/* * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner" * * Copyright (c) 2006 Olivier DANET * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.= */ /* See mt2060_priv.h for details */ /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */ #include #include #include #include #include "mt2060.h" #include "mt2060_priv.h" static int debug=0; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); #define dprintk(args...) do { if (debug) printk(KERN_DEBUG "MT2060: " args); printk("\n"); } while (0) // Reads a single register static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val) { struct i2c_msg msg[2] = { { .addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1 }, { .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 }, }; if (i2c_transfer(state->i2c, msg, 2) != 2) { printk(KERN_WARNING "mt2060 I2C read failed\n"); return -EREMOTEIO; } return 0; } // Writes a single register static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val) { u8 buf[2]; struct i2c_msg msg = { .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2 }; buf[0]=reg; buf[1]=val; if (i2c_transfer(state->i2c, &msg, 1) != 1) { printk(KERN_WARNING "mt2060 I2C write failed\n"); return -EREMOTEIO; } return 0; } // Writes a set of consecutive registers static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len) { struct i2c_msg msg = { .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len }; if (i2c_transfer(state->i2c, &msg, 1) != 1) { printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len); return -EREMOTEIO; } return 0; } // Initialisation sequences // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49 static u8 mt2060_config1[] = { REG_LO1C1, 0x3F, 0x74, 0x00, 0x08, 0x93 }; // FMCG=2, GP2=0, GP1=0 static u8 mt2060_config2[] = { REG_MISC_CTRL, 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42 }; // VGAG=3, V1CSE=1 static u8 mt2060_config3[] = { REG_VGAG, 0x33 }; int mt2060_init(struct mt2060_state *state) { if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1))) return -EREMOTEIO; if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3))) return -EREMOTEIO; return 0; } EXPORT_SYMBOL(mt2060_init); #ifdef MT2060_SPURCHECK /* The function below calculates the frequency offset between the output frequency if2 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */ static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2) { int I,J; int dia,diamin,diff; diamin=1000000; for (I = 1; I < 10; I++) { J = ((2*I*lo1)/lo2+1)/2; diff = I*(int)lo1-J*(int)lo2; if (diff < 0) diff=-diff; dia = (diff-(int)if2); if (dia < 0) dia=-dia; if (diamin > dia) diamin=dia; } return diamin; } #define BANDWIDTH 4000 // kHz /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */ static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2) { u32 Spur,Sp1,Sp2; int I,J; I=0; J=1000; Spur=mt2060_spurcalc(lo1,lo2,if2); if (Spur < BANDWIDTH) { /* Potential spurs detected */ dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)", (int)lo1,(int)lo2); I=1000; Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2); Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2); if (Sp1 < Sp2) { J=-J; I=-I; Spur=Sp2; } else Spur=Sp1; while (Spur < BANDWIDTH) { I += J; Spur = mt2060_spurcalc(lo1+I,lo2+I,if2); } dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)", (int)(lo1+I),(int)(lo2+I)); } return I; } #endif #define IF2 36150 // IF2 frequency = 36.150 MHz #define FREF 16000 // Quartz oscillator 16 MHz int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep) { int ret=0; int i=0; u32 freq; u8 lnaband; u32 f_lo1,f_lo2; u32 div1,num1,div2,num2; u8 b[8]; u32 if1; if1 = state->if1_freq; b[0] = REG_LO1B1; b[1] = 0xFF; mt2060_writeregs(state,b,2); freq = fep->frequency / 1000; // Hz -> kHz f_lo1 = freq + if1 * 1000; f_lo1 = (f_lo1/250)*250; f_lo2 = f_lo1 - freq - IF2; f_lo2 = (f_lo2/50)*50; #ifdef MT2060_SPURCHECK // LO-related spurs detection and correction num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2); f_lo1 += num1; f_lo2 += num1; #endif //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 ) div1 = f_lo1 / FREF; num1 = (64 * (f_lo1 % FREF) )/FREF; // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 ) div2 = f_lo2 / FREF; num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2; if (freq <= 95000) lnaband = 0xB0; else if (freq <= 180000) lnaband = 0xA0; else if (freq <= 260000) lnaband = 0x90; else if (freq <= 335000) lnaband = 0x80; else if (freq <= 425000) lnaband = 0x70; else if (freq <= 480000) lnaband = 0x60; else if (freq <= 570000) lnaband = 0x50; else if (freq <= 645000) lnaband = 0x40; else if (freq <= 730000) lnaband = 0x30; else if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10; b[0] = REG_LO1C1; b[1] = lnaband | ((num1 >>2) & 0x0F); b[2] = div1; b[3] = (num2 & 0x0F) | ((num1 & 3) << 4); b[4] = num2 >> 4; b[5] = ((num2 >>12) & 1) | (div2 << 1); dprintk("IF1: %dMHz",(int)if1); dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2); dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2); dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]); mt2060_writeregs(state,b,6); //Waits for pll lock or timeout i=0; do { mt2060_readreg(state,REG_LO_STATUS,b); if ((b[0] & 0x88)==0x88) break; msleep(4); i++; } while (i<10); return ret; } EXPORT_SYMBOL(mt2060_set); /* from usbsnoop.log */ static void mt2060_calibrate(struct mt2060_state *state) { u8 b = 0; int i = 0; if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1))) return; if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2))) return; do { b |= (1 << 6); // FM1SS; mt2060_writereg(state, REG_LO2C1,b); msleep(20); if (i == 0) { b |= (1 << 7); // FM1CA; mt2060_writereg(state, REG_LO2C1,b); b &= ~(1 << 7); // FM1CA; msleep(20); } b &= ~(1 << 6); // FM1SS mt2060_writereg(state, REG_LO2C1,b); msleep(20); i++; } while (i < 9); i = 0; while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0) msleep(20); if (i < 10) { mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :) dprintk("calibration was successful: %d", state->fmfreq); } else dprintk("FMCAL timed out"); } /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */ int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1) { u8 id = 0; memset(state,0,sizeof(struct mt2060_state)); state->config = config; state->i2c = i2c; state->if1_freq = if1; if (mt2060_readreg(state,REG_PART_REV,&id) != 0) return -ENODEV; if (id != PART_REV) return -ENODEV; printk(KERN_INFO "MT2060: successfully identified\n"); mt2060_calibrate(state); return 0; } EXPORT_SYMBOL(mt2060_attach); MODULE_AUTHOR("Olivier DANET"); MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver"); MODULE_LICENSE("GPL");