/* * Driver for the Integrant ITD1000 "Zero-IF Tuner IC for Direct Broadcast Satellite" * * Copyright (c) 2007-8 Patrick Boettcher * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.= */ #include #include #include #include #include #include "dvb_frontend.h" #include "itd1000.h" #include "itd1000_priv.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); #define deb(args...) do { \ if (debug) { \ printk(KERN_DEBUG "ITD1000: " args);\ printk("\n"); \ } \ } while (0) #define warn(args...) do { \ printk(KERN_WARNING "ITD1000: " args); \ printk("\n"); \ } while (0) #define info(args...) do { \ printk(KERN_INFO "ITD1000: " args); \ printk("\n"); \ } while (0) /* don't write more than one byte with flexcop behind */ static int itd1000_write_regs(struct itd1000_state *state, u8 reg, u8 v[], u8 len) { u8 buf[1+len]; struct i2c_msg msg = { .addr = state->cfg->i2c_address, .flags = 0, .buf = buf, .len = len+1 }; buf[0] = reg; memcpy(&buf[1], v, len); /* deb("wr %02x: %02x", reg, v[0]); */ if (i2c_transfer(state->i2c, &msg, 1) != 1) { printk(KERN_WARNING "itd1000 I2C write failed\n"); return -EREMOTEIO; } return 0; } static int itd1000_read_reg(struct itd1000_state *state, u8 reg) { u8 val; struct i2c_msg msg[2] = { { .addr = state->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 }, { .addr = state->cfg->i2c_address, .flags = I2C_M_RD, .buf = &val, .len = 1 }, }; /* ugly flexcop workaround */ itd1000_write_regs(state, (reg - 1) & 0xff, &state->shadow[(reg - 1) & 0xff], 1); if (i2c_transfer(state->i2c, msg, 2) != 2) { warn("itd1000 I2C read failed"); return -EREMOTEIO; } return val; } static inline int itd1000_write_reg(struct itd1000_state *state, u8 r, u8 v) { int ret = itd1000_write_regs(state, r, &v, 1); state->shadow[r] = v; return ret; } #if 0 static void reg_dump(struct itd1000_state *state) { int i; for (i = 0x65; i < 0x9c; i++) printk(KERN_DEBUG "ITD: %02x: %02x\n", i, itd1000_read_reg(state, i)); } #endif static struct { u32 symbol_rate; u8 pgaext : 4; /* PLLFH */ u8 bbgvmin : 4; /* BBGVMIN */ } itd1000_lpf_pga[] = { { 0, 0x8, 0x3 }, { 5200000, 0x8, 0x3 }, { 12200000, 0x4, 0x3 }, { 15400000, 0x2, 0x3 }, { 19800000, 0x2, 0x3 }, { 21500000, 0x2, 0x3 }, { 24500000, 0x2, 0x3 }, { 28400000, 0x2, 0x3 }, { 33400000, 0x2, 0x3 }, { 34400000, 0x1, 0x4 }, { 34400000, 0x1, 0x4 }, { 38400000, 0x1, 0x4 }, { 38400000, 0x1, 0x4 }, { 40400000, 0x1, 0x4 }, { 45400000, 0x1, 0x4 }, }; static void itd1000_set_lpf_bw(struct itd1000_state *state, u32 symbol_rate) { u8 i; u8 con1 = itd1000_read_reg(state, CON1) & 0xfd; u8 pllfh = itd1000_read_reg(state, PLLFH) & 0x0f; u8 bbgvmin = itd1000_read_reg(state, BBGVMIN) & 0xf0; u8 bw = itd1000_read_reg(state, BW) & 0xf0; deb("symbol_rate = %d", symbol_rate); /* not sure what is that ? - starting to download the table */ itd1000_write_reg(state, CON1, con1 | (1 << 1)); for (i = 0; i < ARRAY_SIZE(itd1000_lpf_pga); i++) if (symbol_rate < itd1000_lpf_pga[i].symbol_rate) { deb("symrate: index: %d pgaext: %x, bbgvmin: %x", i, itd1000_lpf_pga[i].pgaext, itd1000_lpf_pga[i].bbgvmin); itd1000_write_reg(state, PLLFH, pllfh | (itd1000_lpf_pga[i].pgaext << 4)); itd1000_write_reg(state, BBGVMIN, bbgvmin | (itd1000_lpf_pga[i].bbgvmin)); itd1000_write_reg(state, BW, bw | (i & 0x0f)); break; } itd1000_write_reg(state, CON1, con1 | (0 << 1)); } static struct { u8 vcorg; u32 fmax_rg; } itd1000_vcorg[] = { { 1, 920000 }, { 2, 971000 }, { 3, 1031000 }, { 4, 1091000 }, { 5, 1171000 }, { 6, 1281000 }, { 7, 1381000 }, { 8, 500000 }, /* this is intentional. */ { 9, 1451000 }, { 10, 1531000 }, { 11, 1631000 }, { 12, 1741000 }, { 13, 1891000 }, { 14, 2071000 }, { 15, 2250000 }, }; static void itd1000_set_vco(struct itd1000_state *state, u32 freq_khz) { u8 i; u8 gvbb_i2c = itd1000_read_reg(state, GVBB_I2C) & 0xbf; u8 vco_chp1_i2c = itd1000_read_reg(state, VCO_CHP1_I2C) & 0x0f; u8 adcout; /* reserved bit again (reset ?) */ itd1000_write_reg(state, GVBB_I2C, gvbb_i2c | (1 << 6)); for (i = 0; i < ARRAY_SIZE(itd1000_vcorg); i++) { if (freq_khz < itd1000_vcorg[i].fmax_rg) { itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | (itd1000_vcorg[i].vcorg << 4)); msleep(1); adcout = itd1000_read_reg(state, PLLLOCK) & 0x0f; deb("VCO: %dkHz: %d -> ADCOUT: %d %02x", freq_khz, itd1000_vcorg[i].vcorg, adcout, vco_chp1_i2c); if (adcout > 13) { if (!(itd1000_vcorg[i].vcorg == 7 || itd1000_vcorg[i].vcorg == 15)) itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg + 1) << 4)); } else if (adcout < 2) { if (!(itd1000_vcorg[i].vcorg == 1 || itd1000_vcorg[i].vcorg == 9)) itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg - 1) << 4)); } break; } } } struct { u32 freq; u8 values[10]; /* RFTR, RFST1 - RFST9 */ } itd1000_fre_values[] = { { 1075000, { 0x59, 0x1d, 0x1c, 0x17, 0x16, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, { 1250000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, { 1450000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, { 1650000, { 0x69, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, { 1750000, { 0x69, 0x1e, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, { 1850000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } }, { 1900000, { 0x69, 0x1d, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } }, { 1950000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0d, 0x0b, 0x0a } }, { 2050000, { 0x69, 0x1e, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0b, 0x0a } }, { 2150000, { 0x69, 0x1d, 0x1c, 0x17, 0x15, 0x14, 0x13, 0x0f, 0x0e, 0x0b } } }; #define FREF 16 static void itd1000_set_lo(struct itd1000_state *state, u32 freq_khz) { int i, j; u32 plln, pllf; u64 tmp; plln = (freq_khz * 1000) / 2 / FREF; /* Compute the factional part times 1000 */ tmp = plln % 1000000; plln /= 1000000; tmp *= 1048576; do_div(tmp, 1000000); pllf = (u32) tmp; state->frequency = ((plln * 1000) + (pllf * 1000)/1048576) * 2*FREF; deb("frequency: %dkHz (wanted) %dkHz (set), PLLF = %d, PLLN = %d", freq_khz, state->frequency, pllf, plln); itd1000_write_reg(state, PLLNH, 0x80); /* PLLNH */; itd1000_write_reg(state, PLLNL, plln & 0xff); itd1000_write_reg(state, PLLFH, (itd1000_read_reg(state, PLLFH) & 0xf0) | ((pllf >> 16) & 0x0f)); itd1000_write_reg(state, PLLFM, (pllf >> 8) & 0xff); itd1000_write_reg(state, PLLFL, (pllf >> 0) & 0xff); for (i = 0; i < ARRAY_SIZE(itd1000_fre_values); i++) { if (freq_khz <= itd1000_fre_values[i].freq) { deb("fre_values: %d", i); itd1000_write_reg(state, RFTR, itd1000_fre_values[i].values[0]); for (j = 0; j < 9; j++) itd1000_write_reg(state, RFST1+j, itd1000_fre_values[i].values[j+1]); break; } } itd1000_set_vco(state, freq_khz); } static int itd1000_set_parameters(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct itd1000_state *state = fe->tuner_priv; u8 pllcon1; itd1000_set_lo(state, p->frequency); itd1000_set_lpf_bw(state, p->u.qpsk.symbol_rate); pllcon1 = itd1000_read_reg(state, PLLCON1) & 0x7f; itd1000_write_reg(state, PLLCON1, pllcon1 | (1 << 7)); itd1000_write_reg(state, PLLCON1, pllcon1); return 0; } static int itd1000_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct itd1000_state *state = fe->tuner_priv; *frequency = state->frequency; return 0; } static int itd1000_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { return 0; } static u8 itd1000_init_tab[][2] = { { PLLCON1, 0x65 }, /* Register does not change */ { PLLNH, 0x80 }, /* Bits [7:6] do not change */ { RESERVED_0X6D, 0x3b }, { VCO_CHP2_I2C, 0x12 }, { 0x72, 0xf9 }, /* No such regsister defined */ { RESERVED_0X73, 0xff }, { RESERVED_0X74, 0xb2 }, { RESERVED_0X75, 0xc7 }, { EXTGVBBRF, 0xf0 }, { DIVAGCCK, 0x80 }, { BBTR, 0xa0 }, { RESERVED_0X7E, 0x4f }, { 0x82, 0x88 }, /* No such regsister defined */ { 0x83, 0x80 }, /* No such regsister defined */ { 0x84, 0x80 }, /* No such regsister defined */ { RESERVED_0X85, 0x74 }, { RESERVED_0X86, 0xff }, { RESERVED_0X88, 0x02 }, { RESERVED_0X89, 0x16 }, { RFST0, 0x1f }, { RESERVED_0X94, 0x66 }, { RESERVED_0X95, 0x66 }, { RESERVED_0X96, 0x77 }, { RESERVED_0X97, 0x99 }, { RESERVED_0X98, 0xff }, { RESERVED_0X99, 0xfc }, { RESERVED_0X9A, 0xba }, { RESERVED_0X9B, 0xaa }, }; static u8 itd1000_reinit_tab[][2] = { { VCO_CHP1_I2C, 0x8a }, { BW, 0x87 }, { GVBB_I2C, 0x03 }, { BBGVMIN, 0x03 }, { CON1, 0x2e }, }; static int itd1000_init(struct dvb_frontend *fe) { struct itd1000_state *state = fe->tuner_priv; int i; for (i = 0; i < ARRAY_SIZE(itd1000_init_tab); i++) itd1000_write_reg(state, itd1000_init_tab[i][0], itd1000_init_tab[i][1]); for (i = 0; i < ARRAY_SIZE(itd1000_reinit_tab); i++) itd1000_write_reg(state, itd1000_reinit_tab[i][0], itd1000_reinit_tab[i][1]); return 0; } static int itd1000_sleep(struct dvb_frontend *fe) { return 0; } static int itd1000_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } static const struct dvb_tuner_ops itd1000_tuner_ops = { .info = { .name = "Integrant ITD1000", .frequency_min = 950000, .frequency_max = 2150000, .frequency_step = 125, /* kHz for QPSK frontends */ }, .release = itd1000_release, .init = itd1000_init, .sleep = itd1000_sleep, .set_params = itd1000_set_parameters, .get_frequency = itd1000_get_frequency, .get_bandwidth = itd1000_get_bandwidth }; struct dvb_frontend *itd1000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct itd1000_config *cfg) { struct itd1000_state *state = NULL; u8 i = 0; state = kzalloc(sizeof(struct itd1000_state), GFP_KERNEL); if (state == NULL) return NULL; state->cfg = cfg; state->i2c = i2c; i = itd1000_read_reg(state, 0); if (i != 0) { kfree(state); return NULL; } info("successfully identified (ID: %d)", i); memset(state->shadow, 0xff, sizeof(state->shadow)); for (i = 0x65; i < 0x9c; i++) state->shadow[i] = itd1000_read_reg(state, i); memcpy(&fe->ops.tuner_ops, &itd1000_tuner_ops, sizeof(struct dvb_tuner_ops)); fe->tuner_priv = state; return fe; } EXPORT_SYMBOL(itd1000_attach); MODULE_AUTHOR("Patrick Boettcher "); MODULE_DESCRIPTION("Integrant ITD1000 driver"); MODULE_LICENSE("GPL");