/* * Driver for DiBcom DiB3000MC/P-demodulator. * * Copyright (C) 2004-6 DiBcom (http://www.dibcom.fr/) * Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de) * * This code is partially based on the previous dib3000mc.c . * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. */ #include #include //#include //#include //#include //#include #include "dvb_frontend.h" #include "dib3000mc.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB3000MC/P:"); printk(args); } } while (0) struct dib3000mc_state { struct dvb_frontend demod; struct dib3000mc_config *cfg; u8 i2c_addr; struct i2c_adapter *i2c_adap; struct dibx000_i2c_master i2c_master; u32 timf; fe_bandwidth_t current_bandwidth; u16 dev_id; }; static u16 dib3000mc_read_word(struct dib3000mc_state *state, u16 reg) { u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff }; u8 rb[2]; struct i2c_msg msg[2] = { { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 }, { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 }, }; if (i2c_transfer(state->i2c_adap, msg, 2) != 2) dprintk("i2c read error on %d\n",reg); return (rb[0] << 8) | rb[1]; } static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val) { u8 b[4] = { (reg >> 8) & 0xff, reg & 0xff, (val >> 8) & 0xff, val & 0xff, }; struct i2c_msg msg = { .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 }; return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; } #if 0 static void dump_fep(struct dibx000_ofdm_channel *cd) { printk(KERN_DEBUG "DiB3000MC: "); switch (cd->nfft) { case 1: printk("8K "); break; case 2: printk("4K "); break; case 0: printk("2K "); break; default: printk("FFT_UNK "); break; } printk("1/%i ", 32 / (1 << cd->guard)); switch (cd->nqam) { case 0: printk("QPSK "); break; case 1: printk("16QAM "); break; case 2: printk("64QAM "); break; default: printk("QAM_UNK "); break; } printk("ALPHA %i ", cd->vit_alpha); printk("Code Rate HP %i/%i ", cd->vit_code_rate_hp, cd->vit_code_rate_hp + 1); printk("Code Rate LP %i/%i ", cd->vit_code_rate_lp, cd->vit_code_rate_lp + 1); printk("HRCH %i\n", cd->vit_hrch); } #endif static int dib3000mc_identify(struct dib3000mc_state *state) { u16 value; if ((value = dib3000mc_read_word(state, 1025)) != 0x01b3) { dprintk("-E- DiB3000MC/P: wrong Vendor ID (read=0x%x)\n",value); return -EREMOTEIO; } value = dib3000mc_read_word(state, 1026); if (value != 0x3001 && value != 0x3002) { dprintk("-E- DiB3000MC/P: wrong Device ID (%x)\n",value); return -EREMOTEIO; } state->dev_id = value; dprintk("-I- found DiB3000MC/P: %x\n",state->dev_id); return 0; } static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u8 bw, u8 update_offset) { u32 timf; if (state->timf == 0) { timf = 1384402; // default value for 8MHz if (update_offset) msleep(200); // first time we do an update } else timf = state->timf; timf *= (BW_INDEX_TO_KHZ(bw) / 1000); if (update_offset) { s16 tim_offs = dib3000mc_read_word(state, 416); if (tim_offs & 0x2000) tim_offs -= 0x4000; if (nfft == 0) tim_offs *= 4; timf += tim_offs; state->timf = timf / (BW_INDEX_TO_KHZ(bw) / 1000); } dprintk("timf: %d\n", timf); dib3000mc_write_word(state, 23, timf >> 16); dib3000mc_write_word(state, 24, timf & 0xffff); return 0; } static int dib3000mc_setup_pwm_state(struct dib3000mc_state *state) { u16 reg_51, reg_52 = state->cfg->agc->setup & 0xfefb; if (state->cfg->pwm3_inversion) { reg_51 = (2 << 14) | (0 << 10) | (7 << 6) | (2 << 2) | (2 << 0); reg_52 |= (1 << 2); } else { reg_51 = (2 << 14) | (4 << 10) | (7 << 6) | (2 << 2) | (2 << 0); reg_52 |= (1 << 8); } dib3000mc_write_word(state, 51, reg_51); dib3000mc_write_word(state, 52, reg_52); if (state->cfg->use_pwm3) dib3000mc_write_word(state, 245, (1 << 3) | (1 << 0)); else dib3000mc_write_word(state, 245, 0); dib3000mc_write_word(state, 1040, 0x3); return 0; } static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode) { int ret = 0; u16 fifo_threshold = 1792; u16 outreg = 0; u16 outmode = 0; u16 elecout = 1; u16 smo_reg = dib3000mc_read_word(state, 206) & 0x0010; /* keep the pid_parse bit */ dprintk("-I- Setting output mode for demod %p to %d\n", &state->demod, mode); switch (mode) { case OUTMODE_HIGH_Z: // disable elecout = 0; break; case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock outmode = 0; break; case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock outmode = 1; break; case OUTMODE_MPEG2_SERIAL: // STBs with serial input outmode = 2; break; case OUTMODE_MPEG2_FIFO: // e.g. USB feeding elecout = 3; /*ADDR @ 206 : P_smo_error_discard [1;6:6] = 0 P_smo_rs_discard [1;5:5] = 0 P_smo_pid_parse [1;4:4] = 0 P_smo_fifo_flush [1;3:3] = 0 P_smo_mode [2;2:1] = 11 P_smo_ovf_prot [1;0:0] = 0 */ smo_reg |= 3 << 1; fifo_threshold = 512; outmode = 5; break; case OUTMODE_DIVERSITY: outmode = 4; elecout = 1; break; default: dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod); outmode = 0; break; } if ((state->cfg->output_mpeg2_in_188_bytes)) smo_reg |= (1 << 5); // P_smo_rs_discard [1;5:5] = 1 outreg = dib3000mc_read_word(state, 244) & 0x07FF; outreg |= (outmode << 11); ret |= dib3000mc_write_word(state, 244, outreg); ret |= dib3000mc_write_word(state, 206, smo_reg); /*smo_ mode*/ ret |= dib3000mc_write_word(state, 207, fifo_threshold); /* synchronous fread */ ret |= dib3000mc_write_word(state, 1040, elecout); /* P_out_cfg */ return ret; } static int dib3000mc_set_bandwidth(struct dvb_frontend *demod, u8 bw) { struct dib3000mc_state *state = demod->demodulator_priv; u16 bw_cfg[6] = { 0 }; u16 imp_bw_cfg[3] = { 0 }; u16 reg; /* settings here are for 27.7MHz */ switch (bw) { case BANDWIDTH_8_MHZ: bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20; imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7; break; case BANDWIDTH_7_MHZ: bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7; imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0; break; case BANDWIDTH_6_MHZ: bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5; imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089; break; case 255 /* BANDWIDTH_5_MHZ */: bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500; imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072; break; default: return -EINVAL; } for (reg = 6; reg < 12; reg++) dib3000mc_write_word(state, reg, bw_cfg[reg - 6]); dib3000mc_write_word(state, 12, 0x0000); dib3000mc_write_word(state, 13, 0x03e8); dib3000mc_write_word(state, 14, 0x0000); dib3000mc_write_word(state, 15, 0x03f2); dib3000mc_write_word(state, 16, 0x0001); dib3000mc_write_word(state, 17, 0xb0d0); // P_sec_len dib3000mc_write_word(state, 18, 0x0393); dib3000mc_write_word(state, 19, 0x8700); for (reg = 55; reg < 58; reg++) dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]); // Timing configuration dib3000mc_set_timing(state, 0, bw, 0); return 0; } static u16 impulse_noise_val[29] = { 0x38, 0x6d9, 0x3f28, 0x7a7, 0x3a74, 0x196, 0x32a, 0x48c, 0x3ffe, 0x7f3, 0x2d94, 0x76, 0x53d, 0x3ff8, 0x7e3, 0x3320, 0x76, 0x5b3, 0x3feb, 0x7d2, 0x365e, 0x76, 0x48c, 0x3ffe, 0x5b3, 0x3feb, 0x76, 0x0000, 0xd }; static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode, s16 nfft) { u16 i; for (i = 58; i < 87; i++) dib3000mc_write_word(state, i, impulse_noise_val[i-58]); if (nfft == 1) { dib3000mc_write_word(state, 58, 0x3b); dib3000mc_write_word(state, 84, 0x00); dib3000mc_write_word(state, 85, 0x8200); } dib3000mc_write_word(state, 34, 0x1294); dib3000mc_write_word(state, 35, 0x1ff8); if (mode == 1) dib3000mc_write_word(state, 55, dib3000mc_read_word(state, 55) | (1 << 10)); } static int dib3000mc_init(struct dvb_frontend *demod) { struct dib3000mc_state *state = demod->demodulator_priv; struct dibx000_agc_config *agc = state->cfg->agc; // Restart Configuration dib3000mc_write_word(state, 1027, 0x8000); dib3000mc_write_word(state, 1027, 0x0000); // power up the demod + mobility configuration dib3000mc_write_word(state, 140, 0x0000); dib3000mc_write_word(state, 1031, 0); if (state->cfg->mobile_mode) { dib3000mc_write_word(state, 139, 0x0000); dib3000mc_write_word(state, 141, 0x0000); dib3000mc_write_word(state, 175, 0x0002); dib3000mc_write_word(state, 1032, 0x0000); } else { dib3000mc_write_word(state, 139, 0x0001); dib3000mc_write_word(state, 141, 0x0000); dib3000mc_write_word(state, 175, 0x0000); dib3000mc_write_word(state, 1032, 0x012C); } dib3000mc_write_word(state, 1033, 0x0000); // P_clk_cfg dib3000mc_write_word(state, 1037, 0x3130); // other configurations // P_ctrl_sfreq dib3000mc_write_word(state, 33, (5 << 0)); dib3000mc_write_word(state, 88, (1 << 10) | (0x10 << 0)); // Phase noise control // P_fft_phacor_inh, P_fft_phacor_cpe, P_fft_powrange dib3000mc_write_word(state, 99, (1 << 9) | (0x20 << 0)); if (state->cfg->phase_noise_mode == 0) dib3000mc_write_word(state, 111, 0x00); else dib3000mc_write_word(state, 111, 0x02); // P_agc_global dib3000mc_write_word(state, 50, 0x8000); // agc setup misc dib3000mc_setup_pwm_state(state); // P_agc_counter_lock dib3000mc_write_word(state, 53, 0x87); // P_agc_counter_unlock dib3000mc_write_word(state, 54, 0x87); /* agc */ dib3000mc_write_word(state, 36, state->cfg->max_time); dib3000mc_write_word(state, 37, (state->cfg->agc_command1 << 13) | (state->cfg->agc_command2 << 12) | (0x1d << 0)); dib3000mc_write_word(state, 38, state->cfg->pwm3_value); dib3000mc_write_word(state, 39, state->cfg->ln_adc_level); // set_agc_loop_Bw dib3000mc_write_word(state, 40, 0x0179); dib3000mc_write_word(state, 41, 0x03f0); dib3000mc_write_word(state, 42, agc->agc1_max); dib3000mc_write_word(state, 43, agc->agc1_min); dib3000mc_write_word(state, 44, agc->agc2_max); dib3000mc_write_word(state, 45, agc->agc2_min); dib3000mc_write_word(state, 46, (agc->agc1_pt1 << 8) | agc->agc1_pt2); dib3000mc_write_word(state, 47, (agc->agc1_slope1 << 8) | agc->agc1_slope2); dib3000mc_write_word(state, 48, (agc->agc2_pt1 << 8) | agc->agc2_pt2); dib3000mc_write_word(state, 49, (agc->agc2_slope1 << 8) | agc->agc2_slope2); // Begin: TimeOut registers // P_pha3_thres dib3000mc_write_word(state, 110, 3277); // P_timf_alpha = 6, P_corm_alpha = 6, P_corm_thres = 0x80 dib3000mc_write_word(state, 26, 0x6680); // lock_mask0 dib3000mc_write_word(state, 1, 4); // lock_mask1 dib3000mc_write_word(state, 2, 4); // lock_mask2 dib3000mc_write_word(state, 3, 0x1000); // P_search_maxtrial=1 dib3000mc_write_word(state, 5, 1); dib3000mc_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ); // div_lock_mask dib3000mc_write_word(state, 4, 0x814); dib3000mc_write_word(state, 21, (1 << 9) | 0x164); dib3000mc_write_word(state, 22, 0x463d); // Spurious rm cfg // P_cspu_regul, P_cspu_win_cut dib3000mc_write_word(state, 120, 0x200f); // P_adp_selec_monit dib3000mc_write_word(state, 134, 0); // Fec cfg dib3000mc_write_word(state, 195, 0x10); // diversity register: P_dvsy_sync_wait.. dib3000mc_write_word(state, 180, 0x2FF0); // Impulse noise configuration dib3000mc_set_impulse_noise(state, 0, 1); // output mode set-up dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z); /* close the i2c-gate */ dib3000mc_write_word(state, 769, (1 << 7) ); return 0; } static int dib3000mc_sleep(struct dvb_frontend *demod) { struct dib3000mc_state *state = demod->demodulator_priv; dib3000mc_write_word(state, 1031, 0xFFFF); dib3000mc_write_word(state, 1032, 0xFFFF); dib3000mc_write_word(state, 1033, 0xFFF0); return 0; } static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam) { u16 cfg[4] = { 0 },reg; switch (qam) { case 0: cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0; break; case 1: cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0; break; case 2: cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8; break; } for (reg = 129; reg < 133; reg++) dib3000mc_write_word(state, reg, cfg[reg - 129]); } static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dibx000_ofdm_channel *chan, u16 seq) { u16 tmp; dib3000mc_set_timing(state, chan->nfft, chan->Bw, 0); // if (boost) // dib3000mc_write_word(state, 100, (11 << 6) + 6); // else dib3000mc_write_word(state, 100, (16 << 6) + 9); dib3000mc_write_word(state, 1027, 0x0800); dib3000mc_write_word(state, 1027, 0x0000); //Default cfg isi offset adp dib3000mc_write_word(state, 26, 0x6680); dib3000mc_write_word(state, 29, 0x1273); dib3000mc_write_word(state, 33, 5); dib3000mc_set_adp_cfg(state, 1); dib3000mc_write_word(state, 133, 15564); dib3000mc_write_word(state, 12 , 0x0); dib3000mc_write_word(state, 13 , 0x3e8); dib3000mc_write_word(state, 14 , 0x0); dib3000mc_write_word(state, 15 , 0x3f2); dib3000mc_write_word(state, 93,0); dib3000mc_write_word(state, 94,0); dib3000mc_write_word(state, 95,0); dib3000mc_write_word(state, 96,0); dib3000mc_write_word(state, 97,0); dib3000mc_write_word(state, 98,0); dib3000mc_set_impulse_noise(state, 0, chan->nfft); tmp = ((chan->nfft & 0x1) << 7) | (chan->guard << 5) | (chan->nqam << 3) | chan->vit_alpha; dib3000mc_write_word(state, 0, tmp); dib3000mc_write_word(state, 5, (1 << 8) | ((seq & 0xf) << 4)); tmp = (chan->vit_hrch << 4) | (chan->vit_select_hp); if (!chan->vit_hrch || (chan->vit_hrch && chan->vit_select_hp)) tmp |= chan->vit_code_rate_hp << 1; else tmp |= chan->vit_code_rate_lp << 1; dib3000mc_write_word(state, 181, tmp); // diversity synchro delay tmp = dib3000mc_read_word(state, 180) & 0x000f; tmp |= ((chan->nfft == 0) ? 64 : 256) * ((1 << (chan->guard)) * 3 / 2) << 4; // add 50% SFN margin dib3000mc_write_word(state, 180, tmp); // restart demod tmp = dib3000mc_read_word(state, 0); dib3000mc_write_word(state, 0, tmp | (1 << 9)); dib3000mc_write_word(state, 0, tmp); msleep(30); dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, chan->nfft); } static int dib3000mc_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *chan) { struct dib3000mc_state *state = demod->demodulator_priv; u16 reg; // u32 val; struct dibx000_ofdm_channel fchan; INIT_OFDM_CHANNEL(&fchan); fchan = *chan; #if 0 if (boost) { val = (dib3000mc_read_word(state, 6) << 16) | dib3000mc_read_word(state, 7); val *= 85; val >>= 7; dib3000mc_write_word(state, 6, (val >> 16) & 0xffff); dib3000mc_write_word(state, 7, (val ) & 0xffff); } #endif /* a channel for autosearch */ fchan.nfft = 1; fchan.guard = 0; fchan.nqam = 2; fchan.vit_alpha = 1; fchan.vit_code_rate_hp = 2; fchan.vit_code_rate_lp = 2; fchan.vit_hrch = 0; fchan.vit_select_hp = 1; dib3000mc_set_channel_cfg(state, &fchan, 11); reg = dib3000mc_read_word(state, 0); dib3000mc_write_word(state, 0, reg | (1 << 8)); dib3000mc_read_word(state, 511); dib3000mc_write_word(state, 0, reg); return 0; } static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod) { struct dib3000mc_state *state = demod->demodulator_priv; u16 irq_pending = dib3000mc_read_word(state, 511); if (irq_pending & 0x1) // failed return 1; if (irq_pending & 0x2) // succeeded return 2; return 0; // still pending } static int dib3000mc_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) { struct dib3000mc_state *state = demod->demodulator_priv; // ** configure demod ** dib3000mc_set_channel_cfg(state, ch, 0); // activates isi dib3000mc_write_word(state, 29, 0x1073); dib3000mc_set_adp_cfg(state, (u8)ch->nqam); if (ch->nfft == 1) { dib3000mc_write_word(state, 26, 38528); dib3000mc_write_word(state, 33, 8); } else { dib3000mc_write_word(state, 26, 30336); dib3000mc_write_word(state, 33, 6); } if (dib3000mc_read_word(state, 509) & 0x80) dib3000mc_set_timing(state, ch->nfft, ch->Bw, 1); return 0; } struct i2c_adapter * dib3000mc_get_tuner_i2c_master(struct dvb_frontend *demod, int gating) { struct dib3000mc_state *st = demod->demodulator_priv; return dibx000_get_i2c_adapter(&st->i2c_master, DIBX000_I2C_INTERFACE_TUNER, gating); } EXPORT_SYMBOL(dib3000mc_get_tuner_i2c_master); static int dib3000mc_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { struct dib3000mc_state *state = fe->demodulator_priv; u16 tps = dib3000mc_read_word(state,458); fep->inversion = INVERSION_AUTO; fep->u.ofdm.bandwidth = state->current_bandwidth; switch ((tps >> 8) & 0x1) { case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; } switch (tps & 0x3) { case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; } switch ((tps >> 13) & 0x3) { case 0: fep->u.ofdm.constellation = QPSK; break; case 1: fep->u.ofdm.constellation = QAM_16; break; case 2: default: fep->u.ofdm.constellation = QAM_64; break; } /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ /* (tps >> 12) & 0x1 == hrch is used, (tps >> 9) & 0x7 == alpha */ fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; switch ((tps >> 5) & 0x7) { case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; case 7: default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; } switch ((tps >> 2) & 0x7) { case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; case 7: default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; } return 0; } static int dib3000mc_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { struct dib3000mc_state *state = fe->demodulator_priv; struct dibx000_ofdm_channel ch; INIT_OFDM_CHANNEL(&ch); FEP2DIB(fep,&ch); state->current_bandwidth = fep->u.ofdm.bandwidth; dib3000mc_set_bandwidth(fe, fep->u.ofdm.bandwidth); if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe, fep); msleep(100); } if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) { int i = 100, found; dib3000mc_autosearch_start(fe, &ch); do { msleep(1); found = dib3000mc_autosearch_is_irq(fe); } while (found == 0 && i--); dprintk("autosearch returns: %d\n",found); if (found == 0 || found == 1) return 0; // no channel found dib3000mc_get_frontend(fe, fep); FEP2DIB(fep,&ch); } /* make this a config parameter */ dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO); return dib3000mc_tune(fe, &ch); } static int dib3000mc_read_status(struct dvb_frontend *fe, fe_status_t *stat) { struct dib3000mc_state *state = fe->demodulator_priv; u16 lock = dib3000mc_read_word(state, 509); *stat = 0; if (lock & 0x8000) *stat |= FE_HAS_SIGNAL; if (lock & 0x3000) *stat |= FE_HAS_CARRIER; if (lock & 0x0100) *stat |= FE_HAS_VITERBI; if (lock & 0x0010) *stat |= FE_HAS_SYNC; if (lock & 0x0008) *stat |= FE_HAS_LOCK; return 0; } static int dib3000mc_read_ber(struct dvb_frontend *fe, u32 *ber) { struct dib3000mc_state *state = fe->demodulator_priv; *ber = (dib3000mc_read_word(state, 500) << 16) | dib3000mc_read_word(state, 501); return 0; } static int dib3000mc_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) { struct dib3000mc_state *state = fe->demodulator_priv; *unc = dib3000mc_read_word(state, 508); return 0; } static int dib3000mc_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct dib3000mc_state *state = fe->demodulator_priv; u16 val = dib3000mc_read_word(state, 392); *strength = 65535 - val; return 0; } static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr) { *snr = 0x0000; return 0; } static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static void dib3000mc_release(struct dvb_frontend *fe) { struct dib3000mc_state *state = fe->demodulator_priv; dibx000_exit_i2c_master(&state->i2c_master); kfree(state); } int dib3000mc_pid_control(struct dvb_frontend *fe, int index, int pid,int onoff) { struct dib3000mc_state *state = fe->demodulator_priv; dib3000mc_write_word(state, 212 + index, onoff ? (1 << 13) | pid : 0); return 0; } EXPORT_SYMBOL(dib3000mc_pid_control); int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff) { struct dib3000mc_state *state = fe->demodulator_priv; u16 tmp = dib3000mc_read_word(state, 206) & ~(1 << 4); tmp |= (onoff << 4); return dib3000mc_write_word(state, 206, tmp); } EXPORT_SYMBOL(dib3000mc_pid_parse); void dib3000mc_set_config(struct dvb_frontend *fe, struct dib3000mc_config *cfg) { struct dib3000mc_state *state = fe->demodulator_priv; state->cfg = cfg; } EXPORT_SYMBOL(dib3000mc_set_config); int dib3000mc_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib3000mc_config cfg[]) { struct dib3000mc_state st = { .i2c_adap = i2c }; int k; u8 new_addr; static u8 DIB3000MC_I2C_ADDRESS[] = {20,22,24,26}; for (k = no_of_demods-1; k >= 0; k--) { st.cfg = &cfg[k]; /* designated i2c address */ new_addr = DIB3000MC_I2C_ADDRESS[k]; st.i2c_addr = new_addr; if (dib3000mc_identify(&st) != 0) { st.i2c_addr = default_addr; if (dib3000mc_identify(&st) != 0) { dprintk("-E- DiB3000P/MC #%d: not identified\n", k); return -ENODEV; } } dib3000mc_set_output_mode(&st, OUTMODE_MPEG2_PAR_CONT_CLK); // set new i2c address and force divstr (Bit 1) to value 0 (Bit 0) dib3000mc_write_word(&st, 1024, (new_addr << 3) | 0x1); st.i2c_addr = new_addr; } for (k = 0; k < no_of_demods; k++) { st.cfg = &cfg[k]; st.i2c_addr = DIB3000MC_I2C_ADDRESS[k]; dib3000mc_write_word(&st, 1024, st.i2c_addr << 3); /* turn off data output */ dib3000mc_set_output_mode(&st, OUTMODE_HIGH_Z); } return 0; } EXPORT_SYMBOL(dib3000mc_i2c_enumeration); static struct dvb_frontend_ops dib3000mc_ops; struct dvb_frontend * dib3000mc_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib3000mc_config *cfg) { struct dvb_frontend *demod; struct dib3000mc_state *st; st = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL); if (st == NULL) return NULL; st->cfg = cfg; st->i2c_adap = i2c_adap; st->i2c_addr = i2c_addr; demod = &st->demod; demod->demodulator_priv = st; memcpy(&st->demod.ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops)); if (dib3000mc_identify(st) != 0) goto error; dibx000_init_i2c_master(&st->i2c_master, DIB3000MC, st->i2c_adap, st->i2c_addr); dib3000mc_write_word(st, 1037, 0x3130); return demod; error: kfree(st); return NULL; } EXPORT_SYMBOL(dib3000mc_attach); static struct dvb_frontend_ops dib3000mc_ops = { .info = { .name = "DiBcom 3000MC/P", .type = FE_OFDM, .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib3000mc_release, .init = dib3000mc_init, .sleep = dib3000mc_sleep, .set_frontend = dib3000mc_set_frontend, .get_tune_settings = dib3000mc_fe_get_tune_settings, .get_frontend = dib3000mc_get_frontend, .read_status = dib3000mc_read_status, .read_ber = dib3000mc_read_ber, .read_signal_strength = dib3000mc_read_signal_strength, .read_snr = dib3000mc_read_snr, .read_ucblocks = dib3000mc_read_unc_blocks, }; MODULE_AUTHOR("Patrick Boettcher "); MODULE_DESCRIPTION("Driver for the DiBcom 3000MC/P COFDM demodulator"); MODULE_LICENSE("GPL");