/* * Frontend driver for mobile DVB-T demodulator DiBcom 3000P/M-C * DiBcom (http://www.dibcom.fr/) * * Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de) * * based on GPL code from DiBCom, which has * * Copyright (C) 2004 Amaury Demol for DiBcom (ademol@dibcom.fr) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. * * Acknowledgements * * Amaury Demol (ademol@dibcom.fr) from DiBcom for providing specs and driver * sources, on which this driver (and the dvb-dibusb) are based. * * see Documentation/dvb/README.dibusb for more information * */ #include #include #include #include #include #include #include #include #include "dib3000-common.h" #include "dib3000mc_priv.h" #include "dib3000.h" /* Version information */ #define DRIVER_VERSION "0.1" #define DRIVER_DESC "DiBcom 3000M-C DVB-T demodulator" #define DRIVER_AUTHOR "Patrick Boettcher, patrick.boettcher@desy.de" #ifdef CONFIG_DVB_DIBCOM_DEBUG static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "set debugging level (1=info,2=xfer,4=setfe,8=getfe,16=stat (|-able))."); #endif #define deb_info(args...) dprintk(0x01,args) #define deb_xfer(args...) dprintk(0x02,args) #define deb_setf(args...) dprintk(0x04,args) #define deb_getf(args...) dprintk(0x08,args) #define deb_stat(args...) dprintk(0x10,args) static int dib3000mc_set_impulse_noise(struct dib3000_state * state, int mode, fe_transmit_mode_t transmission_mode, fe_bandwidth_t bandwidth) { switch (transmission_mode) { case TRANSMISSION_MODE_2K: wr_foreach(dib3000mc_reg_fft,dib3000mc_fft_modes[0]); break; case TRANSMISSION_MODE_8K: wr_foreach(dib3000mc_reg_fft,dib3000mc_fft_modes[1]); break; default: break; } switch (bandwidth) { /* case BANDWIDTH_5_MHZ: wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[0]); break; */ case BANDWIDTH_6_MHZ: wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[1]); break; case BANDWIDTH_7_MHZ: wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[2]); break; case BANDWIDTH_8_MHZ: wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[3]); break; default: break; } switch (mode) { case 0: /* no impulse */ /* fall through */ wr_foreach(dib3000mc_reg_imp_noise_ctl,dib3000mc_imp_noise_ctl[0]); break; case 1: /* new algo */ wr_foreach(dib3000mc_reg_imp_noise_ctl,dib3000mc_imp_noise_ctl[1]); set_or(DIB3000MC_REG_IMP_NOISE_55,DIB3000MC_IMP_NEW_ALGO(0)); /* gives 1<<10 */ break; default: /* old algo */ wr_foreach(dib3000mc_reg_imp_noise_ctl,dib3000mc_imp_noise_ctl[3]); break; } return 0; } static int dib3000mc_set_timing(struct dib3000_state *state, int upd_offset, fe_transmit_mode_t fft, fe_bandwidth_t bw) { u16 timf_msb,timf_lsb; s32 tim_offset,tim_sgn; u64 comp1,comp2,comp=0; switch (bw) { case BANDWIDTH_8_MHZ: comp = DIB3000MC_CLOCK_REF*8; break; case BANDWIDTH_7_MHZ: comp = DIB3000MC_CLOCK_REF*7; break; case BANDWIDTH_6_MHZ: comp = DIB3000MC_CLOCK_REF*6; break; default: err("unknown bandwidth (%d)",bw); break; } timf_msb = (comp >> 16) & 0xff; timf_lsb = (comp & 0xffff); // Update the timing offset ; if (upd_offset > 0) { if (!state->timing_offset_comp_done) { msleep(200); state->timing_offset_comp_done = 1; } tim_offset = rd(DIB3000MC_REG_TIMING_OFFS_MSB); if ((tim_offset & 0x2000) == 0x2000) tim_offset |= 0xC000; if (fft == TRANSMISSION_MODE_2K) tim_offset <<= 2; state->timing_offset += tim_offset; } tim_offset = state->timing_offset; if (tim_offset < 0) { tim_sgn = 1; tim_offset = -tim_offset; } else tim_sgn = 0; comp1 = (u32)tim_offset * (u32)timf_lsb ; comp2 = (u32)tim_offset * (u32)timf_msb ; comp = ((comp1 >> 16) + comp2) >> 7; if (tim_sgn == 0) comp = (u32)(timf_msb << 16) + (u32) timf_lsb + comp; else comp = (u32)(timf_msb << 16) + (u32) timf_lsb - comp ; timf_msb = (comp >> 16) & 0xff; timf_lsb = comp & 0xffff; wr(DIB3000MC_REG_TIMING_FREQ_MSB,timf_msb); wr(DIB3000MC_REG_TIMING_FREQ_LSB,timf_lsb); return 0; } static int dib3000mc_init_auto_scan(struct dib3000_state *state, fe_bandwidth_t bw, int boost) { if (boost) { wr(DIB3000MC_REG_SCAN_BOOST,DIB3000MC_SCAN_BOOST_ON); } else { wr(DIB3000MC_REG_SCAN_BOOST,DIB3000MC_SCAN_BOOST_OFF); } switch (bw) { case BANDWIDTH_8_MHZ: wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_8mhz); break; case BANDWIDTH_7_MHZ: wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_7mhz); break; case BANDWIDTH_6_MHZ: wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_6mhz); break; /* case BANDWIDTH_5_MHZ: wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_5mhz); break;*/ case BANDWIDTH_AUTO: return -EOPNOTSUPP; default: err("unknown bandwidth value (%d).",bw); return -EINVAL; } if (boost) { u32 timeout = (rd(DIB3000MC_REG_BW_TIMOUT_MSB) << 16) + rd(DIB3000MC_REG_BW_TIMOUT_LSB); timeout *= 85; timeout >>= 7; wr(DIB3000MC_REG_BW_TIMOUT_MSB,(timeout >> 16) & 0xffff); wr(DIB3000MC_REG_BW_TIMOUT_LSB,timeout & 0xffff); } return 0; } static int dib3000mc_set_adp_cfg(struct dib3000_state *state, fe_modulation_t con) { switch (con) { case QAM_64: wr_foreach(dib3000mc_reg_adp_cfg,dib3000mc_adp_cfg[2]); break; case QAM_16: wr_foreach(dib3000mc_reg_adp_cfg,dib3000mc_adp_cfg[1]); break; case QPSK: wr_foreach(dib3000mc_reg_adp_cfg,dib3000mc_adp_cfg[0]); break; case QAM_AUTO: break; default: warn("unkown constellation."); break; } return 0; } static int dib3000mc_set_general_cfg(struct dib3000_state *state, struct dvb_frontend_parameters *fep, int *auto_val) { struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm; fe_code_rate_t fe_cr = FEC_NONE; u8 fft=0, guard=0, qam=0, alpha=0, sel_hp=0, cr=0, hrch=0; int seq; switch (ofdm->transmission_mode) { case TRANSMISSION_MODE_2K: fft = DIB3000_TRANSMISSION_MODE_2K; break; case TRANSMISSION_MODE_8K: fft = DIB3000_TRANSMISSION_MODE_8K; break; case TRANSMISSION_MODE_AUTO: break; default: return -EINVAL; } switch (ofdm->guard_interval) { case GUARD_INTERVAL_1_32: guard = DIB3000_GUARD_TIME_1_32; break; case GUARD_INTERVAL_1_16: guard = DIB3000_GUARD_TIME_1_16; break; case GUARD_INTERVAL_1_8: guard = DIB3000_GUARD_TIME_1_8; break; case GUARD_INTERVAL_1_4: guard = DIB3000_GUARD_TIME_1_4; break; case GUARD_INTERVAL_AUTO: break; default: return -EINVAL; } switch (ofdm->constellation) { case QPSK: qam = DIB3000_CONSTELLATION_QPSK; break; case QAM_16: qam = DIB3000_CONSTELLATION_16QAM; break; case QAM_64: qam = DIB3000_CONSTELLATION_64QAM; break; case QAM_AUTO: break; default: return -EINVAL; } switch (ofdm->hierarchy_information) { case HIERARCHY_NONE: /* fall through */ case HIERARCHY_1: alpha = DIB3000_ALPHA_1; break; case HIERARCHY_2: alpha = DIB3000_ALPHA_2; break; case HIERARCHY_4: alpha = DIB3000_ALPHA_4; break; case HIERARCHY_AUTO: break; default: return -EINVAL; } if (ofdm->hierarchy_information == HIERARCHY_NONE) { hrch = DIB3000_HRCH_OFF; sel_hp = DIB3000_SELECT_HP; fe_cr = ofdm->code_rate_HP; } else if (ofdm->hierarchy_information != HIERARCHY_AUTO) { hrch = DIB3000_HRCH_ON; sel_hp = DIB3000_SELECT_LP; fe_cr = ofdm->code_rate_LP; } switch (fe_cr) { case FEC_1_2: cr = DIB3000_FEC_1_2; break; case FEC_2_3: cr = DIB3000_FEC_2_3; break; case FEC_3_4: cr = DIB3000_FEC_3_4; break; case FEC_5_6: cr = DIB3000_FEC_5_6; break; case FEC_7_8: cr = DIB3000_FEC_7_8; break; case FEC_NONE: break; case FEC_AUTO: break; default: return -EINVAL; } wr(DIB3000MC_REG_DEMOD_PARM,DIB3000MC_DEMOD_PARM(alpha,qam,guard,fft)); wr(DIB3000MC_REG_HRCH_PARM,DIB3000MC_HRCH_PARM(sel_hp,cr,hrch)); switch (fep->inversion) { case INVERSION_OFF: wr(DIB3000MC_REG_SET_DDS_FREQ_MSB,DIB3000MC_DDS_FREQ_MSB_INV_OFF); break; case INVERSION_AUTO: /* fall through */ case INVERSION_ON: wr(DIB3000MC_REG_SET_DDS_FREQ_MSB,DIB3000MC_DDS_FREQ_MSB_INV_ON); break; default: return -EINVAL; } seq = dib3000_seq [ofdm->transmission_mode == TRANSMISSION_MODE_AUTO] [ofdm->guard_interval == GUARD_INTERVAL_AUTO] [fep->inversion == INVERSION_AUTO]; deb_setf("seq? %d\n", seq); wr(DIB3000MC_REG_SEQ_TPS,DIB3000MC_SEQ_TPS(seq,1)); *auto_val = ofdm->constellation == QAM_AUTO || ofdm->hierarchy_information == HIERARCHY_AUTO || ofdm->guard_interval == GUARD_INTERVAL_AUTO || ofdm->transmission_mode == TRANSMISSION_MODE_AUTO || fe_cr == FEC_AUTO || fep->inversion == INVERSION_AUTO; return 0; } static int dib3000mc_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { struct dib3000_state* state = fe->demodulator_priv; struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm; fe_code_rate_t *cr; u16 tps_val,cr_val; int inv_test1,inv_test2; u32 dds_val, threshold = 0x1000000; if (!(rd(DIB3000MC_REG_LOCK_507) & DIB3000MC_LOCK_507)) return 0; dds_val = (rd(DIB3000MC_REG_DDS_FREQ_MSB) << 16) + rd(DIB3000MC_REG_DDS_FREQ_LSB); deb_getf("DDS_FREQ: %6x\n",dds_val); if (dds_val < threshold) inv_test1 = 0; else if (dds_val == threshold) inv_test1 = 1; else inv_test1 = 2; dds_val = (rd(DIB3000MC_REG_SET_DDS_FREQ_MSB) << 16) + rd(DIB3000MC_REG_SET_DDS_FREQ_LSB); deb_getf("DDS_SET_FREQ: %6x\n",dds_val); if (dds_val < threshold) inv_test2 = 0; else if (dds_val == threshold) inv_test2 = 1; else inv_test2 = 2; fep->inversion = ((inv_test2 == 2) && (inv_test1==1 || inv_test1==0)) || ((inv_test2 == 0) && (inv_test1==1 || inv_test1==2)) ? INVERSION_ON : INVERSION_OFF; deb_getf("inversion %d %d, %d\n", inv_test2, inv_test1, fep->inversion); fep->frequency = state->last_tuned_freq; fep->u.ofdm.bandwidth= state->last_tuned_bw; tps_val = rd(DIB3000MC_REG_TUNING_PARM); switch (DIB3000MC_TP_QAM(tps_val)) { case DIB3000_CONSTELLATION_QPSK: deb_getf("QPSK "); ofdm->constellation = QPSK; break; case DIB3000_CONSTELLATION_16QAM: deb_getf("QAM16 "); ofdm->constellation = QAM_16; break; case DIB3000_CONSTELLATION_64QAM: deb_getf("QAM64 "); ofdm->constellation = QAM_64; break; default: err("Unexpected constellation returned by TPS (%d)", tps_val); break; } if (DIB3000MC_TP_HRCH(tps_val)) { deb_getf("HRCH ON "); cr = &ofdm->code_rate_LP; ofdm->code_rate_HP = FEC_NONE; switch (DIB3000MC_TP_ALPHA(tps_val)) { case DIB3000_ALPHA_0: deb_getf("HIERARCHY_NONE "); ofdm->hierarchy_information = HIERARCHY_NONE; break; case DIB3000_ALPHA_1: deb_getf("HIERARCHY_1 "); ofdm->hierarchy_information = HIERARCHY_1; break; case DIB3000_ALPHA_2: deb_getf("HIERARCHY_2 "); ofdm->hierarchy_information = HIERARCHY_2; break; case DIB3000_ALPHA_4: deb_getf("HIERARCHY_4 "); ofdm->hierarchy_information = HIERARCHY_4; break; default: err("Unexpected ALPHA value returned by TPS (%d)", tps_val); break; } cr_val = DIB3000MC_TP_FEC_CR_LP(tps_val); } else { deb_getf("HRCH OFF "); cr = &ofdm->code_rate_HP; ofdm->code_rate_LP = FEC_NONE; ofdm->hierarchy_information = HIERARCHY_NONE; cr_val = DIB3000MC_TP_FEC_CR_HP(tps_val); } switch (cr_val) { case DIB3000_FEC_1_2: deb_getf("FEC_1_2 "); *cr = FEC_1_2; break; case DIB3000_FEC_2_3: deb_getf("FEC_2_3 "); *cr = FEC_2_3; break; case DIB3000_FEC_3_4: deb_getf("FEC_3_4 "); *cr = FEC_3_4; break; case DIB3000_FEC_5_6: deb_getf("FEC_5_6 "); *cr = FEC_4_5; break; case DIB3000_FEC_7_8: deb_getf("FEC_7_8 "); *cr = FEC_7_8; break; default: err("Unexpected FEC returned by TPS (%d)", tps_val); break; } switch (DIB3000MC_TP_GUARD(tps_val)) { case DIB3000_GUARD_TIME_1_32: deb_getf("GUARD_INTERVAL_1_32 "); ofdm->guard_interval = GUARD_INTERVAL_1_32; break; case DIB3000_GUARD_TIME_1_16: deb_getf("GUARD_INTERVAL_1_16 "); ofdm->guard_interval = GUARD_INTERVAL_1_16; break; case DIB3000_GUARD_TIME_1_8: deb_getf("GUARD_INTERVAL_1_8 "); ofdm->guard_interval = GUARD_INTERVAL_1_8; break; case DIB3000_GUARD_TIME_1_4: deb_getf("GUARD_INTERVAL_1_4 "); ofdm->guard_interval = GUARD_INTERVAL_1_4; break; default: err("Unexpected Guard Time returned by TPS (%d)", tps_val); break; } switch (DIB3000MC_TP_FFT(tps_val)) { case DIB3000_TRANSMISSION_MODE_2K: deb_getf("TRANSMISSION_MODE_2K "); ofdm->transmission_mode = TRANSMISSION_MODE_2K; break; case DIB3000_TRANSMISSION_MODE_8K: deb_getf("TRANSMISSION_MODE_8K "); ofdm->transmission_mode = TRANSMISSION_MODE_8K; break; default: err("unexpected transmission mode return by TPS (%d)", tps_val); break; } deb_getf("\n"); return 0; } static int dib3000mc_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep, int tuner) { struct dib3000_state* state = fe->demodulator_priv; struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm; int search_state,auto_val; u16 val; if (tuner && fe->ops.tuner_ops.set_params) { /* initial call from dvb */ fe->ops.tuner_ops.set_params(fe, fep); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); state->last_tuned_freq = fep->frequency; // if (!scanboost) { dib3000mc_set_timing(state,0,ofdm->transmission_mode,ofdm->bandwidth); dib3000mc_init_auto_scan(state, ofdm->bandwidth, 0); state->last_tuned_bw = ofdm->bandwidth; wr_foreach(dib3000mc_reg_agc_bandwidth,dib3000mc_agc_bandwidth); wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_AGC); wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_OFF); /* Default cfg isi offset adp */ wr_foreach(dib3000mc_reg_offset,dib3000mc_offset[0]); wr(DIB3000MC_REG_ISI,DIB3000MC_ISI_DEFAULT | DIB3000MC_ISI_INHIBIT); dib3000mc_set_adp_cfg(state,ofdm->constellation); wr(DIB3000MC_REG_UNK_133,DIB3000MC_UNK_133); wr_foreach(dib3000mc_reg_bandwidth_general,dib3000mc_bandwidth_general); /* power smoothing */ if (ofdm->bandwidth != BANDWIDTH_8_MHZ) { wr_foreach(dib3000mc_reg_bw,dib3000mc_bw[0]); } else { wr_foreach(dib3000mc_reg_bw,dib3000mc_bw[3]); } auto_val = 0; dib3000mc_set_general_cfg(state,fep,&auto_val); dib3000mc_set_impulse_noise(state,0,ofdm->constellation,ofdm->bandwidth); val = rd(DIB3000MC_REG_DEMOD_PARM); wr(DIB3000MC_REG_DEMOD_PARM,val|DIB3000MC_DEMOD_RST_DEMOD_ON); wr(DIB3000MC_REG_DEMOD_PARM,val); // } msleep(70); /* something has to be auto searched */ if (auto_val) { int as_count=0; deb_setf("autosearch enabled.\n"); val = rd(DIB3000MC_REG_DEMOD_PARM); wr(DIB3000MC_REG_DEMOD_PARM,val | DIB3000MC_DEMOD_RST_AUTO_SRCH_ON); wr(DIB3000MC_REG_DEMOD_PARM,val); while ((search_state = dib3000_search_status( rd(DIB3000MC_REG_AS_IRQ),1)) < 0 && as_count++ < 100) msleep(10); deb_info("search_state after autosearch %d after %d checks\n",search_state,as_count); if (search_state == 1) { struct dvb_frontend_parameters feps; if (dib3000mc_get_frontend(fe, &feps) == 0) { deb_setf("reading tuning data from frontend succeeded.\n"); return dib3000mc_set_frontend(fe, &feps, 0); } } } else { dib3000mc_set_impulse_noise(state,0,ofdm->transmission_mode,ofdm->bandwidth); wr(DIB3000MC_REG_ISI,DIB3000MC_ISI_DEFAULT|DIB3000MC_ISI_ACTIVATE); dib3000mc_set_adp_cfg(state,ofdm->constellation); /* set_offset_cfg */ wr_foreach(dib3000mc_reg_offset, dib3000mc_offset[(ofdm->transmission_mode == TRANSMISSION_MODE_8K)+1]); } } else { /* second call, after autosearch (fka: set_WithKnownParams) */ // dib3000mc_set_timing(state,1,ofdm->transmission_mode,ofdm->bandwidth); auto_val = 0; dib3000mc_set_general_cfg(state,fep,&auto_val); if (auto_val) deb_info("auto_val is true, even though an auto search was already performed.\n"); dib3000mc_set_impulse_noise(state,0,ofdm->constellation,ofdm->bandwidth); val = rd(DIB3000MC_REG_DEMOD_PARM); wr(DIB3000MC_REG_DEMOD_PARM,val | DIB3000MC_DEMOD_RST_AUTO_SRCH_ON); wr(DIB3000MC_REG_DEMOD_PARM,val); msleep(30); wr(DIB3000MC_REG_ISI,DIB3000MC_ISI_DEFAULT|DIB3000MC_ISI_ACTIVATE); dib3000mc_set_adp_cfg(state,ofdm->constellation); wr_foreach(dib3000mc_reg_offset, dib3000mc_offset[(ofdm->transmission_mode == TRANSMISSION_MODE_8K)+1]); } return 0; } static int dib3000mc_fe_init(struct dvb_frontend* fe, int mobile_mode) { struct dib3000_state *state = fe->demodulator_priv; const struct dib3000p_agc_config *agc = state->config.agc; deb_info("init start\n"); state->timing_offset = 0; state->timing_offset_comp_done = 0; wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_CONFIG); wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_OFF); wr(DIB3000MC_REG_CLK_CFG_1,DIB3000MC_CLK_CFG_1_POWER_UP); wr(DIB3000MC_REG_CLK_CFG_2,DIB3000MC_CLK_CFG_2_PUP_MOBILE); wr(DIB3000MC_REG_CLK_CFG_3,DIB3000MC_CLK_CFG_3_POWER_UP); wr(DIB3000MC_REG_CLK_CFG_7,DIB3000MC_CLK_CFG_7_INIT); wr(DIB3000MC_REG_RST_UNC,DIB3000MC_RST_UNC_OFF); wr(DIB3000MC_REG_UNK_19,DIB3000MC_UNK_19); wr(33,5); wr(36,81); wr(DIB3000MC_REG_UNK_88,DIB3000MC_UNK_88); wr(DIB3000MC_REG_UNK_99,DIB3000MC_UNK_99); wr(DIB3000MC_REG_UNK_111,DIB3000MC_UNK_111_PH_N_MODE_0); /* phase noise algo off */ /* mobile mode - portable reception */ wr_foreach(dib3000mc_reg_mobile_mode,dib3000mc_mobile_mode[1]); /* AGC settings for all tuners */ wr_foreach(dib3000mc_reg_agc_bandwidth,dib3000mc_agc_bandwidth); wr_foreach(dib3000mc_reg_agc_bandwidth_general,dib3000mc_agc_bandwidth_general); /* AGC setting - specific to the tuners */ wr(36, agc->val[0]); wr(37, agc->val[1]); wr(38, agc->val[2]); wr(39, agc->val[3]); wr(42, agc->val[4]); wr(43, agc->val[5]); wr(44, agc->val[6]); wr(45, agc->val[7]); wr(46, agc->val[8]); wr(47, agc->val[9]); wr(48, agc->val[10]); wr(49, agc->val[11]); wr(DIB3000MC_REG_UNK_110,DIB3000MC_UNK_110); wr(26,0x6680); wr(DIB3000MC_REG_UNK_1,DIB3000MC_UNK_1); wr(DIB3000MC_REG_UNK_2,DIB3000MC_UNK_2); wr(DIB3000MC_REG_UNK_3,DIB3000MC_UNK_3); wr(DIB3000MC_REG_SEQ_TPS,DIB3000MC_SEQ_TPS_DEFAULT); wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_8mhz); wr_foreach(dib3000mc_reg_bandwidth_general,dib3000mc_bandwidth_general); wr(DIB3000MC_REG_UNK_4,DIB3000MC_UNK_4); wr(DIB3000MC_REG_SET_DDS_FREQ_MSB,DIB3000MC_DDS_FREQ_MSB_INV_OFF); wr(DIB3000MC_REG_SET_DDS_FREQ_LSB,DIB3000MC_DDS_FREQ_LSB); dib3000mc_set_timing(state,0,TRANSMISSION_MODE_8K,BANDWIDTH_8_MHZ); // wr_foreach(dib3000mc_reg_timing_freq,dib3000mc_timing_freq[3]); wr(DIB3000MC_REG_UNK_120,DIB3000MC_UNK_120); wr(DIB3000MC_REG_UNK_134,DIB3000MC_UNK_134); wr(DIB3000MC_REG_FEC_CFG,DIB3000MC_FEC_CFG); wr(DIB3000MC_REG_DIVERSITY3,DIB3000MC_DIVERSITY3_IN_OFF); dib3000mc_set_impulse_noise(state,0,TRANSMISSION_MODE_8K,BANDWIDTH_8_MHZ); /* output mode control, just the MPEG2_SLAVE */ // set_or(DIB3000MC_REG_OUTMODE,DIB3000MC_OM_SLAVE); wr(DIB3000MC_REG_OUTMODE,DIB3000MC_OM_SLAVE); wr(DIB3000MC_REG_SMO_MODE,DIB3000MC_SMO_MODE_SLAVE); wr(DIB3000MC_REG_FIFO_THRESHOLD,DIB3000MC_FIFO_THRESHOLD_SLAVE); wr(DIB3000MC_REG_ELEC_OUT,DIB3000MC_ELEC_OUT_SLAVE); /* MPEG2_PARALLEL_CONTINUOUS_CLOCK wr(DIB3000MC_REG_OUTMODE, DIB3000MC_SET_OUTMODE(DIB3000MC_OM_PAR_CONT_CLK, rd(DIB3000MC_REG_OUTMODE))); wr(DIB3000MC_REG_SMO_MODE, DIB3000MC_SMO_MODE_DEFAULT | DIB3000MC_SMO_MODE_188); wr(DIB3000MC_REG_FIFO_THRESHOLD,DIB3000MC_FIFO_THRESHOLD_DEFAULT); wr(DIB3000MC_REG_ELEC_OUT,DIB3000MC_ELEC_OUT_DIV_OUT_ON); */ /* diversity */ wr(DIB3000MC_REG_DIVERSITY1,DIB3000MC_DIVERSITY1_DEFAULT); wr(DIB3000MC_REG_DIVERSITY2,DIB3000MC_DIVERSITY2_DEFAULT); set_and(DIB3000MC_REG_DIVERSITY3,DIB3000MC_DIVERSITY3_IN_OFF); set_or(DIB3000MC_REG_CLK_CFG_7,DIB3000MC_CLK_CFG_7_DIV_IN_OFF); deb_info("init end\n"); return 0; } static int dib3000mc_read_status(struct dvb_frontend* fe, fe_status_t *stat) { struct dib3000_state* state = fe->demodulator_priv; u16 lock = rd(DIB3000MC_REG_LOCKING); *stat = 0; if (DIB3000MC_AGC_LOCK(lock)) *stat |= FE_HAS_SIGNAL; if (DIB3000MC_CARRIER_LOCK(lock)) *stat |= FE_HAS_CARRIER; if (DIB3000MC_TPS_LOCK(lock)) *stat |= FE_HAS_VITERBI; if (DIB3000MC_MPEG_SYNC_LOCK(lock)) *stat |= (FE_HAS_SYNC | FE_HAS_LOCK); deb_stat("actual status is %2x fifo_level: %x,244: %x, 206: %x, 207: %x, 1040: %x\n",*stat,rd(510),rd(244),rd(206),rd(207),rd(1040)); return 0; } static int dib3000mc_read_ber(struct dvb_frontend* fe, u32 *ber) { struct dib3000_state* state = fe->demodulator_priv; *ber = ((rd(DIB3000MC_REG_BER_MSB) << 16) | rd(DIB3000MC_REG_BER_LSB)); return 0; } static int dib3000mc_read_unc_blocks(struct dvb_frontend* fe, u32 *unc) { struct dib3000_state* state = fe->demodulator_priv; *unc = rd(DIB3000MC_REG_PACKET_ERRORS); return 0; } /* see dib3000mb.c for calculation comments */ static int dib3000mc_read_signal_strength(struct dvb_frontend* fe, u16 *strength) { struct dib3000_state* state = fe->demodulator_priv; u16 val = rd(DIB3000MC_REG_SIGNAL_NOISE_LSB); *strength = (((val >> 6) & 0xff) << 8) + (val & 0x3f); deb_stat("signal: mantisse = %d, exponent = %d\n",(*strength >> 8) & 0xff, *strength & 0xff); return 0; } /* see dib3000mb.c for calculation comments */ static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr) { struct dib3000_state* state = fe->demodulator_priv; u16 val = rd(DIB3000MC_REG_SIGNAL_NOISE_LSB), val2 = rd(DIB3000MC_REG_SIGNAL_NOISE_MSB); u16 sig,noise; sig = (((val >> 6) & 0xff) << 8) + (val & 0x3f); noise = (((val >> 4) & 0xff) << 8) + ((val & 0xf) << 2) + ((val2 >> 14) & 0x3); if (noise == 0) *snr = 0xffff; else *snr = (u16) sig/noise; deb_stat("signal: mantisse = %d, exponent = %d\n",(sig >> 8) & 0xff, sig & 0xff); deb_stat("noise: mantisse = %d, exponent = %d\n",(noise >> 8) & 0xff, noise & 0xff); deb_stat("snr: %d\n",*snr); return 0; } static int dib3000mc_sleep(struct dvb_frontend* fe) { struct dib3000_state* state = fe->demodulator_priv; set_or(DIB3000MC_REG_CLK_CFG_7,DIB3000MC_CLK_CFG_7_PWR_DOWN); wr(DIB3000MC_REG_CLK_CFG_1,DIB3000MC_CLK_CFG_1_POWER_DOWN); wr(DIB3000MC_REG_CLK_CFG_2,DIB3000MC_CLK_CFG_2_POWER_DOWN); wr(DIB3000MC_REG_CLK_CFG_3,DIB3000MC_CLK_CFG_3_POWER_DOWN); return 0; } static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static int dib3000mc_fe_init_nonmobile(struct dvb_frontend* fe) { return dib3000mc_fe_init(fe, 0); } static int dib3000mc_set_frontend_and_tuner(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { return dib3000mc_set_frontend(fe, fep, 1); } static void dib3000mc_release(struct dvb_frontend* fe) { struct dib3000_state *state = fe->demodulator_priv; kfree(state); } /* pid filter and transfer stuff */ static int dib3000mc_pid_control(struct dvb_frontend *fe,int index, int pid,int onoff) { struct dib3000_state *state = fe->demodulator_priv; pid = (onoff ? pid | DIB3000_ACTIVATE_PID_FILTERING : 0); wr(index+DIB3000MC_REG_FIRST_PID,pid); return 0; } static int dib3000mc_fifo_control(struct dvb_frontend *fe, int onoff) { struct dib3000_state *state = fe->demodulator_priv; u16 tmp = rd(DIB3000MC_REG_SMO_MODE); deb_xfer("%s fifo\n",onoff ? "enabling" : "disabling"); if (onoff) { deb_xfer("%d %x\n",tmp & DIB3000MC_SMO_MODE_FIFO_UNFLUSH,tmp & DIB3000MC_SMO_MODE_FIFO_UNFLUSH); wr(DIB3000MC_REG_SMO_MODE,tmp & DIB3000MC_SMO_MODE_FIFO_UNFLUSH); } else { deb_xfer("%d %x\n",tmp | DIB3000MC_SMO_MODE_FIFO_FLUSH,tmp | DIB3000MC_SMO_MODE_FIFO_FLUSH); wr(DIB3000MC_REG_SMO_MODE,tmp | DIB3000MC_SMO_MODE_FIFO_FLUSH); } return 0; } static int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff) { struct dib3000_state *state = fe->demodulator_priv; u16 tmp = rd(DIB3000MC_REG_SMO_MODE); deb_xfer("%s pid parsing\n",onoff ? "enabling" : "disabling"); if (onoff) { wr(DIB3000MC_REG_SMO_MODE,tmp | DIB3000MC_SMO_MODE_PID_PARSE); } else { wr(DIB3000MC_REG_SMO_MODE,tmp & DIB3000MC_SMO_MODE_NO_PID_PARSE); } return 0; } static int dib3000mc_tuner_pass_ctrl(struct dvb_frontend *fe, int onoff, u8 pll_addr) { struct dib3000_state *state = fe->demodulator_priv; if (onoff) { wr(DIB3000MC_REG_TUNER, DIB3000_TUNER_WRITE_ENABLE(pll_addr)); } else { wr(DIB3000MC_REG_TUNER, DIB3000_TUNER_WRITE_DISABLE(pll_addr)); } return 0; } static int dib3000mc_demod_init(struct dib3000_state *state) { u16 default_addr = 0x0a; /* first init */ if (state->config.demod_address != default_addr) { deb_info("initializing the demod the first time. Setting demod addr to 0x%x\n",default_addr); wr(DIB3000MC_REG_ELEC_OUT,DIB3000MC_ELEC_OUT_DIV_OUT_ON); wr(DIB3000MC_REG_OUTMODE,DIB3000MC_OM_PAR_CONT_CLK); wr(DIB3000MC_REG_RST_I2C_ADDR, DIB3000MC_DEMOD_ADDR(default_addr) | DIB3000MC_DEMOD_ADDR_ON); state->config.demod_address = default_addr; wr(DIB3000MC_REG_RST_I2C_ADDR, DIB3000MC_DEMOD_ADDR(default_addr)); } else deb_info("demod is already initialized. Demod addr: 0x%x\n",state->config.demod_address); return 0; } int dib3000mc_set_agc_config(struct dvb_frontend *fe, const struct dib3000p_agc_config *agc) { struct dib3000_state *st = fe->demodulator_priv; st->config.agc = agc; return 0; } EXPORT_SYMBOL(dib3000mc_set_agc_config); static struct dvb_frontend_ops dib3000mc_ops; struct dvb_frontend* dib3000mc_attach(const struct dib3000_config* config, struct i2c_adapter* i2c, struct dib_fe_xfer_ops *xfer_ops) { struct dib3000_state* state = NULL; u16 devid; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct dib3000_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->i2c = i2c; memcpy(&state->config,config,sizeof(struct dib3000_config)); /* check for the correct demod */ if (rd(DIB3000_REG_MANUFACTOR_ID) != DIB3000_I2C_ID_DIBCOM) goto error; devid = rd(DIB3000_REG_DEVICE_ID); if (devid != DIB3000MC_DEVICE_ID && devid != DIB3000P_DEVICE_ID) goto error; switch (devid) { case DIB3000MC_DEVICE_ID: info("Found a DiBcom 3000M-C, interesting..."); break; case DIB3000P_DEVICE_ID: info("Found a DiBcom 3000P."); break; } /* create dvb_frontend */ memcpy(&state->frontend.ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; /* set the xfer operations */ xfer_ops->pid_parse = dib3000mc_pid_parse; xfer_ops->fifo_ctrl = dib3000mc_fifo_control; xfer_ops->pid_ctrl = dib3000mc_pid_control; xfer_ops->tuner_pass_ctrl = dib3000mc_tuner_pass_ctrl; dib3000mc_demod_init(state); return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(dib3000mc_attach); static struct dvb_frontend_ops dib3000mc_ops = { .info = { .name = "DiBcom 3000P/M-C DVB-T", .type = FE_OFDM, .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib3000mc_release, .init = dib3000mc_fe_init_nonmobile, .sleep = dib3000mc_sleep, .set_frontend = dib3000mc_set_frontend_and_tuner, .get_frontend = dib3000mc_get_frontend, .get_tune_settings = dib3000mc_fe_get_tune_settings, .read_status = dib3000mc_read_status, .read_ber = dib3000mc_read_ber, .read_signal_strength = dib3000mc_read_signal_strength, .read_snr = dib3000mc_read_snr, .read_ucblocks = dib3000mc_read_unc_blocks, }; MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");