/* * Frontend driver for mobile DVB-T demodulator DiBcom 3000-MB * DiBcom (http://www.dibcom.fr/) * * Copyright (C) 2004 Patrick Boettcher (patrick.boettcher@desy.de) * * based on GPL code from DibCom, which has * * Copyright (C) 2004 Amaury Demol for DiBcom (ademol@dibcom.fr) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. * * Acknowledgements * * Amaury Demol (ademol@dibcom.fr) from DiBcom for providing specs and driver * sources, on which this driver (and the dvb-dibusb) are based. * * see Documentation/dvb/README.dibusb for more information * */ #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "dib3000mb.h" static int debug; module_param(debug, int, 0x644); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); #define dprintk if (debug) printk /* Version information */ #define DRIVER_VERSION "0.0" #define DRIVER_DESC "DiBcom 3000-MB DVB-T frontend" #define DRIVER_AUTHOR "Patrick Boettcher, patrick.boettcher@desy.de" struct dib3000mb_state { struct i2c_client *i2c; struct dvb_adapter *dvb; u16 manufactor_id; u16 device_id; }; static struct dvb_frontend_info dib3000mb_info = { .name = "DiBcom 3000-MB DVB-T frontend", .type = FE_OFDM, .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, }; #define rd(reg) dib3000mb_read_reg(i2c,reg) #define wr(reg,val) if (dib3000mb_write_reg(i2c,reg,val)) \ { err("while sending 0x%04x to 0x%04x.",val,reg); return -EREMOTEIO; } #define wr_foreach(a,v) { int i; \ dprintk("sizeof: %d %d\n",sizeof(a),sizeof(v));\ for (i=0; i < sizeof(a)/sizeof(u16); i++) \ wr(a[i],v[i]); \ } static u16 dib3000mb_read_reg(struct i2c_client *i2c, u16 reg) { u8 wb[] = { ((reg >> 8) | 0x80) & 0xff, reg & 0xff }; u8 rb[2]; struct i2c_msg msg[] = { { .addr = i2c->addr, .flags = 0, .buf = wb, .len = 2 }, { .addr = i2c->addr, .flags = I2C_M_RD, .buf = rb, .len = 2 }, }; /* dprintk("reading from i2c bus (reg: %d)\n",reg);*/ if (i2c_transfer(i2c->adapter,msg,2) != 2) dprintk("i2c read error\n"); return (rb[0] << 8) | rb[1]; } static int dib3000mb_write_reg(struct i2c_client *i2c,u16 reg, u16 val) { u8 b[] = { (reg >> 8) & 0xff, reg & 0xff, (val >> 8) & 0xff, val & 0xff, }; struct i2c_msg msg[] = { { .addr = i2c->addr, .flags = 0, .buf = b, .len = 4 } }; /* dprintk("writing to i2c bus (reg: %d, val: %d)\n",reg,val);*/ return i2c_transfer(i2c->adapter,msg,1) != 1 ? -EREMOTEIO : 0 ; } static int dib3000mb_tuner_thomson_cable_eu(struct dib3000mb_state *state, u32 freq) { struct i2c_client *i2c = state->i2c; u32 tfreq = (freq + 36125000) / 62500; unsigned int addr; int vu,p0,p1,p2; if (freq > 403250000) vu = 1, p2 = 1, p1 = 0, p0 = 1; else if (freq > 115750000) vu = 0, p2 = 1, p1 = 1, p0 = 0; else if (freq > 44250000) vu = 0, p2 = 0, p1 = 1, p0 = 1; else return -EINVAL; /* TODO better solution for i2c->addr handling */ addr = i2c->addr; i2c->addr = DIB3000MB_TUNER_ADDR_DEFAULT; wr(tfreq & 0x7fff,(0x8e << 8) + ((vu << 7) | (p2 << 2) | (p1 << 1) | p0) ); i2c->addr = addr; return 0; } struct dib3000mb_fe_param { u16 qam; u16 fft; u16 guard; u16 alpha; u16 hrch; u16 hp; u16 cr; u16 inv; u16 seq; u8 qam_vit_manual; }; static int dib3000mb_fe_set_parameters(struct dib3000mb_state *state, struct dib3000mb_fe_param *p) { struct i2c_client *i2c = state->i2c; wr(DIB3000MB_REG_LOCK1_MASK,DIB3000MB_LOCK1_SEARCH_4); dprintk("inversion: %d, seq: %d\n",p->inv,p->seq); wr(DIB3000MB_REG_FFT,p->fft); wr(DIB3000MB_REG_GUARD_TIME,p->guard); wr(DIB3000MB_REG_DDS_INV,p->inv); wr(DIB3000MB_REG_SEQ,p->seq); wr(DIB3000MB_REG_ISI,p->seq ? DIB3000MB_ISI_INHIBIT : DIB3000MB_ISI_ACTIVATE); if (p->fft == DIB3000MB_FFT_2K) { if (p->guard == DIB3000MB_GUARD_TIME_1_8) { wr(DIB3000MB_REG_SYNC_IMPROVEMENT,DIB3000MB_SYNC_IMPROVE_2K_1_8); } else { wr(DIB3000MB_REG_SYNC_IMPROVEMENT,DIB3000MB_SYNC_IMPROVE_DEFAULT); } wr(DIB3000MB_REG_UNK_121,DIB3000MB_UNK_121_2K); } else { wr(DIB3000MB_REG_UNK_121,DIB3000MB_UNK_121_DEFAULT); } if (p->qam_vit_manual) { wr(DIB3000MB_REG_QAM,p->qam); wr(DIB3000MB_REG_VIT_ALPHA,p->alpha); wr(DIB3000MB_REG_VIT_HRCH,p->hrch); wr(DIB3000MB_REG_VIT_HP,p->hp); wr(DIB3000MB_REG_VIT_CODE_RATE,p->cr); } wr(DIB3000MB_REG_MOBILE_ALGO,DIB3000MB_MOBILE_ALGO_OFF); wr(DIB3000MB_REG_MOBILE_MODE_QAM,DIB3000MB_MOBILE_MODE_QAM_OFF); wr(DIB3000MB_REG_MOBILE_MODE,DIB3000MB_MOBILE_MODE_OFF); return 0; } static int dib3000mb_fe_read_search_status(struct dib3000mb_state *state) { struct i2c_client *i2c = state->i2c; u16 irq; u16 lock; struct dib3000mb_fe_param p; irq = rd(DIB3000MB_REG_AS_IRQ_PENDING); if (irq & 0x02) { dprintk("autoval: tps: %d, qam: %d, hrch: %d, alpha: %d, hp: %d, lp: %d, guard: %d, fft: %d cell: %d\n", rd(DIB3000MB_REG_TPS_LOCK), rd(DIB3000MB_REG_TPS_QAM), rd(DIB3000MB_REG_TPS_HRCH), rd(DIB3000MB_REG_TPS_VIT_ALPHA), rd(DIB3000MB_REG_TPS_CODE_RATE_HP), rd(DIB3000MB_REG_TPS_CODE_RATE_LP), rd(DIB3000MB_REG_TPS_GUARD_TIME), rd(DIB3000MB_REG_TPS_FFT), rd(DIB3000MB_REG_TPS_CELL_ID)); if (rd(DIB3000MB_REG_TPS_LOCK) && rd(DIB3000MB_REG_LOCK2_VALUE)) { int inv_test1,inv_test2; u32 dds_val, threshold = 0x800000; p.qam = rd(DIB3000MB_REG_TPS_QAM); p.hrch = rd(DIB3000MB_REG_TPS_HRCH); p.alpha = rd(DIB3000MB_REG_TPS_VIT_ALPHA); p.hp = !p.hrch; p.cr = p.hp ? rd(DIB3000MB_REG_TPS_CODE_RATE_HP) : rd(DIB3000MB_REG_TPS_CODE_RATE_LP); p.guard = rd(DIB3000MB_REG_TPS_GUARD_TIME); p.fft = rd(DIB3000MB_REG_TPS_FFT); p.seq = 0; p.qam_vit_manual = 0; dds_val = (rd(DIB3000MB_REG_DDS_VALUE_MSB & 0xff) << 16) + rd(DIB3000MB_REG_DDS_VALUE_LSB); if (dds_val & threshold) inv_test1 = 0; else if (dds_val == threshold) inv_test1 = 1; else inv_test1 = 2; dds_val = (rd(DIB3000MB_REG_DDS_FREQ_MSB & 0xff) << 16) + rd(DIB3000MB_REG_DDS_FREQ_LSB); if (dds_val & threshold) inv_test2 = 0; else if (dds_val == threshold) inv_test2 = 1; else inv_test2 = 2; p.inv = ((inv_test2 == 2) && (inv_test1==1 || inv_test1==0)) || ((inv_test2 == 0) && (inv_test1==1 || inv_test1==2)); dib3000mb_fe_set_parameters(state,&p); wr(DIB3000MB_REG_RESTART,DIB3000MB_RESTART_CTRL); wr(DIB3000MB_REG_RESTART,DIB3000MB_RESTART_OFF); msleep(70); return 1; } else return 0; } else if (irq & 0x01) return 0; return -1; } static int dib3000mb_set_frontend(struct dib3000mb_state *state, struct dvb_frontend_parameters *fep) { struct i2c_client *i2c = state->i2c; struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm; fe_code_rate_t fe_cr; struct dib3000mb_fe_param par; wr(DIB3000MB_REG_TUNER, DIB3000MB_ACTIVATE_TUNER_XFER( DIB3000MB_TUNER_ADDR_DEFAULT ) ); dib3000mb_tuner_thomson_cable_eu(state,fep->frequency); /* wait for tuner */ msleep(1); wr(DIB3000MB_REG_TUNER, DIB3000MB_DEACTIVATE_TUNER_XFER( DIB3000MB_TUNER_ADDR_DEFAULT ) ); switch (ofdm->bandwidth) { case BANDWIDTH_8_MHZ: case BANDWIDTH_AUTO: wr_foreach(dib3000mb_reg_timing_freq,dib3000mb_timing_freq[2]); wr_foreach(dib3000mb_reg_bandwidth,dib3000mb_bandwidth_8mhz); break; case BANDWIDTH_7_MHZ: wr_foreach(dib3000mb_reg_timing_freq,dib3000mb_timing_freq[1]); wr_foreach(dib3000mb_reg_bandwidth,dib3000mb_bandwidth_7mhz); break; case BANDWIDTH_6_MHZ: wr_foreach(dib3000mb_reg_timing_freq,dib3000mb_timing_freq[0]); wr_foreach(dib3000mb_reg_bandwidth,dib3000mb_bandwidth_6mhz); break; default: err("unkown bandwidth value."); return -EINVAL; break; } switch (ofdm->transmission_mode) { case TRANSMISSION_MODE_2K: par.fft = DIB3000MB_FFT_2K; break; case TRANSMISSION_MODE_8K: par.fft = DIB3000MB_FFT_8K; break; case TRANSMISSION_MODE_AUTO: par.fft = DIB3000MB_FFT_AUTO; break; default: return -EINVAL; } switch (ofdm->guard_interval) { case GUARD_INTERVAL_1_32: par.guard = DIB3000MB_GUARD_TIME_1_32; break; case GUARD_INTERVAL_1_16: par.guard = DIB3000MB_GUARD_TIME_1_16; break; case GUARD_INTERVAL_1_8: par.guard = DIB3000MB_GUARD_TIME_1_8; break; case GUARD_INTERVAL_1_4: par.guard = DIB3000MB_GUARD_TIME_1_4; break; case GUARD_INTERVAL_AUTO: par.guard = DIB3000MB_GUARD_TIME_AUTO; break; default: return -EINVAL; } switch (fep->inversion) { case INVERSION_OFF: par.inv = DIB3000MB_DDS_INV_OFF; break; case INVERSION_AUTO: case INVERSION_ON: par.inv = DIB3000MB_DDS_INV_ON; break; default: return -EINVAL; } switch (ofdm->constellation) { case QPSK: par.qam = DIB3000MB_QAM_QPSK; break; case QAM_16: par.qam = DIB3000MB_QAM_QAM16; break; case QAM_64: par.qam = DIB3000MB_QAM_QAM64; break; case QAM_AUTO: break; default: return -EINVAL; } switch (ofdm->hierarchy_information) { case HIERARCHY_NONE: par.alpha = DIB3000MB_VIT_ALPHA_OFF; break; case HIERARCHY_1: par.alpha = DIB3000MB_VIT_ALPHA_1; break; case HIERARCHY_2: par.alpha = DIB3000MB_VIT_ALPHA_2; break; case HIERARCHY_4: par.alpha = DIB3000MB_VIT_ALPHA_4; break; case HIERARCHY_AUTO: par.alpha = DIB3000MB_VIT_ALPHA_AUTO; break; default: return -EINVAL; } if (ofdm->hierarchy_information == HIERARCHY_NONE) { par.hrch = DIB3000MB_VIT_HRCH_OFF; par.hp = DIB3000MB_VIT_HP; fe_cr = ofdm->code_rate_HP; } else { par.hrch = DIB3000MB_VIT_HRCH_ON; par.hp = DIB3000MB_VIT_LP; fe_cr = ofdm->code_rate_LP; } switch (fe_cr) { case FEC_1_2: par.cr = DIB3000MB_FEC_1_2; break; case FEC_2_3: par.cr = DIB3000MB_FEC_2_3; break; case FEC_3_4: par.cr = DIB3000MB_FEC_3_4; break; case FEC_5_6: par.cr = DIB3000MB_FEC_5_6; break; case FEC_7_8: par.cr = DIB3000MB_FEC_7_8; break; case FEC_NONE: case FEC_AUTO: break; default: return -EINVAL; } par.seq = dib3000mb_seq [ofdm->transmission_mode == TRANSMISSION_MODE_AUTO] [ofdm->guard_interval == GUARD_INTERVAL_AUTO] [fep->inversion == INVERSION_AUTO]; par.qam_vit_manual = (ofdm->constellation != QAM_AUTO && ofdm->hierarchy_information != HIERARCHY_AUTO && ofdm->code_rate_HP != FEC_AUTO && ofdm->code_rate_LP != FEC_AUTO); dprintk("auto search will be enabled? %d %d\n",par.seq,!par.qam_vit_manual); dib3000mb_fe_set_parameters(state,&par); wr_foreach(dib3000mb_reg_agc_bandwidth,dib3000mb_agc_bandwidth_high); wr(DIB3000MB_REG_ISI,DIB3000MB_ISI_ACTIVATE); wr(DIB3000MB_REG_RESTART,DIB3000MB_RESTART_AGC+DIB3000MB_RESTART_CTRL); wr(DIB3000MB_REG_RESTART,DIB3000MB_RESTART_OFF); /* wait for AGC lock */ msleep(70); wr_foreach(dib3000mb_reg_agc_bandwidth,dib3000mb_agc_bandwidth_low); /* something has to be auto searched */ if (par.seq || !par.qam_vit_manual) { wr(DIB3000MB_REG_ISI,DIB3000MB_ISI_INHIBIT); wr(DIB3000MB_REG_RESTART,DIB3000MB_RESTART_AUTO_SEARCH); wr(DIB3000MB_REG_RESTART,DIB3000MB_RESTART_OFF); } else { wr(DIB3000MB_REG_RESTART,DIB3000MB_RESTART_CTRL); wr(DIB3000MB_REG_RESTART,DIB3000MB_RESTART_OFF); } if (ofdm->constellation != QAM_AUTO && ofdm->transmission_mode != TRANSMISSION_MODE_AUTO && ofdm->guard_interval != GUARD_INTERVAL_AUTO && fep->inversion != INVERSION_AUTO) { wr(DIB3000MB_REG_LOCK1_MASK,DIB3000MB_LOCK1_SEARCH_2048); } while (dib3000mb_fe_read_search_status(state) < 0); return 0; } static int dib3000mb_get_frontend(struct dib3000mb_state *state, struct dvb_frontend_parameters *fep) { struct i2c_client *i2c = state->i2c; struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm; fe_code_rate_t *cr; u16 tps_val; if (!rd(DIB3000MB_REG_TPS_LOCK)) return -EINVAL; switch ((tps_val = rd(DIB3000MB_REG_TPS_QAM))) { case DIB3000MB_QAM_QPSK: ofdm->constellation = QPSK; break; case DIB3000MB_QAM_QAM16: ofdm->constellation = QAM_16; break; case DIB3000MB_QAM_QAM64: ofdm->constellation = QAM_64; break; default: err("Unexpected constellation returned by TPS (%d)",tps_val); break; } if (rd(DIB3000MB_REG_TPS_HRCH)) { tps_val = rd(DIB3000MB_REG_TPS_CODE_RATE_LP); cr = &ofdm->code_rate_LP; ofdm->code_rate_HP = FEC_NONE; switch ((tps_val = rd(DIB3000MB_REG_TPS_VIT_ALPHA))) { case DIB3000MB_VIT_ALPHA_OFF: ofdm->hierarchy_information = HIERARCHY_NONE; break; case DIB3000MB_VIT_ALPHA_1: ofdm->hierarchy_information = HIERARCHY_1; break; case DIB3000MB_VIT_ALPHA_2: ofdm->hierarchy_information = HIERARCHY_2; break; case DIB3000MB_VIT_ALPHA_4: ofdm->hierarchy_information = HIERARCHY_4; break; default: err("Unexpected ALPHA value returned by TPS (%d)",tps_val); } } else { tps_val = rd(DIB3000MB_REG_TPS_CODE_RATE_HP); cr = &ofdm->code_rate_HP; ofdm->code_rate_LP = FEC_NONE; ofdm->hierarchy_information = HIERARCHY_NONE; } switch (tps_val) { case DIB3000MB_FEC_1_2: *cr = FEC_1_2; break; case DIB3000MB_FEC_2_3: *cr = FEC_2_3; break; case DIB3000MB_FEC_3_4: *cr = FEC_3_4; break; case DIB3000MB_FEC_5_6: *cr = FEC_4_5; break; case DIB3000MB_FEC_7_8: *cr = FEC_7_8; break; default: err("Unexpected FEC returned by TPS (%d)",tps_val); break; } switch ((tps_val = rd(DIB3000MB_REG_TPS_GUARD_TIME))) { case DIB3000MB_GUARD_TIME_1_32: ofdm->guard_interval = GUARD_INTERVAL_1_32; break; case DIB3000MB_GUARD_TIME_1_16: ofdm->guard_interval = GUARD_INTERVAL_1_16; break; case DIB3000MB_GUARD_TIME_1_8: ofdm->guard_interval = GUARD_INTERVAL_1_8; break; case DIB3000MB_GUARD_TIME_1_4: ofdm->guard_interval = GUARD_INTERVAL_1_4; break; default: err("Unexpected Guard Time returned by TPS (%d)",tps_val); break; } switch ((tps_val = rd(DIB3000MB_REG_TPS_FFT))) { case DIB3000MB_FFT_2K: ofdm->transmission_mode = TRANSMISSION_MODE_2K; break; case DIB3000MB_FFT_8K: ofdm->transmission_mode = TRANSMISSION_MODE_8K; break; default: err("unexpected transmission mode return by TPS (%d)",tps_val); } return 0; } static int dib3000mb_fe_init(struct dib3000mb_state *state,int mobile_mode) { struct i2c_client *i2c = state->i2c; wr(DIB3000MB_REG_POWER_CONTROL,DIB3000MB_POWER_UP); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AGC); wr(DIB3000MB_REG_RESET_DEVICE,DIB3000MB_RESET_DEVICE); wr(DIB3000MB_REG_RESET_DEVICE,DIB3000MB_RESET_DEVICE_RST); wr(DIB3000MB_REG_CLOCK,DIB3000MB_CLOCK_DEFAULT); wr(DIB3000MB_REG_ELECT_OUT_MODE,DIB3000MB_ELECT_OUT_MODE_ON); wr(DIB3000MB_REG_QAM,DIB3000MB_QAM_RESERVED); wr(DIB3000MB_REG_VIT_ALPHA,DIB3000MB_VIT_ALPHA_AUTO); wr(DIB3000MB_REG_DDS_FREQ_MSB,DIB3000MB_DDS_FREQ_MSB); wr(DIB3000MB_REG_DDS_FREQ_LSB,DIB3000MB_DDS_FREQ_LSB); wr_foreach(dib3000mb_reg_timing_freq,dib3000mb_timing_freq[2]); wr_foreach(dib3000mb_reg_impulse_noise, dib3000mb_impulse_noise_values[DIB3000MB_IMPNOISE_OFF]); wr_foreach(dib3000mb_reg_agc_gain,dib3000mb_default_agc_gain); wr(DIB3000MB_REG_PHASE_NOISE,DIB3000MB_PHASE_NOISE_DEFAULT); wr_foreach(dib3000mb_reg_phase_noise, dib3000mb_default_noise_phase); wr_foreach(dib3000mb_reg_lock_duration,dib3000mb_default_lock_duration); wr_foreach(dib3000mb_reg_agc_bandwidth,dib3000mb_agc_bandwidth_low); wr(DIB3000MB_REG_LOCK0_MASK,DIB3000MB_LOCK0_DEFAULT); wr(DIB3000MB_REG_LOCK1_MASK,DIB3000MB_LOCK1_SEARCH_4); wr(DIB3000MB_REG_LOCK2_MASK,DIB3000MB_LOCK2_DEFAULT); wr(DIB3000MB_REG_SEQ,dib3000mb_seq[1][1][1]); wr_foreach(dib3000mb_reg_bandwidth,dib3000mb_bandwidth_8mhz); wr(DIB3000MB_REG_UNK_68,DIB3000MB_UNK_68); wr(DIB3000MB_REG_UNK_69,DIB3000MB_UNK_69); wr(DIB3000MB_REG_UNK_71,DIB3000MB_UNK_71); wr(DIB3000MB_REG_UNK_77,DIB3000MB_UNK_77); wr(DIB3000MB_REG_UNK_78,DIB3000MB_UNK_78); wr(DIB3000MB_REG_ISI,DIB3000MB_ISI_INHIBIT); wr(DIB3000MB_REG_UNK_92,DIB3000MB_UNK_92); wr(DIB3000MB_REG_UNK_96,DIB3000MB_UNK_96); wr(DIB3000MB_REG_UNK_97,DIB3000MB_UNK_97); wr(DIB3000MB_REG_UNK_106,DIB3000MB_UNK_106); wr(DIB3000MB_REG_UNK_107,DIB3000MB_UNK_107); wr(DIB3000MB_REG_UNK_108,DIB3000MB_UNK_108); wr(DIB3000MB_REG_UNK_122,DIB3000MB_UNK_122); wr(DIB3000MB_REG_MOBILE_MODE_QAM,DIB3000MB_MOBILE_MODE_QAM_OFF); wr(DIB3000MB_REG_VIT_CODE_RATE,DIB3000MB_FEC_1_2); wr(DIB3000MB_REG_VIT_HP,DIB3000MB_VIT_HP); wr(DIB3000MB_REG_BERLEN,DIB3000MB_BERLEN_DEFAULT); wr_foreach(dib3000mb_reg_filter_coeffs,dib3000mb_filter_coeffs); wr(DIB3000MB_REG_MOBILE_ALGO,DIB3000MB_MOBILE_ALGO_ON); wr(DIB3000MB_REG_MULTI_DEMOD_MSB,DIB3000MB_MULTI_DEMOD_MSB); wr(DIB3000MB_REG_MULTI_DEMOD_LSB,DIB3000MB_MULTI_DEMOD_LSB); wr(DIB3000MB_REG_OUTPUT_MODE,DIB3000MB_OUTPUT_MODE_SLAVE); wr(DIB3000MB_REG_FIFO_142,DIB3000MB_FIFO_142); wr(DIB3000MB_REG_MPEG2_OUT_MODE,DIB3000MB_MPEG2_OUT_MODE_188); wr(DIB3000MB_REG_FIFO_144,DIB3000MB_FIFO_144); wr(DIB3000MB_REG_FIFO,DIB3000MB_FIFO_INHIBIT); wr(DIB3000MB_REG_FIFO_146,DIB3000MB_FIFO_146); wr(DIB3000MB_REG_FIFO_147,DIB3000MB_FIFO_147); wr(DIB3000MB_REG_DATA_IN_DIVERSITY,DIB3000MB_DATA_DIVERSITY_IN_OFF); return 0; } static int dib3000mb_read_status(struct dib3000mb_state *state,fe_status_t *stat) { struct i2c_client *i2c = state->i2c; *stat = 0; *stat |= rd(DIB3000MB_REG_AGC_LOCK) ? FE_HAS_SIGNAL : 0; *stat |= rd(DIB3000MB_REG_CARRIER_LOCK) ? FE_HAS_CARRIER : 0; *stat |= rd(DIB3000MB_REG_VIT_LCK) ? FE_HAS_VITERBI : 0; *stat |= rd(DIB3000MB_REG_TS_SYNC_LOCK) ? FE_HAS_SYNC : 0; *stat |= rd(DIB3000MB_REG_TS_RS_LOCK) ? FE_HAS_LOCK : 0; dprintk("actual status is %2x\n",*stat); dprintk("autoval: tps: %d, qam: %d, hrch: %d, alpha: %d, hp: %d, lp: %d, guard: %d, fft: %d cell: %d\n", rd(DIB3000MB_REG_TPS_LOCK), rd(DIB3000MB_REG_TPS_QAM), rd(DIB3000MB_REG_TPS_HRCH), rd(DIB3000MB_REG_TPS_VIT_ALPHA), rd(DIB3000MB_REG_TPS_CODE_RATE_HP), rd(DIB3000MB_REG_TPS_CODE_RATE_LP), rd(DIB3000MB_REG_TPS_GUARD_TIME), rd(DIB3000MB_REG_TPS_FFT), rd(DIB3000MB_REG_TPS_CELL_ID)); *stat = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; return 0; } static int dib3000mb_read_ber(struct dib3000mb_state *state,u32 *ber) { struct i2c_client *i2c = state->i2c; *ber = (((rd(DIB3000MB_REG_BER_MSB) << 16) & 0x1f) | rd(DIB3000MB_REG_BER_LSB) ) / 100000000; return 0; } static int dib3000mb_signal_strength(struct dib3000mb_state *state, u16 *strength) { struct i2c_client *i2c = state->i2c; // *stength = DIB3000MB_REG_SIGNAL_POWER return 0; } static int dib3000mb_sleep(struct dib3000mb_state *state) { struct i2c_client *i2c = state->i2c; wr(DIB3000MB_REG_POWER_CONTROL,DIB3000MB_POWER_DOWN); return 0; } static int dib3000mb_ioctl (struct dvb_frontend *fe, unsigned int cmd, void *arg) { struct dib3000mb_state *state = fe->data; int ret = 0; switch (cmd) { case FE_GET_INFO: dprintk("FE_GET_INFO\n"); memcpy(arg, &dib3000mb_info, sizeof(struct dvb_frontend_info)); break; case FE_READ_STATUS: dprintk("FE_READ_STATUS\n"); ret = dib3000mb_read_status(state,(fe_status_t *)arg); break; case FE_READ_BER: dprintk("FE_READ_BER\n"); ret = dib3000mb_read_ber(state,(u32 *)arg); break; case FE_READ_SIGNAL_STRENGTH: dprintk("FE_READ_SIG_STRENGTH\n"); ret = dib3000mb_signal_strength(state,(u16 *) arg); break; case FE_READ_SNR: dprintk("FE_READ_SNR\n"); break; case FE_READ_UNCORRECTED_BLOCKS: dprintk("FE_READ_UNCORRECTED_BLOCKS\n"); break; case FE_SET_FRONTEND: dprintk("FE_SET_FRONTEND\n"); ret = dib3000mb_set_frontend(state,(struct dvb_frontend_parameters *) arg); break; case FE_GET_FRONTEND: dprintk("FE_GET_FRONTEND\n"); ret = dib3000mb_get_frontend(state,(struct dvb_frontend_parameters *) arg); break; case FE_SLEEP: dprintk("FE_SLEEP\n"); ret = dib3000mb_sleep(state); break; case FE_INIT: dprintk("FE_INIT\n"); ret = dib3000mb_fe_init(state,0); break; case FE_SET_TONE: case FE_SET_VOLTAGE: default: ret = -EOPNOTSUPP; break; } return 0; } static struct i2c_client client_template; static int dib3000mb_attach_adapter(struct i2c_adapter *adapter) { struct i2c_client *client; struct dib3000mb_state *state; int ret = -ENOMEM; dprintk("i2c probe with adapter '%s'.\n",adapter->name); if ((state = kmalloc(sizeof(struct dib3000mb_state),GFP_KERNEL)) == NULL) return -ENOMEM; if ((client = kmalloc(sizeof(struct i2c_client), GFP_KERNEL)) == NULL) goto i2c_kmalloc_err; memcpy(client, &client_template, sizeof(struct i2c_client)); client->adapter = adapter; client->addr = 0x10; state->i2c = client; i2c_set_clientdata(client,state); state->manufactor_id = dib3000mb_read_reg(client, DIB3000MB_REG_MANUFACTOR_ID); state->device_id = dib3000mb_read_reg(client,DIB3000MB_REG_DEVICE_ID); if (state->manufactor_id == 0x01b3 && state->device_id == 0x3000) info("found a DiBCom (0x%04x) 3000-MB DVB-T frontend (ver: %x).", state->manufactor_id, state->device_id); else { err("did not found a DiBCom 3000-MB."); ret = -ENODEV; goto probe_err; } if ((ret = i2c_attach_client(client))) goto i2c_attach_err; if (state->dvb == NULL) goto i2c_attach_err; if ((ret = dvb_register_frontend(dib3000mb_ioctl, state->dvb, state, &dib3000mb_info, THIS_MODULE))) goto dvb_fe_err; goto success; dvb_fe_err: i2c_detach_client(client); i2c_attach_err: probe_err: kfree(client); i2c_kmalloc_err: kfree(state); return ret; success: return 0; } static int dib3000mb_detach_client(struct i2c_client *client) { struct dib3000mb_state *state = i2c_get_clientdata(client); dprintk("i2c detach\n"); dvb_unregister_frontend(dib3000mb_ioctl, state->dvb); i2c_detach_client(client); kfree(client); kfree(state); return 0; } static int dib3000mb_command(struct i2c_client *client, unsigned int cmd, void *arg) { struct dib3000mb_state *state = i2c_get_clientdata(client); dprintk("i2c command.\n"); switch(cmd) { case FE_REGISTER: state->dvb = arg; break; case FE_UNREGISTER: state->dvb = NULL; break; default: return -EOPNOTSUPP; } return 0; } static struct i2c_driver driver = { .owner = THIS_MODULE, .name = "dib3000mb", .id = I2C_DRIVERID_DVBFE_DIB3000MB, .flags = I2C_DF_NOTIFY, .attach_adapter = dib3000mb_attach_adapter, .detach_client = dib3000mb_detach_client, .command = dib3000mb_command, }; static struct i2c_client client_template = { .name = "dib3000mb", .flags = I2C_CLIENT_ALLOW_USE, .driver = &driver, }; /* module stuff */ static int __init dib3000mb_init(void) { return i2c_add_driver(&driver); } static void __exit dib3000mb_exit(void) { i2c_del_driver(&driver); } module_init (dib3000mb_init); module_exit (dib3000mb_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");