHZ: deb_setf("7 MHz\n"); wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[1]); wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_7mhz); break; case BANDWIDTH_6_MHZ: deb_setf("6 MHz\n"); wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[0]); wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_6mhz); break; case BANDWIDTH_AUTO: return -EOPNOTSUPP; default: err("unkown bandwidth value."); return -EINVAL; } } wr(DIB3000MB_REG_LOCK1_MASK, DIB3000MB_LOCK1_SEARCH_4); deb_setf("transmission mode: "); switch (ofdm->transmission_mode) { case TRANSMISSION_MODE_2K: deb_setf("2k\n"); wr(DIB3000MB_REG_FFT, DIB3000_TRANSMISSION_MODE_2K); break; case TRANSMISSION_MODE_8K: deb_setf("8k\n"); wr(DIB3000MB_REG_FFT, DIB3000_TRANSMISSION_MODE_8K); break; case TRANSMISSION_MODE_AUTO: deb_setf("auto\n"); break; default: return -EINVAL; } deb_setf("guard: "); switch (ofdm->guard_interval) { case GUARD_INTERVAL_1_32: deb_setf("1_32\n"); wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_32); break; case GUARD_INTERVAL_1_16: deb_setf("1_16\n"); wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_16); break; case GUARD_INTERVAL_1_8: deb_setf("1_8\n"); wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_8); break; case GUARD_INTERVAL_1_4: deb_setf("1_4\n"); wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_4); break; case GUARD_INTERVAL_AUTO: deb_setf("auto\n"); break; default: return -EINVAL; } deb_setf("inversion: "); switch (fep->inversion) { case INVERSION_OFF: deb_setf("off\n"); wr(DIB3000MB_REG_DDS_INV, DIB3000_DDS_INVERSION_OFF); break; case INVERSION_AUTO: deb_setf("auto "); break; case INVERSION_ON: deb_setf("on\n"); wr(DIB3000MB_REG_DDS_INV, DIB3000_DDS_INVERSION_ON); break; default: return -EINVAL; } deb_setf("constellation: "); switch (ofdm->constellation) { case QPSK: deb_setf("qpsk\n"); wr(DIB3000MB_REG_QAM, DIB3000_CONSTELLATION_QPSK); break; case QAM_16: deb_setf("qam16\n"); wr(DIB3000MB_REG_QAM, DIB3000_CONSTELLATION_16QAM); break; case QAM_64: deb_setf("qam64\n"); wr(DIB3000MB_REG_QAM, DIB3000_CONSTELLATION_64QAM); break; case QAM_AUTO: break; default: return -EINVAL; } deb_setf("hierachy: "); switch (ofdm->hierarchy_information) { case HIERARCHY_NONE: deb_setf("none "); /* fall through */ case HIERARCHY_1: deb_setf("alpha=1\n"); wr(DIB3000MB_REG_VIT_ALPHA, DIB3000_ALPHA_1); break; case HIERARCHY_2: deb_setf("alpha=2\n"); wr(DIB3000MB_REG_VIT_ALPHA, DIB3000_ALPHA_2); break; case HIERARCHY_4: deb_setf("alpha=4\n"); wr(DIB3000MB_REG_VIT_ALPHA, DIB3000_ALPHA_4); break; case HIERARCHY_AUTO: deb_setf("alpha=auto\n"); break; default: return -EINVAL; } deb_setf("hierarchy: "); if (ofdm->hierarchy_information == HIERARCHY_NONE) { deb_setf("none\n"); wr(DIB3000MB_REG_VIT_HRCH, DIB3000_HRCH_OFF); wr(DIB3000MB_REG_VIT_HP, DIB3000_SELECT_HP); fe_cr = ofdm->code_rate_HP; } else if (ofdm->hierarchy_information != HIERARCHY_AUTO) { deb_setf("on\n"); wr(DIB3000MB_REG_VIT_HRCH, DIB3000_HRCH_ON); wr(DIB3000MB_REG_VIT_HP, DIB3000_SELECT_LP); fe_cr = ofdm->code_rate_LP; } deb_setf("fec: "); switch (fe_cr) { case FEC_1_2: deb_setf("1_2\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_1_2); break; case FEC_2_3: deb_setf("2_3\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_2_3); break; case FEC_3_4: deb_setf("3_4\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_3_4); break; case FEC_5_6: deb_setf("5_6\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_5_6); break; case FEC_7_8: deb_setf("7_8\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_7_8); break; case FEC_NONE: deb_setf("none "); break; case FEC_AUTO: deb_setf("auto\n"); break; default: return -EINVAL; } seq = dib3000_seq [ofdm->transmission_mode == TRANSMISSION_MODE_AUTO] [ofdm->guard_interval == GUARD_INTERVAL_AUTO] [fep->inversion == INVERSION_AUTO]; deb_setf("seq? %d\n", seq); wr(DIB3000MB_REG_SEQ, seq); wr(DIB3000MB_REG_ISI, seq ? DIB3000MB_ISI_INHIBIT : DIB3000MB_ISI_ACTIVATE); if (ofdm->transmission_mode == TRANSMISSION_MODE_2K) { if (ofdm->guard_interval == GUARD_INTERVAL_1_8) { wr(DIB3000MB_REG_SYNC_IMPROVEMENT, DIB3000MB_SYNC_IMPROVE_2K_1_8); } else { wr(DIB3000MB_REG_SYNC_IMPROVEMENT, DIB3000MB_SYNC_IMPROVE_DEFAULT); } wr(DIB3000MB_REG_UNK_121, DIB3000MB_UNK_121_2K); } else { wr(DIB3000MB_REG_UNK_121, DIB3000MB_UNK_121_DEFAULT); } wr(DIB3000MB_REG_MOBILE_ALGO, DIB3000MB_MOBILE_ALGO_OFF); wr(DIB3000MB_REG_MOBILE_MODE_QAM, DIB3000MB_MOBILE_MODE_QAM_OFF); wr(DIB3000MB_REG_MOBILE_MODE, DIB3000MB_MOBILE_MODE_OFF); wr_foreach(dib3000mb_reg_agc_bandwidth, dib3000mb_agc_bandwidth_high); wr(DIB3000MB_REG_ISI, DIB3000MB_ISI_ACTIVATE); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AGC + DIB3000MB_RESTART_CTRL); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_OFF); /* wait for AGC lock */ msleep(70); wr_foreach(dib3000mb_reg_agc_bandwidth, dib3000mb_agc_bandwidth_low); /* something has to be auto searched */ if (ofdm->constellation == QAM_AUTO || ofdm->hierarchy_information == HIERARCHY_AUTO || fe_cr == FEC_AUTO || fep->inversion == INVERSION_AUTO) { int as_count=0; deb_setf("autosearch enabled.\n"); wr(DIB3000MB_REG_ISI, DIB3000MB_ISI_INHIBIT); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AUTO_SEARCH); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_OFF); while ((search_state = dib3000mb_fe_read_search_status(fe)) < 0 && as_count++ < 100) msleep(1); deb_info("search_state after autosearch %d after %d checks\n",search_state,as_count); } else { wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_CTRL); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_OFF); } return 0; } static int dib3000mb_fe_init(struct dvb_frontend* fe, int mobile_mode) { struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; wr(DIB3000MB_REG_POWER_CONTROL, DIB3000MB_POWER_UP); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AGC); wr(DIB3000MB_REG_RESET_DEVICE, DIB3000MB_RESET_DEVICE); wr(DIB3000MB_REG_RESET_DEVICE, DIB3000MB_RESET_DEVICE_RST); wr(DIB3000MB_REG_CLOCK, DIB3000MB_CLOCK_DEFAULT); wr(DIB3000MB_REG_ELECT_OUT_MODE, DIB3000MB_ELECT_OUT_MODE_ON); wr(DIB3000MB_REG_DDS_FREQ_MSB, DIB3000MB_DDS_FREQ_MSB); wr(DIB3000MB_REG_DDS_FREQ_LSB, DIB3000MB_DDS_FREQ_LSB); wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[2]); wr_foreach(dib3000mb_reg_impulse_noise, dib3000mb_impulse_noise_values[DIB3000MB_IMPNOISE_OFF]); wr_foreach(dib3000mb_reg_agc_gain, dib3000mb_default_agc_gain); wr(DIB3000MB_REG_PHASE_NOISE, DIB3000MB_PHASE_NOISE_DEFAULT); wr_foreach(dib3000mb_reg_phase_noise, dib3000mb_default_noise_phase); wr_foreach(dib3000mb_reg_lock_duration, dib3000mb_default_lock_duration); wr_foreach(dib3000mb_reg_agc_bandwidth, dib3000mb_agc_bandwidth_low); wr(DIB3000MB_REG_LOCK0_MASK, DIB3000MB_LOCK0_DEFAULT); wr(DIB3000MB_REG_LOCK1_MASK, DIB3000MB_LOCK1_SEARCH_4); wr(DIB3000MB_REG_LOCK2_MASK, DIB3000MB_LOCK2_DEFAULT); wr(DIB3000MB_REG_SEQ, dib3000_seq[1][1][1]); wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_8mhz); wr(DIB3000MB_REG_UNK_68, DIB3000MB_UNK_68); wr(DIB3000MB_REG_UNK_69, DIB3000MB_UNK_69); wr(DIB3000MB_REG_UNK_71, DIB3000MB_UNK_71); wr(DIB3000MB_REG_UNK_77, DIB3000MB_UNK_77); wr(DIB3000MB_REG_UNK_78, DIB3000MB_UNK_78); wr(DIB3000MB_REG_ISI, DIB3000MB_ISI_INHIBIT); wr(DIB3000MB_REG_UNK_92, DIB3000MB_UNK_92); wr(DIB3000MB_REG_UNK_96, DIB3000MB_UNK_96); wr(DIB3000MB_REG_UNK_97, DIB3000MB_UNK_97); wr(DIB3000MB_REG_UNK_106, DIB3000MB_UNK_106); wr(DIB3000MB_REG_UNK_107, DIB3000MB_UNK_107); wr(DIB3000MB_REG_UNK_108, DIB3000MB_UNK_108); wr(DIB3000MB_REG_UNK_122, DIB3000MB_UNK_122); wr(DIB3000MB_REG_MOBILE_MODE_QAM, DIB3000MB_MOBILE_MODE_QAM_OFF); wr(DIB3000MB_REG_BERLEN, DIB3000MB_BERLEN_DEFAULT); wr_foreach(dib3000mb_reg_filter_coeffs, dib3000mb_filter_coeffs); wr(DIB3000MB_REG_MOBILE_ALGO, DIB3000MB_MOBILE_ALGO_ON); wr(DIB3000MB_REG_MULTI_DEMOD_MSB, DIB3000MB_MULTI_DEMOD_MSB); wr(DIB3000MB_REG_MULTI_DEMOD_LSB, DIB3000MB_MULTI_DEMOD_LSB); wr(DIB3000MB_REG_OUTPUT_MODE, DIB3000MB_OUTPUT_MODE_SLAVE); wr(DIB3000MB_REG_FIFO_142, DIB3000MB_FIFO_142); wr(DIB3000MB_REG_MPEG2_OUT_MODE, DIB3000MB_MPEG2_OUT_MODE_188); wr(DIB3000MB_REG_PID_PARSE, DIB3000MB_PID_PARSE_ACTIVATE); wr(DIB3000MB_REG_FIFO, DIB3000MB_FIFO_INHIBIT); wr(DIB3000MB_REG_FIFO_146, DIB3000MB_FIFO_146); wr(DIB3000MB_REG_FIFO_147, DIB3000MB_FIFO_147); wr(DIB3000MB_REG_DATA_IN_DIVERSITY, DIB3000MB_DATA_DIVERSITY_IN_OFF); if (state->config->pll_init) { wr(DIB3000MB_REG_TUNER, DIB3000_TUNER_WRITE_ENABLE(state->config->pll_addr)); state->config->pll_init(fe); wr(DIB3000MB_REG_TUNER, DIB3000_TUNER_WRITE_DISABLE(state->config->pll_addr)); } return 0; } static int dib3000mb_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm; fe_code_rate_t *cr; u16 tps_val; int inv_test1,inv_test2; u32 dds_val, threshold = 0x800000; if (!rd(DIB3000MB_REG_TPS_LOCK)) return 0; dds_val = ((rd(DIB3000MB_REG_DDS_VALUE_MSB) & 0xff) << 16) + rd(DIB3000MB_REG_DDS_VALUE_LSB); if (dds_val & threshold) inv_test1 = 0; else if (dds_val == threshold) inv_test1 = 1; else inv_test1 = 2; dds_val = ((rd(DIB3000MB_REG_DDS_FREQ_MSB) & 0xff) << 16) + rd(DIB3000MB_REG_DDS_FREQ_LSB); if (dds_val & threshold) inv_test2 = 0; else if (dds_val == threshold) inv_test2 = 1; else inv_test2 = 2; fep->inversion = ((inv_test2 == 2) && (inv_test1==1 || inv_test1==0)) || ((inv_test2 == 0) && (inv_test1==1 || inv_test1==2)); deb_getf("inversion %d %d, %d\n", inv_test2, inv_test1, fep->inversion); switch ((tps_val = rd(DIB3000MB_REG_TPS_QAM))) { case DIB3000_CONSTELLATION_QPSK: deb_getf("QPSK "); ofdm->constellation = QPSK; break; case DIB3000_CONSTELLATION_16QAM: deb_getf("QAM16 "); ofdm->constellation = QAM_16; break; case DIB3000_CONSTELLATION_64QAM: deb_getf("QAM64 "); ofdm->constellation = QAM_64; break; default: err("Unexpected constellation returned by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n", tps_val); if (rd(DIB3000MB_REG_TPS_HRCH)) { deb_getf("HRCH ON\n"); tps_val = rd(DIB3000MB_REG_TPS_CODE_RATE_LP); cr = &ofdm->code_rate_LP; ofdm->code_rate_HP = FEC_NONE; switch ((tps_val = rd(DIB3000MB_REG_TPS_VIT_ALPHA))) { case DIB3000_ALPHA_0: deb_getf("HIERARCHY_NONE "); ofdm->hierarchy_information = HIERARCHY_NONE; break; case DIB3000_ALPHA_1: deb_getf("HIERARCHY_1 "); ofdm->hierarchy_information = HIERARCHY_1; break; case DIB3000_ALPHA_2: deb_getf("HIERARCHY_2 "); ofdm->hierarchy_information = HIERARCHY_2; break; case DIB3000_ALPHA_4: deb_getf("HIERARCHY_4 "); ofdm->hierarchy_information = HIERARCHY_4; break; default: err("Unexpected ALPHA value returned by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n", tps_val); } else { deb_getf("HRCH OFF\n"); tps_val = rd(DIB3000MB_REG_TPS_CODE_RATE_HP); cr = &ofdm->code_rate_HP; ofdm->code_rate_LP = FEC_NONE; ofdm->hierarchy_information = HIERARCHY_NONE; } switch (tps_val) { case DIB3000_FEC_1_2: deb_getf("FEC_1_2 "); *cr = FEC_1_2; break; case DIB3000_FEC_2_3: deb_getf("FEC_2_3 "); *cr = FEC_2_3; break; case DIB3000_FEC_3_4: deb_getf("FEC_3_4 "); *cr = FEC_3_4; break; case DIB3000_FEC_5_6: deb_getf("FEC_5_6 "); *cr = FEC_4_5; break; case DIB3000_FEC_7_8: deb_getf("FEC_7_8 "); *cr = FEC_7_8; break; default: err("Unexpected FEC returned by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n",tps_val); switch ((tps_val = rd(DIB3000MB_REG_TPS_GUARD_TIME))) { case DIB3000_GUARD_TIME_1_32: deb_getf("GUARD_INTERVAL_1_32 "); ofdm->guard_interval = GUARD_INTERVAL_1_32; break; case DIB3000_GUARD_TIME_1_16: deb_getf("GUARD_INTERVAL_1_16 "); ofdm->guard_interval = GUARD_INTERVAL_1_16; break; case DIB3000_GUARD_TIME_1_8: deb_getf("GUARD_INTERVAL_1_8 "); ofdm->guard_interval = GUARD_INTERVAL_1_8; break; case DIB3000_GUARD_TIME_1_4: deb_getf("GUARD_INTERVAL_1_4 "); ofdm->guard_interval = GUARD_INTERVAL_1_4; break; default: err("Unexpected Guard Time returned by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n", tps_val); switch ((tps_val = rd(DIB3000MB_REG_TPS_FFT))) { case DIB3000_TRANSMISSION_MODE_2K: deb_getf("TRANSMISSION_MODE_2K "); ofdm->transmission_mode = TRANSMISSION_MODE_2K; break; case DIB3000_TRANSMISSION_MODE_8K: deb_getf("TRANSMISSION_MODE_8K "); ofdm->transmission_mode = TRANSMISSION_MODE_8K; break; default: err("unexpected transmission mode return by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n", tps_val); return 0; } static int dib3000mb_read_status(struct dvb_frontend* fe, fe_status_t *stat) { struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; *stat = 0; if (rd(DIB3000MB_REG_AGC_LOCK)) *stat |= FE_HAS_SIGNAL; if (rd(DIB3000MB_REG_CARRIER_LOCK)) *stat |= FE_HAS_CARRIER; if (rd(DIB3000MB_REG_VIT_LCK)) *stat |= FE_HAS_VITERBI; if (rd(DIB3000MB_REG_TS_SYNC_LOCK)) *stat |= (FE_HAS_SYNC | FE_HAS_LOCK); deb_info("actual status is %2x\n",*stat); deb_getf("tps %x %x %x %x %x\n", rd(DIB3000MB_REG_TPS_1), rd(DIB3000MB_REG_TPS_2), rd(DIB3000MB_REG_TPS_3), rd(DIB3000MB_REG_TPS_4), rd(DIB3000MB_REG_TPS_5)); deb_info("autoval: tps: %d, qam: %d, hrch: %d, alpha: %d, hp: %d, lp: %d, guard: %d, fft: %d cell: %d\n", rd(DIB3000MB_REG_TPS_LOCK), rd(DIB3000MB_REG_TPS_QAM), rd(DIB3000MB_REG_TPS_HRCH), rd(DIB3000MB_REG_TPS_VIT_ALPHA), rd(DIB3000MB_REG_TPS_CODE_RATE_HP), rd(DIB3000MB_REG_TPS_CODE_RATE_LP), rd(DIB3000MB_REG_TPS_GUARD_TIME), rd(DIB3000MB_REG_TPS_FFT), rd(DIB3000MB_REG_TPS_CELL_ID)); //*stat = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; return 0; } static int dib3000mb_read_ber(struct dvb_frontend* fe, u32 *ber) { struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; *ber = ((rd(DIB3000MB_REG_BER_MSB) << 16) | rd(DIB3000MB_REG_BER_LSB)); return 0; } /* * Amaury: * signal strength is measured with dBm (power compared to mW) * the standard range is -90dBm(low power) to -10 dBm (strong power), * but the calibration is done for -100 dBm to 0dBm */ #define DIB3000MB_AGC_REF_dBm -14 #define DIB3000MB_GAIN_SLOPE_dBm 100 #define DIB3000MB_GAIN_DELTA_dBm -2 static int dib3000mb_read_signal_strength(struct dvb_frontend* fe, u16 *strength) { struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; /* TODO log10 u16 sigpow = rd(DIB3000MB_REG_SIGNAL_POWER), n_agc_power = rd(DIB3000MB_REG_AGC_POWER), rf_power = rd(DIB3000MB_REG_RF_POWER); double rf_power_dBm, ad_power_dBm, minar_power_dBm; if (n_agc_power == 0 ) n_agc_power = 1 ; ad_power_dBm = 10 * log10 ( (float)n_agc_power / (float)(1<<16) ); minor_power_dBm = ad_power_dBm - DIB3000MB_AGC_REF_dBm; rf_power_dBm = (-DIB3000MB_GAIN_SLOPE_dBm * (float)rf_power / (float)(1<<16) + DIB3000MB_GAIN_DELTA_dBm) + minor_power_dBm; // relative rf_power *strength = (u16) ((rf_power_dBm + 100) / 100 * 0xffff); */ *strength = rd(DIB3000MB_REG_SIGNAL_POWER) * 0xffff / 0x170; return 0; } /* * Amaury: * snr is the signal quality measured in dB. * snr = 10*log10(signal power / noise power) * the best quality is near 35dB (cable transmission & good modulator) * the minimum without errors depend of transmission parameters * some indicative values are given in en300744 Annex A * ex : 16QAM 2/3 (Gaussian) = 11.1 dB * * If SNR is above 20dB, BER should be always 0. * choose 0dB as the minimum */ static int dib3000mb_read_snr(struct dvb_frontend* fe, u16 *snr) { struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; short sigpow = rd(DIB3000MB_REG_SIGNAL_POWER); int icipow = ((rd(DIB3000MB_REG_NOISE_POWER_MSB) & 0xff) << 16) | rd(DIB3000MB_REG_NOISE_POWER_LSB); /* float snr_dBm=0; if (sigpow > 0 && icipow > 0) snr_dBm = 10.0 * log10( (float) (sigpow<<8) / (float)icipow ) ; else if (sigpow > 0) snr_dBm = 35; *snr = (u16) ((snr_dBm / 35) * 0xffff); */ *snr = (sigpow << 8) / ((icipow > 0) ? icipow : 1); return 0; } static int dib3000mb_read_unc_blocks(struct dvb_frontend* fe, u32 *unc) { struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; *unc = rd(DIB3000MB_REG_UNC); return 0; } static int dib3000mb_sleep(struct dvb_frontend* fe) { struct dib3000mb_state* state = (struct dib3000mb_state*) fe->demodulator_priv; wr(DIB3000MB_REG_POWER_CONTROL, DIB3000MB_POWER_DOWN); return 0; } static int dib3000mb_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 800; tune->step_size = 166667; tune->max_drift = 166667 * 2; return 0; } static int dib3000mb_fe_init_nonmobile(struct dvb_frontend* fe) { return dib3000mb_fe_init(fe, 0); } static int dib3000mb_set_frontend_and_tuner(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { return dib3000mb_set_frontend(fe, fep, 1); } static void dib3000mb_release(struct dvb_frontend* fe) { struct dib3000mb_state *state = (struct dib3000mb_state*) fe->demodulator_priv; kfree(state); } /* pid filter and transfer stuff */ /* fetch a pid from pid_list */ static int dib3000_get_pid_index(struct dib3000_pid pid_list[], int num_pids, int pid, spinlock_t *pid_list_lock,int onoff) { int i,ret = -1; unsigned long flags; spin_lock_irqsave(pid_list_lock,flags); for (i=0; i < num_pids; i++) if (onoff) { if (!pid_list[i].active) { pid_list[i].pid = pid; pid_list[i].active = 1; ret = i; break; } } else { if (pid_list[i].active && pid_list[i].pid == pid) { pid_list[i].pid = 0; pid_list[i].active = 0; ret = i; break; } } spin_unlock_irqrestore(pid_list_lock,flags); return ret; } static int dib3000mb_pid_control(struct dvb_frontend *fe,int pid,int onoff) { struct dib3000mb_state *state = fe->demodulator_priv; int index = dib3000_get_pid_index(state->pid_list, DIB3000MB_NUM_PIDS, pid, &state->pid_list_lock,onoff); pid = (onoff ? pid | DIB3000_ACTIVATE_PID_FILTERING : 0); deb_info("setting pid 0x%x on index %d\n",pid,index); if (index >= 0) { wr(index+DIB3000MB_REG_FIRST_PID,pid); } else { err("no more pids for filtering."); return -ENOMEM; } return 0; } static int dib3000mb_fifo_control(struct dvb_frontend *fe, int onoff) { struct dib3000mb_state *state = (struct dib3000mb_state*) fe->demodulator_priv; if (onoff) { wr(DIB3000MB_REG_FIFO, DIB3000MB_FIFO_ACTIVATE); } else { wr(DIB3000MB_REG_FIFO, DIB3000MB_FIFO_INHIBIT); } return 0; } static int dib3000mb_pid_filter(struct dvb_frontend *fe, int onoff) { //struct dib3000mb_state *state = fe->demodulator_priv; /* switch it off and on */ return 0; } static struct dvb_frontend_ops dib3000mb_ops; struct dvb_frontend* dib3000mb_attach(const struct dib3000_config* config, struct i2c_adapter* i2c, struct dib3000_xfer_ops *xfer_ops) { struct dib3000mb_state* state = NULL; int i; /* allocate memory for the internal state */ state = (struct dib3000mb_state*) kmalloc(sizeof(struct dib3000mb_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; memcpy(&state->ops, &dib3000mb_ops, sizeof(struct dvb_frontend_ops)); /* check for the correct demod */ if (rd(DIB3000_REG_MANUFACTOR_ID) != DIB3000_I2C_ID_DIBCOM) goto error; if (rd(DIB3000_REG_DEVICE_ID) != DIB3000MB_DEVICE_ID) goto error; /* initialize the id_list */ deb_info("initializing %d pids for the pid_list.\n",DIB3000MB_NUM_PIDS); state->pid_list_lock = SPIN_LOCK_UNLOCKED; memset(state->pid_list,0,DIB3000MB_NUM_PIDS*(sizeof(struct dib3000_pid))); for (i=0; i < DIB3000MB_NUM_PIDS; i++) { state->pid_list[i].pid = 0; state->pid_list[i].active = 0; } state->feedcount = 0; /* create dvb_frontend */ state->frontend.ops = &state->ops; state->frontend.demodulator_priv = state; /* set the xfer operations */ xfer_ops->pid_filter = dib3000mb_pid_filter; xfer_ops->fifo_ctrl = dib3000mb_fifo_control; xfer_ops->pid_ctrl = dib3000mb_pid_control; return &state->frontend; error: if (state) kfree(state); return NULL; } static struct dvb_frontend_ops dib3000mb_ops = { .info = { .name = "DiBcom 3000-MB DVB-T", .type = FE_OFDM, .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, }, .release = dib3000mb_release, .init = dib3000mb_fe_init_nonmobile, .sleep = dib3000mb_sleep, .set_frontend = dib3000mb_set_frontend_and_tuner, .get_frontend = dib3000mb_get_frontend, .get_tune_settings = dib3000mb_fe_get_tune_settings, .read_status = dib3000mb_read_status, .read_ber = dib3000mb_read_ber, .read_signal_strength = dib3000mb_read_signal_strength, .read_snr = dib3000mb_read_snr, .read_ucblocks = dib3000mb_read_unc_blocks, }; MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(dib3000mb_attach);