/* * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). * * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. */ #include #include #include "dvb_frontend.h" #include "dib7000p.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); static int buggy_sfn_workaround; module_param(buggy_sfn_workaround, int, 0644); MODULE_PARM_DESC(debug, "Enable work-around for buggy SFNs (default: 0)"); #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0) struct dib7000p_state { struct dvb_frontend demod; struct dib7000p_config cfg; u8 i2c_addr; struct i2c_adapter *i2c_adap; struct dibx000_i2c_master i2c_master; u16 wbd_ref; u8 current_band; fe_bandwidth_t current_bandwidth; struct dibx000_agc_config *current_agc; u32 timf; u8 div_force_off : 1; u8 div_state : 1; u16 div_sync_wait; u8 agc_state; u16 gpio_dir; u16 gpio_val; u8 sfn_workaround_active :1; }; enum dib7000p_power_mode { DIB7000P_POWER_ALL = 0, DIB7000P_POWER_ANALOG_ADC, DIB7000P_POWER_INTERFACE_ONLY, }; static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) { u8 wb[2] = { reg >> 8, reg & 0xff }; u8 rb[2]; struct i2c_msg msg[2] = { { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 }, { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 }, }; if (i2c_transfer(state->i2c_adap, msg, 2) != 2) dprintk("i2c read error on %d",reg); return (rb[0] << 8) | rb[1]; } static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) { u8 b[4] = { (reg >> 8) & 0xff, reg & 0xff, (val >> 8) & 0xff, val & 0xff, }; struct i2c_msg msg = { .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 }; return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; } static void dib7000p_write_tab(struct dib7000p_state *state, u16 *buf) { u16 l = 0, r, *n; n = buf; l = *n++; while (l) { r = *n++; do { dib7000p_write_word(state, r, *n++); r++; } while (--l); l = *n++; } } static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) { int ret = 0; u16 outreg, fifo_threshold, smo_mode; outreg = 0; fifo_threshold = 1792; smo_mode = (dib7000p_read_word(state, 235) & 0x0010) | (1 << 1); dprintk( "setting output mode for demod %p to %d", &state->demod, mode); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock outreg = (1 << 10); /* 0x0400 */ break; case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock outreg = (1 << 10) | (1 << 6); /* 0x0440 */ break; case OUTMODE_MPEG2_SERIAL: // STBs with serial input outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */ break; case OUTMODE_DIVERSITY: if (state->cfg.hostbus_diversity) outreg = (1 << 10) | (4 << 6); /* 0x0500 */ else outreg = (1 << 11); break; case OUTMODE_MPEG2_FIFO: // e.g. USB feeding smo_mode |= (3 << 1); fifo_threshold = 512; outreg = (1 << 10) | (5 << 6); break; case OUTMODE_ANALOG_ADC: outreg = (1 << 10) | (3 << 6); break; case OUTMODE_HIGH_Z: // disable outreg = 0; break; default: dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod); break; } if (state->cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5) ; ret |= dib7000p_write_word(state, 235, smo_mode); ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ return ret; } static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) { struct dib7000p_state *state = demod->demodulator_priv; if (state->div_force_off) { dprintk( "diversity combination deactivated - forced by COFDM parameters"); onoff = 0; } state->div_state = (u8)onoff; if (onoff) { dib7000p_write_word(state, 204, 6); dib7000p_write_word(state, 205, 16); /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); } else { dib7000p_write_word(state, 204, 1); dib7000p_write_word(state, 205, 0); dib7000p_write_word(state, 207, 0); } return 0; } static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) { /* by default everything is powered off */ u16 reg_774 = 0xffff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff); /* now, depending on the requested mode, we power on */ switch (mode) { /* power up everything in the demod */ case DIB7000P_POWER_ALL: reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff; break; case DIB7000P_POWER_ANALOG_ADC: /* dem, cfg, iqc, sad, agc */ reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9)); /* nud */ reg_776 &= ~((1 << 0)); /* Dout */ reg_1280 &= ~((1 << 11)); /* fall through wanted to enable the interfaces */ /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */ reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); break; /* TODO following stuff is just converted from the dib7000-driver - check when is used what */ #if 0 case DIB7000_POWER_LEVEL_INTERF_ANALOG_AGC: /* dem, cfg, iqc, sad, agc */ reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9)); /* sdio, i2c, gpio */ reg_1280 &= ~((1 << 13) | (1 << 12) | (1 << 10)); break; case DIB7000_POWER_LEVEL_DOWN_COR4_DINTLV_ICIRM_EQUAL_CFROD: reg_774 = 0; /* power down: cor4 dintlv equal */ reg_775 = (1 << 15) | (1 << 6) | (1 << 5); reg_776 = 0; reg_899 = 0; reg_1280 &= 0x01ff; break; case DIB7000_POWER_LEVEL_DOWN_COR4_CRY_ESRAM_MOUT_NUD: reg_774 = 0; /* power down: cor4 */ reg_775 = (1 << 15); /* nud */ reg_776 = (1 << 0); reg_899 = 0; reg_1280 &= 0x01ff; break; #endif } dib7000p_write_word(state, 774, reg_774); dib7000p_write_word(state, 775, reg_775); dib7000p_write_word(state, 776, reg_776); dib7000p_write_word(state, 899, reg_899); dib7000p_write_word(state, 1280, reg_1280); return 0; } static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) { u16 reg_908 = dib7000p_read_word(state, 908), reg_909 = dib7000p_read_word(state, 909); switch (no) { case DIBX000_SLOW_ADC_ON: reg_909 |= (1 << 1) | (1 << 0); dib7000p_write_word(state, 909, reg_909); reg_909 &= ~(1 << 1); break; case DIBX000_SLOW_ADC_OFF: reg_909 |= (1 << 1) | (1 << 0); break; case DIBX000_ADC_ON: reg_908 &= 0x0fff; reg_909 &= 0x0003; break; case DIBX000_ADC_OFF: // leave the VBG voltage on reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); break; case DIBX000_VBG_ENABLE: reg_908 &= ~(1 << 15); break; case DIBX000_VBG_DISABLE: reg_908 |= (1 << 15); break; default: break; } // dprintk( "908: %x, 909: %x\n", reg_908, reg_909); dib7000p_write_word(state, 908, reg_908); dib7000p_write_word(state, 909, reg_909); } static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw) { u32 timf; // store the current bandwidth for later use state->current_bandwidth = bw; if (state->timf == 0) { dprintk( "using default timf"); timf = state->cfg.bw->timf; } else { dprintk( "using updated timf"); timf = state->timf; } timf = timf * (bw / 50) / 160; dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); dib7000p_write_word(state, 24, (u16) ((timf ) & 0xffff)); return 0; } static int dib7000p_sad_calib(struct dib7000p_state *state) { /* internal */ // dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096 /* do the calibration */ dib7000p_write_word(state, 73, (1 << 0)); dib7000p_write_word(state, 73, (0 << 0)); msleep(1); return 0; } int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value) { struct dib7000p_state *state = demod->demodulator_priv; if (value > 4095) value = 4095; state->wbd_ref = value; return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value); } EXPORT_SYMBOL(dib7000p_set_wbd_ref); static void dib7000p_reset_pll(struct dib7000p_state *state) { struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; u16 clk_cfg0; /* force PLL bypass */ clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) | (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0); dib7000p_write_word(state, 900, clk_cfg0); /* P_pll_cfg */ dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff); dib7000p_write_word(state, 900, clk_cfg0); dib7000p_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff)); dib7000p_write_word(state, 19, (u16) ( (bw->internal*1000 ) & 0xffff)); dib7000p_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff)); dib7000p_write_word(state, 22, (u16) ( (bw->ifreq ) & 0xffff)); dib7000p_write_word(state, 72, bw->sad_cfg); } static int dib7000p_reset_gpio(struct dib7000p_state *st) { /* reset the GPIOs */ dprintk( "gpio dir: %x: val: %x, pwm_pos: %x",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos); dib7000p_write_word(st, 1029, st->gpio_dir); dib7000p_write_word(st, 1030, st->gpio_val); /* TODO 1031 is P_gpio_od */ dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos); dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div); return 0; } static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val) { st->gpio_dir = dib7000p_read_word(st, 1029); st->gpio_dir &= ~(1 << num); /* reset the direction bit */ st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ dib7000p_write_word(st, 1029, st->gpio_dir); st->gpio_val = dib7000p_read_word(st, 1030); st->gpio_val &= ~(1 << num); /* reset the direction bit */ st->gpio_val |= (val & 0x01) << num; /* set the new value */ dib7000p_write_word(st, 1030, st->gpio_val); return 0; } int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val) { struct dib7000p_state *state = demod->demodulator_priv; return dib7000p_cfg_gpio(state, num, dir, val); } EXPORT_SYMBOL(dib7000p_set_gpio); static u16 dib7000p_defaults[] = { // auto search configuration 3, 2, 0x0004, 0x1000, 0x0814, /* Equal Lock */ 12, 6, 0x001b, 0x7740, 0x005b, 0x8d80, 0x01c9, 0xc380, 0x0000, 0x0080, 0x0000, 0x0090, 0x0001, 0xd4c0, 1, 26, 0x6680, // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26 /* set ADC level to -16 */ 11, 79, (1 << 13) - 825 - 117, (1 << 13) - 837 - 117, (1 << 13) - 811 - 117, (1 << 13) - 766 - 117, (1 << 13) - 737 - 117, (1 << 13) - 693 - 117, (1 << 13) - 648 - 117, (1 << 13) - 619 - 117, (1 << 13) - 575 - 117, (1 << 13) - 531 - 117, (1 << 13) - 501 - 117, 1, 142, 0x0410, // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16 /* disable power smoothing */ 8, 145, 0, 0, 0, 0, 0, 0, 0, 0, 1, 154, 1 << 13, // P_fft_freq_dir=1, P_fft_nb_to_cut=0 1, 168, 0x0ccd, // P_pha3_thres, default 0x3000 // 1, 169, // 0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010 1, 183, 0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005 5, 187, 0x023d, // P_adp_regul_cnt=573, default: 410 0x00a4, // P_adp_noise_cnt= 0x00a4, // P_adp_regul_ext 0x7ff0, // P_adp_noise_ext 0x3ccc, // P_adp_fil 1, 198, 0x800, // P_equal_thres_wgn 1, 222, 0x0010, // P_fec_ber_rs_len=2 1, 235, 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard 2, 901, 0x0006, // P_clk_cfg1 (3 << 10) | (1 << 6), // P_divclksel=3 P_divbitsel=1 1, 905, 0x2c8e, // Tuner IO bank: max drive (14mA) + divout pads max drive 0, }; static int dib7000p_demod_reset(struct dib7000p_state *state) { dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); /* restart all parts */ dib7000p_write_word(state, 770, 0xffff); dib7000p_write_word(state, 771, 0xffff); dib7000p_write_word(state, 772, 0x001f); dib7000p_write_word(state, 898, 0x0003); /* except i2c, sdio, gpio - control interfaces */ dib7000p_write_word(state, 1280, 0x01fc - ((1 << 7) | (1 << 6) | (1 << 5)) ); dib7000p_write_word(state, 770, 0); dib7000p_write_word(state, 771, 0); dib7000p_write_word(state, 772, 0); dib7000p_write_word(state, 898, 0); dib7000p_write_word(state, 1280, 0); /* default */ dib7000p_reset_pll(state); if (dib7000p_reset_gpio(state) != 0) dprintk( "GPIO reset was not successful."); if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) dprintk( "OUTPUT_MODE could not be reset."); /* unforce divstr regardless whether i2c enumeration was done or not */ dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) ); dib7000p_set_bandwidth(state, 8000); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib7000p_sad_calib(state); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF); // P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ... if(state->cfg.tuner_is_baseband) dib7000p_write_word(state, 36,0x0755); else dib7000p_write_word(state, 36,0x1f55); dib7000p_write_tab(state, dib7000p_defaults); dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); return 0; } static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) { u16 tmp = 0; tmp = dib7000p_read_word(state, 903); dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll tmp = dib7000p_read_word(state, 900); dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock } static void dib7000p_restart_agc(struct dib7000p_state *state) { // P_restart_iqc & P_restart_agc dib7000p_write_word(state, 770, (1 << 11) | (1 << 9)); dib7000p_write_word(state, 770, 0x0000); } static int dib7000p_update_lna(struct dib7000p_state *state) { u16 dyn_gain; // when there is no LNA to program return immediatly if (state->cfg.update_lna) { // read dyn_gain here (because it is demod-dependent and not fe) dyn_gain = dib7000p_read_word(state, 394); if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed dib7000p_restart_agc(state); return 1; } } return 0; } static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) { struct dibx000_agc_config *agc = NULL; int i; if (state->current_band == band && state->current_agc != NULL) return 0; state->current_band = band; for (i = 0; i < state->cfg.agc_config_count; i++) if (state->cfg.agc[i].band_caps & band) { agc = &state->cfg.agc[i]; break; } if (agc == NULL) { dprintk( "no valid AGC configuration found for band 0x%02x",band); return -EINVAL; } state->current_agc = agc; /* AGC */ dib7000p_write_word(state, 75 , agc->setup ); dib7000p_write_word(state, 76 , agc->inv_gain ); dib7000p_write_word(state, 77 , agc->time_stabiliz ); dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); // Demod AGC loop configuration dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); /* AGC continued */ dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d", state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); if (state->wbd_ref != 0) dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref); else dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref); dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); dib7000p_write_word(state, 107, agc->agc1_max); dib7000p_write_word(state, 108, agc->agc1_min); dib7000p_write_word(state, 109, agc->agc2_max); dib7000p_write_word(state, 110, agc->agc2_min); dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2); dib7000p_write_word(state, 112, agc->agc1_pt3); dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); return 0; } static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) { struct dib7000p_state *state = demod->demodulator_priv; int ret = -1; u8 *agc_state = &state->agc_state; u8 agc_split; switch (state->agc_state) { case 0: // set power-up level: interf+analog+AGC dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_adc_state(state, DIBX000_ADC_ON); dib7000p_pll_clk_cfg(state); if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0) return -1; ret = 7; (*agc_state)++; break; case 1: // AGC initialization if (state->cfg.agc_control) state->cfg.agc_control(&state->demod, 1); dib7000p_write_word(state, 78, 32768); if (!state->current_agc->perform_agc_softsplit) { /* we are using the wbd - so slow AGC startup */ /* force 0 split on WBD and restart AGC */ dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8)); (*agc_state)++; ret = 5; } else { /* default AGC startup */ (*agc_state) = 4; /* wait AGC rough lock time */ ret = 7; } dib7000p_restart_agc(state); break; case 2: /* fast split search path after 5sec */ dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */ dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */ (*agc_state)++; ret = 14; break; case 3: /* split search ended */ agc_split = (u8)dib7000p_read_word(state, 396); /* store the split value for the next time */ dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */ dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */ dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ dib7000p_restart_agc(state); dprintk( "SPLIT %p: %hd", demod, agc_split); (*agc_state)++; ret = 5; break; case 4: /* LNA startup */ // wait AGC accurate lock time ret = 7; if (dib7000p_update_lna(state)) // wait only AGC rough lock time ret = 5; else // nothing was done, go to the next state (*agc_state)++; break; case 5: if (state->cfg.agc_control) state->cfg.agc_control(&state->demod, 0); (*agc_state)++; break; default: break; } return ret; } static void dib7000p_update_timf(struct dib7000p_state *state) { u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); state->timf = timf * 160 / (state->current_bandwidth / 50); dib7000p_write_word(state, 23, (u16) (timf >> 16)); dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->cfg.bw->timf); } static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq) { u16 value, est[4]; dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); /* nfft, guard, qam, alpha */ value = 0; switch (ch->u.ofdm.transmission_mode) { case TRANSMISSION_MODE_2K: value |= (0 << 7); break; case /* 4K MODE */ 255: value |= (2 << 7); break; default: case TRANSMISSION_MODE_8K: value |= (1 << 7); break; } switch (ch->u.ofdm.guard_interval) { case GUARD_INTERVAL_1_32: value |= (0 << 5); break; case GUARD_INTERVAL_1_16: value |= (1 << 5); break; case GUARD_INTERVAL_1_4: value |= (3 << 5); break; default: case GUARD_INTERVAL_1_8: value |= (2 << 5); break; } switch (ch->u.ofdm.constellation) { case QPSK: value |= (0 << 3); break; case QAM_16: value |= (1 << 3); break; default: case QAM_64: value |= (2 << 3); break; } switch (HIERARCHY_1) { case HIERARCHY_2: value |= 2; break; case HIERARCHY_4: value |= 4; break; default: case HIERARCHY_1: value |= 1; break; } dib7000p_write_word(state, 0, value); dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ value = 0; if (1 != 0) value |= (1 << 6); if (ch->u.ofdm.hierarchy_information == 1) value |= (1 << 4); if (1 == 1) value |= 1; switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) { case FEC_2_3: value |= (2 << 1); break; case FEC_3_4: value |= (3 << 1); break; case FEC_5_6: value |= (5 << 1); break; case FEC_7_8: value |= (7 << 1); break; default: case FEC_1_2: value |= (1 << 1); break; } dib7000p_write_word(state, 208, value); /* offset loop parameters */ dib7000p_write_word(state, 26, 0x6680); // timf(6xxx) dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3) dib7000p_write_word(state, 29, 0x1273); // isi dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5) /* P_dvsy_sync_wait */ switch (ch->u.ofdm.transmission_mode) { case TRANSMISSION_MODE_8K: value = 256; break; case /* 4K MODE */ 255: value = 128; break; case TRANSMISSION_MODE_2K: default: value = 64; break; } switch (ch->u.ofdm.guard_interval) { case GUARD_INTERVAL_1_16: value *= 2; break; case GUARD_INTERVAL_1_8: value *= 4; break; case GUARD_INTERVAL_1_4: value *= 8; break; default: case GUARD_INTERVAL_1_32: value *= 1; break; } state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO /* deactive the possibility of diversity reception if extended interleaver */ state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K; dib7000p_set_diversity_in(&state->demod, state->div_state); /* channel estimation fine configuration */ switch (ch->u.ofdm.constellation) { case QAM_64: est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ break; case QAM_16: est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ break; default: est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ break; } for (value = 0; value < 4; value++) dib7000p_write_word(state, 187 + value, est[value]); } static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) { struct dib7000p_state *state = demod->demodulator_priv; struct dvb_frontend_parameters schan; u32 value, factor; schan = *ch; schan.u.ofdm.constellation = QAM_64; schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32; schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; schan.u.ofdm.code_rate_HP = FEC_2_3; schan.u.ofdm.code_rate_LP = FEC_3_4; schan.u.ofdm.hierarchy_information = 0; dib7000p_set_channel(state, &schan, 7); factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth); if (factor >= 5000) factor = 1; else factor = 6; // always use the setting for 8MHz here lock_time for 7,6 MHz are longer value = 30 * state->cfg.bw->internal * factor; dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time value = 100 * state->cfg.bw->internal * factor; dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time value = 500 * state->cfg.bw->internal * factor; dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time value = dib7000p_read_word(state, 0); dib7000p_write_word(state, 0, (u16) ((1 << 9) | value)); dib7000p_read_word(state, 1284); dib7000p_write_word(state, 0, (u16) value); return 0; } static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) { struct dib7000p_state *state = demod->demodulator_priv; u16 irq_pending = dib7000p_read_word(state, 1284); if (irq_pending & 0x1) // failed return 1; if (irq_pending & 0x2) // succeeded return 2; return 0; // still pending } static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw) { static s16 notch[]={16143, 14402, 12238, 9713, 6902, 3888, 759, -2392}; static u8 sine [] ={0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126, 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212, 213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, 225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235, 235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}; u32 xtal = state->cfg.bw->xtal_hz / 1000; int f_rel = ( (rf_khz + xtal/2) / xtal) * xtal - rf_khz; int k; int coef_re[8],coef_im[8]; int bw_khz = bw; u32 pha; dprintk( "relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal); if (f_rel < -bw_khz/2 || f_rel > bw_khz/2) return; bw_khz /= 100; dib7000p_write_word(state, 142 ,0x0610); for (k = 0; k < 8; k++) { pha = ((f_rel * (k+1) * 112 * 80/bw_khz) /1000) & 0x3ff; if (pha==0) { coef_re[k] = 256; coef_im[k] = 0; } else if(pha < 256) { coef_re[k] = sine[256-(pha&0xff)]; coef_im[k] = sine[pha&0xff]; } else if (pha == 256) { coef_re[k] = 0; coef_im[k] = 256; } else if (pha < 512) { coef_re[k] = -sine[pha&0xff]; coef_im[k] = sine[256 - (pha&0xff)]; } else if (pha == 512) { coef_re[k] = -256; coef_im[k] = 0; } else if (pha < 768) { coef_re[k] = -sine[256-(pha&0xff)]; coef_im[k] = -sine[pha&0xff]; } else if (pha == 768) { coef_re[k] = 0; coef_im[k] = -256; } else { coef_re[k] = sine[pha&0xff]; coef_im[k] = -sine[256 - (pha&0xff)]; } coef_re[k] *= notch[k]; coef_re[k] += (1<<14); if (coef_re[k] >= (1<<24)) coef_re[k] = (1<<24) - 1; coef_re[k] /= (1<<15); coef_im[k] *= notch[k]; coef_im[k] += (1<<14); if (coef_im[k] >= (1<<24)) coef_im[k] = (1<<24)-1; coef_im[k] /= (1<<15); dprintk( "PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]); dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); dib7000p_write_word(state, 144, coef_im[k] & 0x3ff); dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); } dib7000p_write_word(state,143 ,0); } static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) { struct dib7000p_state *state = demod->demodulator_priv; u16 tmp = 0; if (ch != NULL) dib7000p_set_channel(state, ch, 0); else return -EINVAL; // restart demod dib7000p_write_word(state, 770, 0x4000); dib7000p_write_word(state, 770, 0x0000); msleep(45); /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3); if (state->sfn_workaround_active) { dprintk( "SFN workaround is active"); tmp |= (1 << 9); dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift } else { dib7000p_write_word(state, 166, 0x0000); // P_pha3_force_pha_shift } dib7000p_write_word(state, 29, tmp); // never achieved a lock with that bandwidth so far - wait for osc-freq to update if (state->timf == 0) msleep(200); /* offset loop parameters */ /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ tmp = (6 << 8) | 0x80; switch (ch->u.ofdm.transmission_mode) { case TRANSMISSION_MODE_2K: tmp |= (7 << 12); break; case /* 4K MODE */ 255: tmp |= (8 << 12); break; default: case TRANSMISSION_MODE_8K: tmp |= (9 << 12); break; } dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ tmp = (0 << 4); switch (ch->u.ofdm.transmission_mode) { case TRANSMISSION_MODE_2K: tmp |= 0x6; break; case /* 4K MODE */ 255: tmp |= 0x7; break; default: case TRANSMISSION_MODE_8K: tmp |= 0x8; break; } dib7000p_write_word(state, 32, tmp); /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ tmp = (0 << 4); switch (ch->u.ofdm.transmission_mode) { case TRANSMISSION_MODE_2K: tmp |= 0x6; break; case /* 4K MODE */ 255: tmp |= 0x7; break; default: case TRANSMISSION_MODE_8K: tmp |= 0x8; break; } dib7000p_write_word(state, 33, tmp); tmp = dib7000p_read_word(state,509); if (!((tmp >> 6) & 0x1)) { /* restart the fec */ tmp = dib7000p_read_word(state,771); dib7000p_write_word(state, 771, tmp | (1 << 1)); dib7000p_write_word(state, 771, tmp); msleep(10); tmp = dib7000p_read_word(state,509); } // we achieved a lock - it's time to update the osc freq if ((tmp >> 6) & 0x1) dib7000p_update_timf(state); if (state->cfg.spur_protect) dib7000p_spur_protect(state, ch->frequency/1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); return 0; } static int dib7000p_wakeup(struct dvb_frontend *demod) { struct dib7000p_state *state = demod->demodulator_priv; dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); return 0; } static int dib7000p_sleep(struct dvb_frontend *demod) { struct dib7000p_state *state = demod->demodulator_priv; return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); } static int dib7000p_identify(struct dib7000p_state *st) { u16 value; dprintk( "checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr); if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { dprintk( "wrong Vendor ID (read=0x%x)",value); return -EREMOTEIO; } if ((value = dib7000p_read_word(st, 769)) != 0x4000) { dprintk( "wrong Device ID (%x)",value); return -EREMOTEIO; } return 0; } static int dib7000p_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { struct dib7000p_state *state = fe->demodulator_priv; u16 tps = dib7000p_read_word(state,463); fep->inversion = INVERSION_AUTO; fep->u.ofdm.bandwidth = state->current_bandwidth; switch ((tps >> 8) & 0x3) { case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */ } switch (tps & 0x3) { case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; } switch ((tps >> 14) & 0x3) { case 0: fep->u.ofdm.constellation = QPSK; break; case 1: fep->u.ofdm.constellation = QAM_16; break; case 2: default: fep->u.ofdm.constellation = QAM_64; break; } /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; switch ((tps >> 5) & 0x7) { case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; case 7: default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; } switch ((tps >> 2) & 0x7) { case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; case 7: default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; } /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ return 0; } static int dib7000p_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { struct dib7000p_state *state = fe->demodulator_priv; int time; state->current_bandwidth = fep->u.ofdm.bandwidth; dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth)); /* maybe the parameter has been changed */ state->sfn_workaround_active = buggy_sfn_workaround; if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe, fep); /* start up the AGC */ state->agc_state = 0; do { time = dib7000p_agc_startup(fe, fep); if (time != -1) msleep(time); } while (time != -1); if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) { int i = 800, found; dib7000p_autosearch_start(fe, fep); do { msleep(1); found = dib7000p_autosearch_is_irq(fe); } while (found == 0 && i--); dprintk("autosearch returns: %d",found); if (found == 0 || found == 1) return 0; // no channel found dib7000p_get_frontend(fe, fep); } /* make this a config parameter */ dib7000p_set_output_mode(state, OUTMODE_MPEG2_FIFO); return dib7000p_tune(fe, fep); } static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat) { struct dib7000p_state *state = fe->demodulator_priv; u16 lock = dib7000p_read_word(state, 509); *stat = 0; if (lock & 0x8000) *stat |= FE_HAS_SIGNAL; if (lock & 0x3000) *stat |= FE_HAS_CARRIER; if (lock & 0x0100) *stat |= FE_HAS_VITERBI; if (lock & 0x0010) *stat |= FE_HAS_SYNC; if (lock & 0x0008) *stat |= FE_HAS_LOCK; return 0; } static int dib7000p_read_ber(struct dvb_frontend *fe, u32 *ber) { struct dib7000p_state *state = fe->demodulator_priv; *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); return 0; } static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) { struct dib7000p_state *state = fe->demodulator_priv; *unc = dib7000p_read_word(state, 506); return 0; } static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct dib7000p_state *state = fe->demodulator_priv; u16 val = dib7000p_read_word(state, 394); *strength = 65535 - val; return 0; } static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) { *snr = 0x0000; return 0; } static int dib7000p_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static void dib7000p_release(struct dvb_frontend *demod) { struct dib7000p_state *st = demod->demodulator_priv; dibx000_exit_i2c_master(&st->i2c_master); kfree(st); } int dib7000pc_detection(struct i2c_adapter *i2c_adap) { u8 tx[2], rx[2]; struct i2c_msg msg[2] = { { .addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2 }, { .addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2 }, }; tx[0] = 0x03; tx[1] = 0x00; if (i2c_transfer(i2c_adap, msg, 2) == 2) if (rx[0] == 0x01 && rx[1] == 0xb3) { dprintk("-D- DiB7000PC detected"); return 1; } msg[0].addr = msg[1].addr = 0x40; if (i2c_transfer(i2c_adap, msg, 2) == 2) if (rx[0] == 0x01 && rx[1] == 0xb3) { dprintk("-D- DiB7000PC detected"); return 1; } dprintk("-D- DiB7000PC not detected"); return 0; } EXPORT_SYMBOL(dib7000pc_detection); struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) { struct dib7000p_state *st = demod->demodulator_priv; return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); } EXPORT_SYMBOL(dib7000p_get_i2c_master); int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]) { struct dib7000p_state st = { .i2c_adap = i2c }; int k = 0; u8 new_addr = 0; for (k = no_of_demods-1; k >= 0; k--) { st.cfg = cfg[k]; /* designated i2c address */ new_addr = (0x40 + k) << 1; st.i2c_addr = new_addr; if (dib7000p_identify(&st) != 0) { st.i2c_addr = default_addr; if (dib7000p_identify(&st) != 0) { dprintk("DiB7000P #%d: not identified\n", k); return -EIO; } } /* start diversity to pull_down div_str - just for i2c-enumeration */ dib7000p_set_output_mode(&st, OUTMODE_DIVERSITY); /* set new i2c address and force divstart */ dib7000p_write_word(&st, 1285, (new_addr << 2) | 0x2); dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); } for (k = 0; k < no_of_demods; k++) { st.cfg = cfg[k]; st.i2c_addr = (0x40 + k) << 1; // unforce divstr dib7000p_write_word(&st, 1285, st.i2c_addr << 2); /* deactivate div - it was just for i2c-enumeration */ dib7000p_set_output_mode(&st, OUTMODE_HIGH_Z); } return 0; } EXPORT_SYMBOL(dib7000p_i2c_enumeration); static struct dvb_frontend_ops dib7000p_ops; struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) { struct dvb_frontend *demod; struct dib7000p_state *st; st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); if (st == NULL) return NULL; memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config)); st->i2c_adap = i2c_adap; st->i2c_addr = i2c_addr; st->gpio_val = cfg->gpio_val; st->gpio_dir = cfg->gpio_dir; demod = &st->demod; demod->demodulator_priv = st; memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); if (dib7000p_identify(st) != 0) goto error; dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); dib7000p_demod_reset(st); return demod; error: kfree(st); return NULL; } EXPORT_SYMBOL(dib7000p_attach); static struct dvb_frontend_ops dib7000p_ops = { .info = { .name = "DiBcom 7000PC", .type = FE_OFDM, .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib7000p_release, .init = dib7000p_wakeup, .sleep = dib7000p_sleep, .set_frontend = dib7000p_set_frontend, .get_tune_settings = dib7000p_fe_get_tune_settings, .get_frontend = dib7000p_get_frontend, .read_status = dib7000p_read_status, .read_ber = dib7000p_read_ber, .read_signal_strength = dib7000p_read_signal_strength, .read_snr = dib7000p_read_snr, .read_ucblocks = dib7000p_read_unc_blocks, }; MODULE_AUTHOR("Patrick Boettcher "); MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); MODULE_LICENSE("GPL");