/* * Frontend driver for mobile DVB-T demodulator DiBcom 3000M-B * DiBcom (http://www.dibcom.fr/) * * Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de) * * based on GPL code from DibCom, which has * * Copyright (C) 2004 Amaury Demol for DiBcom (ademol@dibcom.fr) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. * * Acknowledgements * * Amaury Demol (ademol@dibcom.fr) from DiBcom for providing specs and driver * sources, on which this driver (and the dvb-dibusb) are based. * * see Documentation/dvb/README.dibusb for more information * */ #include #include #include #include #include #include #include "compat.h" #include "dvb_frontend.h" #include "dib3000.h" #include "dib3000mb_priv.h" /* Version information */ #define DRIVER_VERSION "0.1" #define DRIVER_DESC "DiBcom 3000M-B DVB-T demodulator" #define DRIVER_AUTHOR "Patrick Boettcher, patrick.boettcher@desy.de" #ifdef CONFIG_DVB_DIBCOM_DEBUG static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "set debugging level (1=info,2=xfer,4=setfe,8=getfe (|-able))."); #endif #define deb_info(args...) dprintk(0x01,args) #define deb_i2c(args...) dprintk(0x02,args) #define deb_srch(args...) dprintk(0x04,args) #define deb_info(args...) dprintk(0x01,args) #define deb_xfer(args...) dprintk(0x02,args) #define deb_setf(args...) dprintk(0x04,args) #define deb_getf(args...) dprintk(0x08,args) #ifdef CONFIG_DVB_DIBCOM_DEBUG static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "set debugging level (1=info,2=i2c,4=srch (|-able))."); #endif static int dib3000_read_reg(struct dib3000_state *state, u16 reg) { u8 wb[] = { ((reg >> 8) | 0x80) & 0xff, reg & 0xff }; u8 rb[2]; struct i2c_msg msg[] = { { .addr = state->config.demod_address, .flags = 0, .buf = wb, .len = 2 }, { .addr = state->config.demod_address, .flags = I2C_M_RD, .buf = rb, .len = 2 }, }; if (i2c_transfer(state->i2c, msg, 2) != 2) deb_i2c("i2c read error\n"); deb_i2c("reading i2c bus (reg: %5d 0x%04x, val: %5d 0x%04x)\n",reg,reg, (rb[0] << 8) | rb[1],(rb[0] << 8) | rb[1]); return (rb[0] << 8) | rb[1]; } static int dib3000_write_reg(struct dib3000_state *state, u16 reg, u16 val) { u8 b[] = { (reg >> 8) & 0xff, reg & 0xff, (val >> 8) & 0xff, val & 0xff, }; struct i2c_msg msg[] = { { .addr = state->config.demod_address, .flags = 0, .buf = b, .len = 4 } }; deb_i2c("writing i2c bus (reg: %5d 0x%04x, val: %5d 0x%04x)\n",reg,reg,val,val); return i2c_transfer(state->i2c,msg, 1) != 1 ? -EREMOTEIO : 0; } static int dib3000_search_status(u16 irq,u16 lock) { if (irq & 0x02) { if (lock & 0x01) { deb_srch("auto search succeeded\n"); return 1; // auto search succeeded } else { deb_srch("auto search not successful\n"); return 0; // auto search failed } } else if (irq & 0x01) { deb_srch("auto search failed\n"); return 0; // auto search failed } return -1; // try again } /* for auto search */ static u16 dib3000_seq[2][2][2] = /* fft,gua, inv */ { /* fft */ { /* gua */ { 0, 1 }, /* 0 0 { 0,1 } */ { 3, 9 }, /* 0 1 { 0,1 } */ }, { { 2, 5 }, /* 1 0 { 0,1 } */ { 6, 11 }, /* 1 1 { 0,1 } */ } }; static int dib3000mb_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep); static int dib3000mb_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep, int tuner) { struct dib3000_state* state = fe->demodulator_priv; struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm; fe_code_rate_t fe_cr = FEC_NONE; int search_state, seq; if (tuner && fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe, fep); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); deb_setf("bandwidth: "); switch (ofdm->bandwidth) { case BANDWIDTH_8_MHZ: deb_setf("8 MHz\n"); wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[2]); wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_8mhz); break; case BANDWIDTH_7_MHZ: deb_setf("7 MHz\n"); wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[1]); wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_7mhz); break; case BANDWIDTH_6_MHZ: deb_setf("6 MHz\n"); wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[0]); wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_6mhz); break; case BANDWIDTH_AUTO: return -EOPNOTSUPP; default: err("unkown bandwidth value."); return -EINVAL; } } wr(DIB3000MB_REG_LOCK1_MASK, DIB3000MB_LOCK1_SEARCH_4); deb_setf("transmission mode: "); switch (ofdm->transmission_mode) { case TRANSMISSION_MODE_2K: deb_setf("2k\n"); wr(DIB3000MB_REG_FFT, DIB3000_TRANSMISSION_MODE_2K); break; case TRANSMISSION_MODE_8K: deb_setf("8k\n"); wr(DIB3000MB_REG_FFT, DIB3000_TRANSMISSION_MODE_8K); break; case TRANSMISSION_MODE_AUTO: deb_setf("auto\n"); break; default: return -EINVAL; } deb_setf("guard: "); switch (ofdm->guard_interval) { case GUARD_INTERVAL_1_32: deb_setf("1_32\n"); wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_32); break; case GUARD_INTERVAL_1_16: deb_setf("1_16\n"); wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_16); break; case GUARD_INTERVAL_1_8: deb_setf("1_8\n"); wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_8); break; case GUARD_INTERVAL_1_4: deb_setf("1_4\n"); wr(DIB3000MB_REG_GUARD_TIME, DIB3000_GUARD_TIME_1_4); break; case GUARD_INTERVAL_AUTO: deb_setf("auto\n"); break; default: return -EINVAL; } deb_setf("inversion: "); switch (fep->inversion) { case INVERSION_OFF: deb_setf("off\n"); wr(DIB3000MB_REG_DDS_INV, DIB3000_DDS_INVERSION_OFF); break; case INVERSION_AUTO: deb_setf("auto "); break; case INVERSION_ON: deb_setf("on\n"); wr(DIB3000MB_REG_DDS_INV, DIB3000_DDS_INVERSION_ON); break; default: return -EINVAL; } deb_setf("constellation: "); switch (ofdm->constellation) { case QPSK: deb_setf("qpsk\n"); wr(DIB3000MB_REG_QAM, DIB3000_CONSTELLATION_QPSK); break; case QAM_16: deb_setf("qam16\n"); wr(DIB3000MB_REG_QAM, DIB3000_CONSTELLATION_16QAM); break; case QAM_64: deb_setf("qam64\n"); wr(DIB3000MB_REG_QAM, DIB3000_CONSTELLATION_64QAM); break; case QAM_AUTO: break; default: return -EINVAL; } deb_setf("hierarchy: "); switch (ofdm->hierarchy_information) { case HIERARCHY_NONE: deb_setf("none "); /* fall through */ case HIERARCHY_1: deb_setf("alpha=1\n"); wr(DIB3000MB_REG_VIT_ALPHA, DIB3000_ALPHA_1); break; case HIERARCHY_2: deb_setf("alpha=2\n"); wr(DIB3000MB_REG_VIT_ALPHA, DIB3000_ALPHA_2); break; case HIERARCHY_4: deb_setf("alpha=4\n"); wr(DIB3000MB_REG_VIT_ALPHA, DIB3000_ALPHA_4); break; case HIERARCHY_AUTO: deb_setf("alpha=auto\n"); break; default: return -EINVAL; } deb_setf("hierarchy: "); if (ofdm->hierarchy_information == HIERARCHY_NONE) { deb_setf("none\n"); wr(DIB3000MB_REG_VIT_HRCH, DIB3000_HRCH_OFF); wr(DIB3000MB_REG_VIT_HP, DIB3000_SELECT_HP); fe_cr = ofdm->code_rate_HP; } else if (ofdm->hierarchy_information != HIERARCHY_AUTO) { deb_setf("on\n"); wr(DIB3000MB_REG_VIT_HRCH, DIB3000_HRCH_ON); wr(DIB3000MB_REG_VIT_HP, DIB3000_SELECT_LP); fe_cr = ofdm->code_rate_LP; } deb_setf("fec: "); switch (fe_cr) { case FEC_1_2: deb_setf("1_2\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_1_2); break; case FEC_2_3: deb_setf("2_3\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_2_3); break; case FEC_3_4: deb_setf("3_4\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_3_4); break; case FEC_5_6: deb_setf("5_6\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_5_6); break; case FEC_7_8: deb_setf("7_8\n"); wr(DIB3000MB_REG_VIT_CODE_RATE, DIB3000_FEC_7_8); break; case FEC_NONE: deb_setf("none "); break; case FEC_AUTO: deb_setf("auto\n"); break; default: return -EINVAL; } seq = dib3000_seq [ofdm->transmission_mode == TRANSMISSION_MODE_AUTO] [ofdm->guard_interval == GUARD_INTERVAL_AUTO] [fep->inversion == INVERSION_AUTO]; deb_setf("seq? %d\n", seq); wr(DIB3000MB_REG_SEQ, seq); wr(DIB3000MB_REG_ISI, seq ? DIB3000MB_ISI_INHIBIT : DIB3000MB_ISI_ACTIVATE); if (ofdm->transmission_mode == TRANSMISSION_MODE_2K) { if (ofdm->guard_interval == GUARD_INTERVAL_1_8) { wr(DIB3000MB_REG_SYNC_IMPROVEMENT, DIB3000MB_SYNC_IMPROVE_2K_1_8); } else { wr(DIB3000MB_REG_SYNC_IMPROVEMENT, DIB3000MB_SYNC_IMPROVE_DEFAULT); } wr(DIB3000MB_REG_UNK_121, DIB3000MB_UNK_121_2K); } else { wr(DIB3000MB_REG_UNK_121, DIB3000MB_UNK_121_DEFAULT); } wr(DIB3000MB_REG_MOBILE_ALGO, DIB3000MB_MOBILE_ALGO_OFF); wr(DIB3000MB_REG_MOBILE_MODE_QAM, DIB3000MB_MOBILE_MODE_QAM_OFF); wr(DIB3000MB_REG_MOBILE_MODE, DIB3000MB_MOBILE_MODE_OFF); wr_foreach(dib3000mb_reg_agc_bandwidth, dib3000mb_agc_bandwidth_high); wr(DIB3000MB_REG_ISI, DIB3000MB_ISI_ACTIVATE); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AGC + DIB3000MB_RESTART_CTRL); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_OFF); /* wait for AGC lock */ msleep(70); wr_foreach(dib3000mb_reg_agc_bandwidth, dib3000mb_agc_bandwidth_low); /* something has to be auto searched */ if (ofdm->constellation == QAM_AUTO || ofdm->hierarchy_information == HIERARCHY_AUTO || fe_cr == FEC_AUTO || fep->inversion == INVERSION_AUTO) { int as_count=0; deb_setf("autosearch enabled.\n"); wr(DIB3000MB_REG_ISI, DIB3000MB_ISI_INHIBIT); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AUTO_SEARCH); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_OFF); while ((search_state = dib3000_search_status( rd(DIB3000MB_REG_AS_IRQ_PENDING), rd(DIB3000MB_REG_LOCK2_VALUE))) < 0 && as_count++ < 100) msleep(1); deb_setf("search_state after autosearch %d after %d checks\n",search_state,as_count); if (search_state == 1) { struct dvb_frontend_parameters feps; if (dib3000mb_get_frontend(fe, &feps) == 0) { deb_setf("reading tuning data from frontend succeeded.\n"); return dib3000mb_set_frontend(fe, &feps, 0); } } } else { wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_CTRL); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_OFF); } return 0; } static int dib3000mb_fe_init(struct dvb_frontend* fe, int mobile_mode) { struct dib3000_state* state = fe->demodulator_priv; deb_info("dib3000mb is getting up.\n"); wr(DIB3000MB_REG_POWER_CONTROL, DIB3000MB_POWER_UP); wr(DIB3000MB_REG_RESTART, DIB3000MB_RESTART_AGC); wr(DIB3000MB_REG_RESET_DEVICE, DIB3000MB_RESET_DEVICE); wr(DIB3000MB_REG_RESET_DEVICE, DIB3000MB_RESET_DEVICE_RST); wr(DIB3000MB_REG_CLOCK, DIB3000MB_CLOCK_DEFAULT); wr(DIB3000MB_REG_ELECT_OUT_MODE, DIB3000MB_ELECT_OUT_MODE_ON); wr(DIB3000MB_REG_DDS_FREQ_MSB, DIB3000MB_DDS_FREQ_MSB); wr(DIB3000MB_REG_DDS_FREQ_LSB, DIB3000MB_DDS_FREQ_LSB); wr_foreach(dib3000mb_reg_timing_freq, dib3000mb_timing_freq[2]); wr_foreach(dib3000mb_reg_impulse_noise, dib3000mb_impulse_noise_values[DIB3000MB_IMPNOISE_OFF]); wr_foreach(dib3000mb_reg_agc_gain, dib3000mb_default_agc_gain); wr(DIB3000MB_REG_PHASE_NOISE, DIB3000MB_PHASE_NOISE_DEFAULT); wr_foreach(dib3000mb_reg_phase_noise, dib3000mb_default_noise_phase); wr_foreach(dib3000mb_reg_lock_duration, dib3000mb_default_lock_duration); wr_foreach(dib3000mb_reg_agc_bandwidth, dib3000mb_agc_bandwidth_low); wr(DIB3000MB_REG_LOCK0_MASK, DIB3000MB_LOCK0_DEFAULT); wr(DIB3000MB_REG_LOCK1_MASK, DIB3000MB_LOCK1_SEARCH_4); wr(DIB3000MB_REG_LOCK2_MASK, DIB3000MB_LOCK2_DEFAULT); wr(DIB3000MB_REG_SEQ, dib3000_seq[1][1][1]); wr_foreach(dib3000mb_reg_bandwidth, dib3000mb_bandwidth_8mhz); wr(DIB3000MB_REG_UNK_68, DIB3000MB_UNK_68); wr(DIB3000MB_REG_UNK_69, DIB3000MB_UNK_69); wr(DIB3000MB_REG_UNK_71, DIB3000MB_UNK_71); wr(DIB3000MB_REG_UNK_77, DIB3000MB_UNK_77); wr(DIB3000MB_REG_UNK_78, DIB3000MB_UNK_78); wr(DIB3000MB_REG_ISI, DIB3000MB_ISI_INHIBIT); wr(DIB3000MB_REG_UNK_92, DIB3000MB_UNK_92); wr(DIB3000MB_REG_UNK_96, DIB3000MB_UNK_96); wr(DIB3000MB_REG_UNK_97, DIB3000MB_UNK_97); wr(DIB3000MB_REG_UNK_106, DIB3000MB_UNK_106); wr(DIB3000MB_REG_UNK_107, DIB3000MB_UNK_107); wr(DIB3000MB_REG_UNK_108, DIB3000MB_UNK_108); wr(DIB3000MB_REG_UNK_122, DIB3000MB_UNK_122); wr(DIB3000MB_REG_MOBILE_MODE_QAM, DIB3000MB_MOBILE_MODE_QAM_OFF); wr(DIB3000MB_REG_BERLEN, DIB3000MB_BERLEN_DEFAULT); wr_foreach(dib3000mb_reg_filter_coeffs, dib3000mb_filter_coeffs); wr(DIB3000MB_REG_MOBILE_ALGO, DIB3000MB_MOBILE_ALGO_ON); wr(DIB3000MB_REG_MULTI_DEMOD_MSB, DIB3000MB_MULTI_DEMOD_MSB); wr(DIB3000MB_REG_MULTI_DEMOD_LSB, DIB3000MB_MULTI_DEMOD_LSB); wr(DIB3000MB_REG_OUTPUT_MODE, DIB3000MB_OUTPUT_MODE_SLAVE); wr(DIB3000MB_REG_FIFO_142, DIB3000MB_FIFO_142); wr(DIB3000MB_REG_MPEG2_OUT_MODE, DIB3000MB_MPEG2_OUT_MODE_188); wr(DIB3000MB_REG_PID_PARSE, DIB3000MB_PID_PARSE_ACTIVATE); wr(DIB3000MB_REG_FIFO, DIB3000MB_FIFO_INHIBIT); wr(DIB3000MB_REG_FIFO_146, DIB3000MB_FIFO_146); wr(DIB3000MB_REG_FIFO_147, DIB3000MB_FIFO_147); wr(DIB3000MB_REG_DATA_IN_DIVERSITY, DIB3000MB_DATA_DIVERSITY_IN_OFF); return 0; } static int dib3000mb_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { struct dib3000_state* state = fe->demodulator_priv; struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm; fe_code_rate_t *cr; u16 tps_val; int inv_test1,inv_test2; u32 dds_val, threshold = 0x800000; if (!rd(DIB3000MB_REG_TPS_LOCK)) return 0; dds_val = ((rd(DIB3000MB_REG_DDS_VALUE_MSB) & 0xff) << 16) + rd(DIB3000MB_REG_DDS_VALUE_LSB); deb_getf("DDS_VAL: %x %x %x",dds_val, rd(DIB3000MB_REG_DDS_VALUE_MSB), rd(DIB3000MB_REG_DDS_VALUE_LSB)); if (dds_val < threshold) inv_test1 = 0; else if (dds_val == threshold) inv_test1 = 1; else inv_test1 = 2; dds_val = ((rd(DIB3000MB_REG_DDS_FREQ_MSB) & 0xff) << 16) + rd(DIB3000MB_REG_DDS_FREQ_LSB); deb_getf("DDS_FREQ: %x %x %x",dds_val, rd(DIB3000MB_REG_DDS_FREQ_MSB), rd(DIB3000MB_REG_DDS_FREQ_LSB)); if (dds_val < threshold) inv_test2 = 0; else if (dds_val == threshold) inv_test2 = 1; else inv_test2 = 2; fep->inversion = ((inv_test2 == 2) && (inv_test1==1 || inv_test1==0)) || ((inv_test2 == 0) && (inv_test1==1 || inv_test1==2)) ? INVERSION_ON : INVERSION_OFF; deb_getf("inversion %d %d, %d\n", inv_test2, inv_test1, fep->inversion); switch ((tps_val = rd(DIB3000MB_REG_TPS_QAM))) { case DIB3000_CONSTELLATION_QPSK: deb_getf("QPSK "); ofdm->constellation = QPSK; break; case DIB3000_CONSTELLATION_16QAM: deb_getf("QAM16 "); ofdm->constellation = QAM_16; break; case DIB3000_CONSTELLATION_64QAM: deb_getf("QAM64 "); ofdm->constellation = QAM_64; break; default: err("Unexpected constellation returned by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n", tps_val); if (rd(DIB3000MB_REG_TPS_HRCH)) { deb_getf("HRCH ON\n"); cr = &ofdm->code_rate_LP; ofdm->code_rate_HP = FEC_NONE; switch ((tps_val = rd(DIB3000MB_REG_TPS_VIT_ALPHA))) { case DIB3000_ALPHA_0: deb_getf("HIERARCHY_NONE "); ofdm->hierarchy_information = HIERARCHY_NONE; break; case DIB3000_ALPHA_1: deb_getf("HIERARCHY_1 "); ofdm->hierarchy_information = HIERARCHY_1; break; case DIB3000_ALPHA_2: deb_getf("HIERARCHY_2 "); ofdm->hierarchy_information = HIERARCHY_2; break; case DIB3000_ALPHA_4: deb_getf("HIERARCHY_4 "); ofdm->hierarchy_information = HIERARCHY_4; break; default: err("Unexpected ALPHA value returned by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n", tps_val); tps_val = rd(DIB3000MB_REG_TPS_CODE_RATE_LP); } else { deb_getf("HRCH OFF\n"); cr = &ofdm->code_rate_HP; ofdm->code_rate_LP = FEC_NONE; ofdm->hierarchy_information = HIERARCHY_NONE; tps_val = rd(DIB3000MB_REG_TPS_CODE_RATE_HP); } switch (tps_val) { case DIB3000_FEC_1_2: deb_getf("FEC_1_2 "); *cr = FEC_1_2; break; case DIB3000_FEC_2_3: deb_getf("FEC_2_3 "); *cr = FEC_2_3; break; case DIB3000_FEC_3_4: deb_getf("FEC_3_4 "); *cr = FEC_3_4; break; case DIB3000_FEC_5_6: deb_getf("FEC_5_6 "); *cr = FEC_4_5; break; case DIB3000_FEC_7_8: deb_getf("FEC_7_8 "); *cr = FEC_7_8; break; default: err("Unexpected FEC returned by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n",tps_val); switch ((tps_val = rd(DIB3000MB_REG_TPS_GUARD_TIME))) { case DIB3000_GUARD_TIME_1_32: deb_getf("GUARD_INTERVAL_1_32 "); ofdm->guard_interval = GUARD_INTERVAL_1_32; break; case DIB3000_GUARD_TIME_1_16: deb_getf("GUARD_INTERVAL_1_16 "); ofdm->guard_interval = GUARD_INTERVAL_1_16; break; case DIB3000_GUARD_TIME_1_8: deb_getf("GUARD_INTERVAL_1_8 "); ofdm->guard_interval = GUARD_INTERVAL_1_8; break; case DIB3000_GUARD_TIME_1_4: deb_getf("GUARD_INTERVAL_1_4 "); ofdm->guard_interval = GUARD_INTERVAL_1_4; break; default: err("Unexpected Guard Time returned by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n", tps_val); switch ((tps_val = rd(DIB3000MB_REG_TPS_FFT))) { case DIB3000_TRANSMISSION_MODE_2K: deb_getf("TRANSMISSION_MODE_2K "); ofdm->transmission_mode = TRANSMISSION_MODE_2K; break; case DIB3000_TRANSMISSION_MODE_8K: deb_getf("TRANSMISSION_MODE_8K "); ofdm->transmission_mode = TRANSMISSION_MODE_8K; break; default: err("unexpected transmission mode return by TPS (%d)", tps_val); break; } deb_getf("TPS: %d\n", tps_val); return 0; } static int dib3000mb_read_status(struct dvb_frontend* fe, fe_status_t *stat) { struct dib3000_state* state = fe->demodulator_priv; *stat = 0; if (rd(DIB3000MB_REG_AGC_LOCK)) *stat |= FE_HAS_SIGNAL; if (rd(DIB3000MB_REG_CARRIER_LOCK)) *stat |= FE_HAS_CARRIER; if (rd(DIB3000MB_REG_VIT_LCK)) *stat |= FE_HAS_VITERBI; if (rd(DIB3000MB_REG_TS_SYNC_LOCK)) *stat |= (FE_HAS_SYNC | FE_HAS_LOCK); deb_getf("actual status is %2x\n",*stat); deb_getf("autoval: tps: %d, qam: %d, hrch: %d, alpha: %d, hp: %d, lp: %d, guard: %d, fft: %d cell: %d\n", rd(DIB3000MB_REG_TPS_LOCK), rd(DIB3000MB_REG_TPS_QAM), rd(DIB3000MB_REG_TPS_HRCH), rd(DIB3000MB_REG_TPS_VIT_ALPHA), rd(DIB3000MB_REG_TPS_CODE_RATE_HP), rd(DIB3000MB_REG_TPS_CODE_RATE_LP), rd(DIB3000MB_REG_TPS_GUARD_TIME), rd(DIB3000MB_REG_TPS_FFT), rd(DIB3000MB_REG_TPS_CELL_ID)); //*stat = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; return 0; } static int dib3000mb_read_ber(struct dvb_frontend* fe, u32 *ber) { struct dib3000_state* state = fe->demodulator_priv; *ber = ((rd(DIB3000MB_REG_BER_MSB) << 16) | rd(DIB3000MB_REG_BER_LSB)); return 0; } /* see dib3000-watch dvb-apps for exact calcuations of signal_strength and snr */ static int dib3000mb_read_signal_strength(struct dvb_frontend* fe, u16 *strength) { struct dib3000_state* state = fe->demodulator_priv; *strength = rd(DIB3000MB_REG_SIGNAL_POWER) * 0xffff / 0x170; return 0; } static int dib3000mb_read_snr(struct dvb_frontend* fe, u16 *snr) { struct dib3000_state* state = fe->demodulator_priv; short sigpow = rd(DIB3000MB_REG_SIGNAL_POWER); int icipow = ((rd(DIB3000MB_REG_NOISE_POWER_MSB) & 0xff) << 16) | rd(DIB3000MB_REG_NOISE_POWER_LSB); *snr = (sigpow << 8) / ((icipow > 0) ? icipow : 1); return 0; } static int dib3000mb_read_unc_blocks(struct dvb_frontend* fe, u32 *unc) { struct dib3000_state* state = fe->demodulator_priv; *unc = rd(DIB3000MB_REG_PACKET_ERROR_RATE); return 0; } static int dib3000mb_sleep(struct dvb_frontend* fe) { struct dib3000_state* state = fe->demodulator_priv; deb_info("dib3000mb is going to bed.\n"); wr(DIB3000MB_REG_POWER_CONTROL, DIB3000MB_POWER_DOWN); return 0; } static int dib3000mb_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 800; return 0; } static int dib3000mb_fe_init_nonmobile(struct dvb_frontend* fe) { return dib3000mb_fe_init(fe, 0); } static int dib3000mb_set_frontend_and_tuner(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { return dib3000mb_set_frontend(fe, fep, 1); } static void dib3000mb_release(struct dvb_frontend* fe) { struct dib3000_state *state = fe->demodulator_priv; kfree(state); } /* pid filter and transfer stuff */ static int dib3000mb_pid_control(struct dvb_frontend *fe,int index, int pid,int onoff) { struct dib3000_state *state = fe->demodulator_priv; pid = (onoff ? pid | DIB3000_ACTIVATE_PID_FILTERING : 0); wr(index+DIB3000MB_REG_FIRST_PID,pid); return 0; } static int dib3000mb_fifo_control(struct dvb_frontend *fe, int onoff) { struct dib3000_state *state = fe->demodulator_priv; deb_xfer("%s fifo\n",onoff ? "enabling" : "disabling"); if (onoff) { wr(DIB3000MB_REG_FIFO, DIB3000MB_FIFO_ACTIVATE); } else { wr(DIB3000MB_REG_FIFO, DIB3000MB_FIFO_INHIBIT); } return 0; } static int dib3000mb_pid_parse(struct dvb_frontend *fe, int onoff) { struct dib3000_state *state = fe->demodulator_priv; deb_xfer("%s pid parsing\n",onoff ? "enabling" : "disabling"); wr(DIB3000MB_REG_PID_PARSE,onoff); return 0; } static int dib3000mb_tuner_pass_ctrl(struct dvb_frontend *fe, int onoff, u8 pll_addr) { struct dib3000_state *state = fe->demodulator_priv; if (onoff) { wr(DIB3000MB_REG_TUNER, DIB3000_TUNER_WRITE_ENABLE(pll_addr)); } else { wr(DIB3000MB_REG_TUNER, DIB3000_TUNER_WRITE_DISABLE(pll_addr)); } return 0; } static struct dvb_frontend_ops dib3000mb_ops; struct dvb_frontend* dib3000mb_attach(const struct dib3000_config* config, struct i2c_adapter* i2c, struct dib_fe_xfer_ops *xfer_ops) { struct dib3000_state* state = NULL; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct dib3000_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->i2c = i2c; memcpy(&state->config,config,sizeof(struct dib3000_config)); /* check for the correct demod */ if (rd(DIB3000_REG_MANUFACTOR_ID) != DIB3000_I2C_ID_DIBCOM) goto error; if (rd(DIB3000_REG_DEVICE_ID) != DIB3000MB_DEVICE_ID) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &dib3000mb_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; /* set the xfer operations */ xfer_ops->pid_parse = dib3000mb_pid_parse; xfer_ops->fifo_ctrl = dib3000mb_fifo_control; xfer_ops->pid_ctrl = dib3000mb_pid_control; xfer_ops->tuner_pass_ctrl = dib3000mb_tuner_pass_ctrl; return &state->frontend; error: kfree(state); return NULL; } static struct dvb_frontend_ops dib3000mb_ops = { .info = { .name = "DiBcom 3000M-B DVB-T", .type = FE_OFDM, .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib3000mb_release, .init = dib3000mb_fe_init_nonmobile, .sleep = dib3000mb_sleep, .set_frontend = dib3000mb_set_frontend_and_tuner, .get_frontend = dib3000mb_get_frontend, .get_tune_settings = dib3000mb_fe_get_tune_settings, .read_status = dib3000mb_read_status, .read_ber = dib3000mb_read_ber, .read_signal_strength = dib3000mb_read_signal_strength, .read_snr = dib3000mb_read_snr, .read_ucblocks = dib3000mb_read_unc_blocks, }; MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(dib3000mb_attach);