/* driver for Grundig 29504-401 DVB-T Frontends based on LSI L64781 COFDM demodulator as used in Technotrend DVB-T cards Copyright (C) 2001 Holger Waechtler for Convergence Integrated Media GmbH Marko Kohtala This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "dvb_frontend.h" #define FRONTEND_NAME "dvbfe_l64781" #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG FRONTEND_NAME ": " args); \ } while (0) static int debug; static int old_set_tv_freq; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); module_param(old_set_tv_freq, int, 0644); MODULE_PARM_DESC(old_set_tv_freq, "Use old tsa5060_set_tv_freq calculations."); struct l64781_state { int first:1; struct i2c_adapter *i2c; struct dvb_adapter *dvb; }; struct dvb_frontend_info l64781_info = { .name = "Grundig 29504-401 (LSI L64781 Based)", .type = FE_OFDM, /* .frequency_min = ???,*/ /* .frequency_max = ???,*/ .frequency_stepsize = 166666, /* .frequency_tolerance = ???,*/ /* .symbol_rate_tolerance = ???,*/ .notifier_delay = 0, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_MUTE_TS }; static int l64781_writereg (struct i2c_adapter *i2c, u8 reg, u8 data) { int ret; u8 buf [] = { reg, data }; struct i2c_msg msg = { .addr = 0x55, .flags = 0, .buf = buf, .len = 2 }; if ((ret = i2c_transfer(i2c, &msg, 1)) != 1) dprintk ("%s: write_reg error (reg == %02x) = %02x!\n", __FUNCTION__, reg, ret); return (ret != 1) ? -1 : 0; } static u8 l64781_readreg (struct i2c_adapter *i2c, u8 reg) { int ret; u8 b0 [] = { reg }; u8 b1 [] = { 0 }; struct i2c_msg msg [] = { { .addr = 0x55, .flags = 0, .buf = b0, .len = 1 }, { .addr = 0x55, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(i2c, msg, 2); if (ret != 2) dprintk("%s: readreg error (ret == %i)\n", __FUNCTION__, ret); return b1[0]; } static int tsa5060_write (struct i2c_adapter *i2c, u8 data [4]) { int ret; struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = data, .len = 4 }; if ((ret = i2c_transfer(i2c, &msg, 1)) != 1) dprintk ("%s: write_reg error == %02x!\n", __FUNCTION__, ret); return (ret != 1) ? -1 : 0; } /** * set up the downconverter frequency divisor for a * reference clock comparision frequency of 166666 Hz. * frequency offset is 36125000 Hz. */ static int tsa5060_set_tv_freq (struct i2c_adapter *i2c, u32 freq) { u32 div; u8 buf [4]; u8 cfg, cpump, band_select; if (old_set_tv_freq) div = (36000000 + freq) / 166666; else div = (36125000 + freq) / 166666; cfg = 0x88; cpump = freq < 175000000 ? 2 : freq < 390000000 ? 1 : freq < 470000000 ? 2 : freq < 750000000 ? 1 : 3; band_select = freq < 175000000 ? 0x0e : freq < 470000000 ? 0x05 : 0x03; buf [0] = (div >> 8) & 0x7f; buf [1] = div & 0xff; buf [2] = ((div >> 10) & 0x60) | cfg; if (old_set_tv_freq) buf [3] = 0xc0; else buf [3] = (cpump << 6) | band_select; return tsa5060_write(i2c, buf); } static void apply_tps (struct i2c_adapter *i2c) { l64781_writereg (i2c, 0x2a, 0x00); l64781_writereg (i2c, 0x2a, 0x01); /* This here is a little bit questionable because it enables the automatic update of TPS registers. I think we'd need to handle the IRQ from FE to update some other registers as well, or at least implement some magic to tuning to correct to the TPS received from transmission. */ l64781_writereg (i2c, 0x2a, 0x02); } static void reset_afc (struct i2c_adapter *i2c) { /* Set AFC stall for the AFC_INIT_FRQ setting, TIM_STALL for timing offset */ l64781_writereg (i2c, 0x07, 0x9e); /* stall AFC */ l64781_writereg (i2c, 0x08, 0); /* AFC INIT FREQ */ l64781_writereg (i2c, 0x09, 0); l64781_writereg (i2c, 0x0a, 0); l64781_writereg (i2c, 0x07, 0x8e); l64781_writereg (i2c, 0x0e, 0); /* AGC gain to zero in beginning */ l64781_writereg (i2c, 0x11, 0x80); /* stall TIM */ l64781_writereg (i2c, 0x10, 0); /* TIM_OFFSET_LSB */ l64781_writereg (i2c, 0x12, 0); l64781_writereg (i2c, 0x13, 0); l64781_writereg (i2c, 0x11, 0x00); } static int apply_frontend_param (struct i2c_adapter *i2c, struct dvb_frontend_parameters *param) { /* The coderates for FEC_NONE, FEC_4_5 and FEC_FEC_6_7 are arbitrary */ static const u8 fec_tab[] = { 7, 0, 1, 2, 9, 3, 10, 4 }; /* QPSK, QAM_16, QAM_64 */ static const u8 qam_tab [] = { 2, 4, 0, 6 }; static const u8 bw_tab [] = { 8, 7, 6 }; /* 8Mhz, 7MHz, 6MHz */ static const u8 guard_tab [] = { 1, 2, 4, 8 }; /* The Grundig 29504-401.04 Tuner comes with 18.432MHz crystal. */ static const u32 ppm = 8000; struct dvb_ofdm_parameters *p = ¶m->u.ofdm; u32 ddfs_offset_fixed; /* u32 ddfs_offset_variable = 0x6000-((1000000UL+ppm)/ */ /* bw_tab[p->bandWidth]<<10)/15625; */ u32 init_freq; u32 spi_bias; u8 val0x04; u8 val0x05; u8 val0x06; int bw = p->bandwidth - BANDWIDTH_8_MHZ; if (param->inversion != INVERSION_ON && param->inversion != INVERSION_OFF) return -EINVAL; if (bw < 0 || bw > 2) return -EINVAL; if (p->code_rate_HP != FEC_1_2 && p->code_rate_HP != FEC_2_3 && p->code_rate_HP != FEC_3_4 && p->code_rate_HP != FEC_5_6 && p->code_rate_HP != FEC_7_8) return -EINVAL; if (p->hierarchy_information != HIERARCHY_NONE && (p->code_rate_LP != FEC_1_2 && p->code_rate_LP != FEC_2_3 && p->code_rate_LP != FEC_3_4 && p->code_rate_LP != FEC_5_6 && p->code_rate_LP != FEC_7_8)) return -EINVAL; if (p->constellation != QPSK && p->constellation != QAM_16 && p->constellation != QAM_64) return -EINVAL; if (p->transmission_mode != TRANSMISSION_MODE_2K && p->transmission_mode != TRANSMISSION_MODE_8K) return -EINVAL; if (p->guard_interval < GUARD_INTERVAL_1_32 || p->guard_interval > GUARD_INTERVAL_1_4) return -EINVAL; if (p->hierarchy_information < HIERARCHY_NONE || p->hierarchy_information > HIERARCHY_4) return -EINVAL; ddfs_offset_fixed = 0x4000-(ppm<<16)/bw_tab[p->bandwidth]/1000000; /* This works up to 20000 ppm, it overflows if too large ppm! */ init_freq = (((8UL<<25) + (8UL<<19) / 25*ppm / (15625/25)) / bw_tab[p->bandwidth] & 0xFFFFFF); /* SPI bias calculation is slightly modified to fit in 32bit */ /* will work for high ppm only... */ spi_bias = 378 * (1 << 10); spi_bias *= 16; spi_bias *= bw_tab[p->bandwidth]; spi_bias *= qam_tab[p->constellation]; spi_bias /= p->code_rate_HP + 1; spi_bias /= (guard_tab[p->guard_interval] + 32); spi_bias *= 1000ULL; spi_bias /= 1000ULL + ppm/1000; spi_bias *= p->code_rate_HP; val0x04 = (p->transmission_mode << 2) | p->guard_interval; val0x05 = fec_tab[p->code_rate_HP]; if (p->hierarchy_information != HIERARCHY_NONE) val0x05 |= (p->code_rate_LP - FEC_1_2) << 3; val0x06 = (p->hierarchy_information << 2) | p->constellation; l64781_writereg (i2c, 0x04, val0x04); l64781_writereg (i2c, 0x05, val0x05); l64781_writereg (i2c, 0x06, val0x06); reset_afc (i2c); /* Technical manual section 2.6.1, TIM_IIR_GAIN optimal values */ l64781_writereg (i2c, 0x15, p->transmission_mode == TRANSMISSION_MODE_2K ? 1 : 3); l64781_writereg (i2c, 0x16, init_freq & 0xff); l64781_writereg (i2c, 0x17, (init_freq >> 8) & 0xff); l64781_writereg (i2c, 0x18, (init_freq >> 16) & 0xff); l64781_writereg (i2c, 0x1b, spi_bias & 0xff); l64781_writereg (i2c, 0x1c, (spi_bias >> 8) & 0xff); l64781_writereg (i2c, 0x1d, ((spi_bias >> 16) & 0x7f) | (param->inversion == INVERSION_ON ? 0x80 : 0x00)); l64781_writereg (i2c, 0x22, ddfs_offset_fixed & 0xff); l64781_writereg (i2c, 0x23, (ddfs_offset_fixed >> 8) & 0x3f); l64781_readreg (i2c, 0x00); /* clear interrupt registers... */ l64781_readreg (i2c, 0x01); /* dto. */ apply_tps (i2c); return 0; } static int reset_and_configure (struct i2c_adapter *i2c) { u8 buf [] = { 0x06 }; struct i2c_msg msg = { .addr = 0x00, .flags = 0, .buf = buf, .len = 1 }; return (i2c_transfer(i2c, &msg, 1) == 1) ? 0 : -ENODEV; } static int get_frontend(struct i2c_adapter* i2c, struct dvb_frontend_parameters* param) { int tmp; tmp = l64781_readreg(i2c, 0x04); switch(tmp & 3) { case 0: param->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; case 1: param->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; case 2: param->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; case 3: param->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; } switch((tmp >> 2) & 3) { case 0: param->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; case 1: param->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; default: printk("Unexpected value for transmission_mode\n"); } tmp = l64781_readreg(i2c, 0x05); switch(tmp & 7) { case 0: param->u.ofdm.code_rate_HP = FEC_1_2; break; case 1: param->u.ofdm.code_rate_HP = FEC_2_3; break; case 2: param->u.ofdm.code_rate_HP = FEC_3_4; break; case 3: param->u.ofdm.code_rate_HP = FEC_5_6; break; case 4: param->u.ofdm.code_rate_HP = FEC_7_8; break; default: printk("Unexpected value for code_rate_HP\n"); } switch((tmp >> 3) & 7) { case 0: param->u.ofdm.code_rate_LP = FEC_1_2; break; case 1: param->u.ofdm.code_rate_LP = FEC_2_3; break; case 2: param->u.ofdm.code_rate_LP = FEC_3_4; break; case 3: param->u.ofdm.code_rate_LP = FEC_5_6; break; case 4: param->u.ofdm.code_rate_LP = FEC_7_8; break; default: printk("Unexpected value for code_rate_LP\n"); } tmp = l64781_readreg(i2c, 0x06); switch(tmp & 3) { case 0: param->u.ofdm.constellation = QPSK; break; case 1: param->u.ofdm.constellation = QAM_16; break; case 2: param->u.ofdm.constellation = QAM_64; break; default: printk("Unexpected value for constellation\n"); } switch((tmp >> 2) & 7) { case 0: param->u.ofdm.hierarchy_information = HIERARCHY_NONE; break; case 1: param->u.ofdm.hierarchy_information = HIERARCHY_1; break; case 2: param->u.ofdm.hierarchy_information = HIERARCHY_2; break; case 3: param->u.ofdm.hierarchy_information = HIERARCHY_4; break; default: printk("Unexpected value for hierarchy\n"); } tmp = l64781_readreg (i2c, 0x1d); param->inversion = (tmp & 0x80) ? INVERSION_ON : INVERSION_OFF; tmp = (int) (l64781_readreg (i2c, 0x08) | (l64781_readreg (i2c, 0x09) << 8) | (l64781_readreg (i2c, 0x0a) << 16)); param->frequency += tmp; return 0; } static int init (struct i2c_adapter *i2c) { reset_and_configure (i2c); /* Power up */ l64781_writereg (i2c, 0x3e, 0xa5); /* Reset hard */ l64781_writereg (i2c, 0x2a, 0x04); l64781_writereg (i2c, 0x2a, 0x00); /* Set tuner specific things */ /* AFC_POL, set also in reset_afc */ l64781_writereg (i2c, 0x07, 0x8e); /* Use internal ADC */ l64781_writereg (i2c, 0x0b, 0x81); /* AGC loop gain, and polarity is positive */ l64781_writereg (i2c, 0x0c, 0x84); /* Internal ADC outputs two's complement */ l64781_writereg (i2c, 0x0d, 0x8c); /* With ppm=8000, it seems the DTR_SENSITIVITY will result in value of 2 with all possible bandwidths and guard intervals, which is the initial value anyway. */ /*l64781_writereg (i2c, 0x19, 0x92);*/ /* Everything is two's complement, soft bit and CSI_OUT too */ l64781_writereg (i2c, 0x1e, 0x09); return 0; } static int l64781_ioctl (struct dvb_frontend *fe, unsigned int cmd, void *arg) { struct l64781_state* state = fe->data; struct i2c_adapter *i2c = state->i2c; int res; switch (cmd) { case FE_GET_INFO: memcpy (arg, &l64781_info, sizeof(struct dvb_frontend_info)); break; case FE_READ_STATUS: { fe_status_t *status = (fe_status_t *) arg; int sync = l64781_readreg (i2c, 0x32); int gain = l64781_readreg (i2c, 0x0e); l64781_readreg (i2c, 0x00); /* clear interrupt registers... */ l64781_readreg (i2c, 0x01); /* dto. */ *status = 0; if (gain > 5) *status |= FE_HAS_SIGNAL; if (sync & 0x02) /* VCXO locked, this criteria should be ok */ *status |= FE_HAS_CARRIER; if (sync & 0x20) *status |= FE_HAS_VITERBI; if (sync & 0x40) *status |= FE_HAS_SYNC; if (sync == 0x7f) *status |= FE_HAS_LOCK; break; } case FE_READ_BER: { /* XXX FIXME: set up counting period (reg 0x26...0x28) */ u32 *ber = (u32 *) arg; *ber = l64781_readreg (i2c, 0x39) | (l64781_readreg (i2c, 0x3a) << 8); break; } case FE_READ_SIGNAL_STRENGTH: { u8 gain = l64781_readreg (i2c, 0x0e); *(u16 *) arg = (gain << 8) | gain; break; } case FE_READ_SNR: { u16 *snr = (u16 *) arg; u8 avg_quality = 0xff - l64781_readreg (i2c, 0x33); *snr = (avg_quality << 8) | avg_quality; /* not exact, but...*/ break; } case FE_READ_UNCORRECTED_BLOCKS: { u32 *ub = (u32 *) arg; *ub = l64781_readreg (i2c, 0x37) | (l64781_readreg (i2c, 0x38) << 8); break; } case FE_SET_FRONTEND: { struct dvb_frontend_parameters *p = arg; tsa5060_set_tv_freq (i2c, p->frequency); return apply_frontend_param (i2c, p); } case FE_GET_FRONTEND: { struct dvb_frontend_parameters *p = arg; return get_frontend(i2c, p); } case FE_SLEEP: /* Power down */ return l64781_writereg (i2c, 0x3e, 0x5a); case FE_INIT: res = init (i2c); if ((res == 0) && (state->first)) { state->first = 0; msleep(200); } return res; case FE_GET_TUNE_SETTINGS: { struct dvb_frontend_tune_settings* fesettings = (struct dvb_frontend_tune_settings*) arg; fesettings->min_delay_ms = 200; fesettings->step_size = 166667; fesettings->max_drift = 166667*2; return 0; } default: dprintk ("%s: unknown command !!!\n", __FUNCTION__); return -EINVAL; }; return 0; } static int l64781_probe(struct i2c_adapter *i2c) { u8 reg0x3e; u8 b0 [] = { 0x1a }; u8 b1 [] = { 0x00 }; struct i2c_msg msg [] = { { .addr = 0x55, .flags = 0, .buf = b0, .len = 1 }, { .addr = 0x55, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; /** * the L64781 won't show up before we send the reset_and_configure() * broadcast. If nothing responds there is no L64781 on the bus... */ if (reset_and_configure(i2c) < 0) { dprintk("No response to reset and configure broadcast...\n"); return -ENODEV; } /* The chip always responds to reads */ if (i2c_transfer(i2c, msg, 2) != 2) { dprintk("No response to read on I2C bus\n"); return -ENODEV; } /* Save current register contents for bailout */ reg0x3e = l64781_readreg(i2c, 0x3e); /* Reading the POWER_DOWN register always returns 0 */ if (reg0x3e != 0) { dprintk("Device doesn't look like L64781\n"); return -ENODEV; } /* Turn the chip off */ l64781_writereg (i2c, 0x3e, 0x5a); /* Responds to all reads with 0 */ if (l64781_readreg(i2c, 0x1a) != 0) { dprintk("Read 1 returned unexpcted value\n"); goto out; } /* Turn the chip on */ l64781_writereg (i2c, 0x3e, 0xa5); /* Responds with register default value */ if (l64781_readreg(i2c, 0x1a) != 0xa1) { dprintk("Read 2 returned unexpcted value\n"); goto out; } return 0; out: l64781_writereg (i2c, 0x3e, reg0x3e); /* restore reg 0x3e */ return -ENODEV; } static struct i2c_client client_template; static int l64781_attach_adapter(struct i2c_adapter *adapter) { struct l64781_state *state; struct i2c_client *client; int ret; dprintk("Trying to attach to adapter 0x%x:%s.\n", adapter->id, adapter->name); if ((ret = l64781_probe(adapter))) return ret; if ( !(state = kmalloc(sizeof(struct l64781_state), GFP_KERNEL)) ) return -ENOMEM; memset(state, 0, sizeof(struct l64781_state)); state->i2c = adapter; state->first = 1; if ( !(client = kmalloc(sizeof(struct i2c_client), GFP_KERNEL)) ) { kfree(state); return -ENOMEM; } memcpy(client, &client_template, sizeof(struct i2c_client)); client->adapter = adapter; client->addr = 0; //XXX i2c_set_clientdata(client, state); if ((ret = i2c_attach_client(client))) { kfree(state); kfree(client); return ret; } BUG_ON(!state->dvb); if ((ret = dvb_register_frontend(l64781_ioctl, state->dvb, state, &l64781_info, THIS_MODULE))) { i2c_detach_client(client); kfree(state); kfree(client); return ret; } return 0; } static int l64781_detach_client(struct i2c_client *client) { struct l64781_state *state = i2c_get_clientdata(client); dvb_unregister_frontend_new(l64781_ioctl, state->dvb); i2c_detach_client(client); BUG_ON(state->dvb); kfree(client); kfree(state); return 0; } static int l64781_command(struct i2c_client *client, unsigned int cmd, void *arg) { struct l64781_state *data = i2c_get_clientdata(client); dprintk ("%s\n", __FUNCTION__); switch (cmd) { case FE_REGISTER: { data->dvb = arg; break; } case FE_UNREGISTER: { data->dvb = NULL; break; } default: return -EOPNOTSUPP; } return 0; } static struct i2c_driver driver = { .owner = THIS_MODULE, .name = FRONTEND_NAME, .id = I2C_DRIVERID_DVBFE_L64781, .flags = I2C_DF_NOTIFY, .attach_adapter = l64781_attach_adapter, .detach_client = l64781_detach_client, .command = l64781_command, }; static struct i2c_client client_template = { .name = FRONTEND_NAME, .flags = I2C_CLIENT_ALLOW_USE, .driver = &driver, }; static int __init init_l64781 (void) { return i2c_add_driver(&driver); } static void __exit exit_l64781 (void) { if (i2c_del_driver(&driver)) printk(KERN_ERR "l64781: driver deregistration failed\n"); } module_init(init_l64781); module_exit(exit_l64781); MODULE_DESCRIPTION("Grundig 29504-401 DVB-T Frontend (LSI L64781 Based)"); MODULE_AUTHOR("Holger Waechtler, Marko Kohtala"); MODULE_LICENSE("GPL");