/* NxtWave Communications - NXT6000 demodulator driver This driver currently supports: Alps TDME7 (Tuner: MITEL SP5659) Alps TDED4 (Tuner: TI ALP510, external Nxt6000) Copyright (C) 2002-2003 Florian Schirmer This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "dvb_frontend.h" #include "nxt6000.h" static int debug = 0; MODULE_DESCRIPTION("NxtWave NXT6000 DVB demodulator driver"); MODULE_AUTHOR("Florian Schirmer"); MODULE_LICENSE("GPL"); MODULE_PARM(debug, "i"); static struct dvb_frontend_info nxt6000_info = { .name = "NxtWave NXT6000", .type = FE_OFDM, .frequency_min = 0, .frequency_max = 863250000, .frequency_stepsize = 62500, /*.frequency_tolerance = */ /* FIXME: 12% of SR */ .symbol_rate_min = 0, /* FIXME */ .symbol_rate_max = 9360000, /* FIXME */ .symbol_rate_tolerance = 4000, .notifier_delay = 0, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, }; #pragma pack(1) struct nxt6000_config { u8 demod_addr; u8 tuner_addr; u8 tuner_type; u8 clock_inversion; }; #pragma pack() #define TUNER_TYPE_ALP510 0 #define TUNER_TYPE_SP5659 1 #define FE2NXT(fe) ((struct nxt6000_config *)&(fe->data)) #define FREQ2DIV(freq) ((freq + 36166667) / 166667) #define dprintk if (debug) printk static int nxt6000_write(struct dvb_i2c_bus *i2c, u8 addr, u8 reg, u8 data) { u8 buf[] = {reg, data}; struct i2c_msg msg = {.addr = addr >> 1, .flags = 0, .buf = buf, .len = 2}; int ret; if ((ret = i2c->xfer(i2c, &msg, 1)) != 1) dprintk("nxt6000: nxt6000_write error (.addr = 0x%02X, reg: 0x%02X, data: 0x%02X, ret: %d)\n", addr, reg, data, ret); return (ret != 1) ? -EFAULT : 0; } static u8 nxt6000_writereg(struct dvb_frontend *fe, u8 reg, u8 data) { struct nxt6000_config *nxt = FE2NXT(fe); return nxt6000_write(fe->i2c, nxt->demod_addr, reg, data); } static u8 nxt6000_read(struct dvb_i2c_bus *i2c, u8 addr, u8 reg) { int ret; u8 b0[] = {reg}; u8 b1[] = {0}; struct i2c_msg msgs[] = {{.addr = addr >> 1, .flags = 0, .buf = b0, .len = 1}, {.addr = addr >> 1, .flags = I2C_M_RD, .buf = b1, .len = 1}}; ret = i2c->xfer(i2c, msgs, 2); if (ret != 2) dprintk("nxt6000: nxt6000_read error (.addr = 0x%02X, reg: 0x%02X, ret: %d)\n", addr, reg, ret); return b1[0]; } static u8 nxt6000_readreg(struct dvb_frontend *fe, u8 reg) { struct nxt6000_config *nxt = FE2NXT(fe); return nxt6000_read(fe->i2c, nxt->demod_addr, reg); } static int pll_write(struct dvb_i2c_bus *i2c, u8 demod_addr, u8 tuner_addr, u8 *buf, u8 len) { struct i2c_msg msg = {.addr = tuner_addr >> 1, .flags = 0, .buf = buf, .len = len}; int ret; nxt6000_write(i2c, demod_addr, ENABLE_TUNER_IIC, 0x01); /* open i2c bus switch */ ret = i2c->xfer(i2c, &msg, 1); nxt6000_write(i2c, demod_addr, ENABLE_TUNER_IIC, 0x00); /* close i2c bus switch */ if (ret != 1) dprintk("nxt6000: pll_write error %d\n", ret); return (ret != 1) ? -EFAULT : 0; } static int sp5659_set_tv_freq(struct dvb_frontend *fe, u32 freq) { u8 buf[4]; struct nxt6000_config *nxt = FE2NXT(fe); buf[0] = (FREQ2DIV(freq) >> 8) & 0x7F; buf[1] = FREQ2DIV(freq) & 0xFF; buf[2] = (((FREQ2DIV(freq) >> 15) & 0x03) << 5) | 0x85; if ((freq >= 174000000) && (freq < 230000000)) buf[3] = 0x82; else if ((freq >= 470000000) && (freq < 782000000)) buf[3] = 0x85; else if ((freq >= 782000000) && (freq < 863000000)) buf[3] = 0xC5; else return -EINVAL; return pll_write(fe->i2c, nxt->demod_addr, nxt->tuner_addr, buf, 4); } static int alp510_set_tv_freq(struct dvb_frontend *fe, u32 freq) { u8 buf[4]; struct nxt6000_config *nxt = FE2NXT(fe); buf[0] = (FREQ2DIV(freq) >> 8) & 0x7F; buf[1] = FREQ2DIV(freq) & 0xFF; buf[2] = 0x85; #if 0 if ((freq >= 47000000) && (freq < 153000000)) buf[3] = 0x01; else if ((freq >= 153000000) && (freq < 430000000)) buf[3] = 0x02; else if ((freq >= 430000000) && (freq < 824000000)) buf[3] = 0x08; else if ((freq >= 824000000) && (freq < 863000000)) buf[3] = 0x88; else return -EINVAL; #else if ((freq >= 47000000) && (freq < 153000000)) buf[3] = 0x01; else if ((freq >= 153000000) && (freq < 430000000)) buf[3] = 0x02; else if ((freq >= 430000000) && (freq < 824000000)) buf[3] = 0x0C; else if ((freq >= 824000000) && (freq < 863000000)) buf[3] = 0x8C; else return -EINVAL; #endif return pll_write(fe->i2c, nxt->demod_addr, nxt->tuner_addr, buf, 4); } static void nxt6000_reset(struct dvb_frontend *fe) { u8 val; val = nxt6000_readreg(fe, OFDM_COR_CTL); nxt6000_writereg(fe, OFDM_COR_CTL, val & ~COREACT); nxt6000_writereg(fe, OFDM_COR_CTL, val | COREACT); } static int nxt6000_set_bandwidth(struct dvb_frontend *fe, fe_bandwidth_t bandwidth) { u16 nominal_rate; int result; switch(bandwidth) { case BANDWIDTH_6_MHZ: nominal_rate = 0x55B7; break; case BANDWIDTH_7_MHZ: nominal_rate = 0x6400; break; case BANDWIDTH_8_MHZ: nominal_rate = 0x7249; break; default: return -EINVAL; } if ((result = nxt6000_writereg(fe, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0) return result; return nxt6000_writereg(fe, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF); } static int nxt6000_set_guard_interval(struct dvb_frontend *fe, fe_guard_interval_t guard_interval) { switch(guard_interval) { case GUARD_INTERVAL_1_32: return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x03)); case GUARD_INTERVAL_1_16: return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x03)); case GUARD_INTERVAL_AUTO: case GUARD_INTERVAL_1_8: return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x03)); case GUARD_INTERVAL_1_4: return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x03)); default: return -EINVAL; } } static int nxt6000_set_inversion(struct dvb_frontend *fe, fe_spectral_inversion_t inversion) { switch(inversion) { case INVERSION_OFF: return nxt6000_writereg(fe, OFDM_ITB_CTL, 0x00); case INVERSION_ON: return nxt6000_writereg(fe, OFDM_ITB_CTL, ITBINV); default: return -EINVAL; } } static int nxt6000_set_transmission_mode(struct dvb_frontend *fe, fe_transmit_mode_t transmission_mode) { int result; switch(transmission_mode) { case TRANSMISSION_MODE_2K: if ((result = nxt6000_writereg(fe, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(fe, EN_DMD_RACQ) & ~0x03))) < 0) return result; return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x04)); case TRANSMISSION_MODE_8K: case TRANSMISSION_MODE_AUTO: if ((result = nxt6000_writereg(fe, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(fe, EN_DMD_RACQ) & ~0x03))) < 0) return result; return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x04)); default: return -EINVAL; } } static void nxt6000_setup(struct dvb_frontend *fe) { struct nxt6000_config *nxt = FE2NXT(fe); nxt6000_writereg(fe, RS_COR_SYNC_PARAM, SYNC_PARAM); nxt6000_writereg(fe, BER_CTRL, /*(1 << 2) |*/ (0x01 << 1) | 0x01); nxt6000_writereg(fe, VIT_COR_CTL, VIT_COR_RESYNC); nxt6000_writereg(fe, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(fe, OFDM_COR_CTL) & 0x0F)); nxt6000_writereg(fe, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02); nxt6000_writereg(fe, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW); nxt6000_writereg(fe, OFDM_ITB_FREQ_1, 0x06); nxt6000_writereg(fe, OFDM_ITB_FREQ_2, 0x31); nxt6000_writereg(fe, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04); nxt6000_writereg(fe, CAS_FREQ, 0xBB); // CHECKME nxt6000_writereg(fe, OFDM_SYR_CTL, 1 << 2); nxt6000_writereg(fe, OFDM_PPM_CTL_1, PPM256); nxt6000_writereg(fe, OFDM_TRL_NOMINALRATE_1, 0x49); nxt6000_writereg(fe, OFDM_TRL_NOMINALRATE_2, 0x72); nxt6000_writereg(fe, ANALOG_CONTROL_0, 1 << 5); nxt6000_writereg(fe, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2); nxt6000_writereg(fe, DIAG_CONFIG, TB_SET); if (nxt->clock_inversion) nxt6000_writereg(fe, SUB_DIAG_MODE_SEL, CLKINVERSION); else nxt6000_writereg(fe, SUB_DIAG_MODE_SEL, 0); nxt6000_writereg(fe, TS_FORMAT, 0); } static void nxt6000_dump_status(struct dvb_frontend *fe) { u8 val; // printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT)); // printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS)); // printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT)); // printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT)); // printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1)); // printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2)); // printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3)); // printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4)); // printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1)); // printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2)); printk("NXT6000 status:"); val = nxt6000_readreg(fe, RS_COR_STAT); printk(" DATA DESCR LOCK: %d,", val & 0x01); printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01); val = nxt6000_readreg(fe, VIT_SYNC_STATUS); printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01); switch((val >> 4) & 0x07) { case 0x00: printk(" VITERBI CODERATE: 1/2,"); break; case 0x01: printk(" VITERBI CODERATE: 2/3,"); break; case 0x02: printk(" VITERBI CODERATE: 3/4,"); break; case 0x03: printk(" VITERBI CODERATE: 5/6,"); case 0x04: printk(" VITERBI CODERATE: 7/8,"); break; default: printk(" VITERBI CODERATE: Reserved,"); } val = nxt6000_readreg(fe, OFDM_COR_STAT); printk(" CHCTrack: %d,", (val >> 7) & 0x01); printk(" TPSLock: %d,", (val >> 6) & 0x01); printk(" SYRLock: %d,", (val >> 5) & 0x01); printk(" AGCLock: %d,", (val >> 4) & 0x01); switch(val & 0x0F) { case 0x00: printk(" CoreState: IDLE,"); break; case 0x02: printk(" CoreState: WAIT_AGC,"); break; case 0x03: printk(" CoreState: WAIT_SYR,"); break; case 0x04: printk(" CoreState: WAIT_PPM,"); case 0x01: printk(" CoreState: WAIT_TRL,"); break; case 0x05: printk(" CoreState: WAIT_TPS,"); break; case 0x06: printk(" CoreState: MONITOR_TPS,"); break; default: printk(" CoreState: Reserved,"); } val = nxt6000_readreg(fe, OFDM_SYR_STAT); printk(" SYRLock: %d,", (val >> 4) & 0x01); printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K"); switch((val >> 4) & 0x03) { case 0x00: printk(" SYRGuard: 1/32,"); break; case 0x01: printk(" SYRGuard: 1/16,"); break; case 0x02: printk(" SYRGuard: 1/8,"); break; case 0x03: printk(" SYRGuard: 1/4,"); break; } val = nxt6000_readreg(fe, OFDM_TPS_RCVD_3); switch((val >> 4) & 0x07) { case 0x00: printk(" TPSLP: 1/2,"); break; case 0x01: printk(" TPSLP: 2/3,"); break; case 0x02: printk(" TPSLP: 3/4,"); break; case 0x03: printk(" TPSLP: 5/6,"); case 0x04: printk(" TPSLP: 7/8,"); break; default: printk(" TPSLP: Reserved,"); } switch(val & 0x07) { case 0x00: printk(" TPSHP: 1/2,"); break; case 0x01: printk(" TPSHP: 2/3,"); break; case 0x02: printk(" TPSHP: 3/4,"); break; case 0x03: printk(" TPSHP: 5/6,"); case 0x04: printk(" TPSHP: 7/8,"); break; default: printk(" TPSHP: Reserved,"); } val = nxt6000_readreg(fe, OFDM_TPS_RCVD_4); printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K"); switch((val >> 4) & 0x03) { case 0x00: printk(" TPSGuard: 1/32,"); break; case 0x01: printk(" TPSGuard: 1/16,"); break; case 0x02: printk(" TPSGuard: 1/8,"); break; case 0x03: printk(" TPSGuard: 1/4,"); break; } // Strange magic required to gain access to RF_AGC_STATUS nxt6000_readreg(fe, RF_AGC_VAL_1); val = nxt6000_readreg(fe, RF_AGC_STATUS); val = nxt6000_readreg(fe, RF_AGC_STATUS); printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01); printk("\n"); } static int nxt6000_ioctl(struct dvb_frontend *fe, unsigned int cmd, void *arg) { switch (cmd) { case FE_GET_INFO: memcpy(arg, &nxt6000_info, sizeof (struct dvb_frontend_info)); return 0; case FE_READ_STATUS: { fe_status_t *status = (fe_status_t *)arg; u8 core_status; *status = 0; core_status = nxt6000_readreg(fe, OFDM_COR_STAT); if (core_status & AGCLOCKED) *status |= FE_HAS_SIGNAL; if (nxt6000_readreg(fe, OFDM_SYR_STAT) & GI14_SYR_LOCK) *status |= FE_HAS_CARRIER; if (nxt6000_readreg(fe, VIT_SYNC_STATUS) & VITINSYNC) *status |= FE_HAS_VITERBI; if (nxt6000_readreg(fe, RS_COR_STAT) & RSCORESTATUS) *status |= FE_HAS_SYNC; if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC))) *status |= FE_HAS_LOCK; if (debug) nxt6000_dump_status(fe); return 0; } case FE_READ_BER: { u32 *ber = (u32 *)arg; *ber=0; return 0; } case FE_READ_SIGNAL_STRENGTH: { // s16 *signal = (s16 *)arg; // *signal=(((signed char)readreg(client, 0x16))+128)<<8; return 0; } case FE_READ_SNR: { // s16 *snr = (s16 *)arg; // *snr=readreg(client, 0x24)<<8; // *snr|=readreg(client, 0x25); break; } case FE_READ_UNCORRECTED_BLOCKS: { u32 *ublocks = (u32 *)arg; *ublocks = 0; break; } case FE_INIT: case FE_RESET: nxt6000_reset(fe); nxt6000_setup(fe); break; case FE_SET_FRONTEND: { struct nxt6000_config *nxt = FE2NXT(fe); struct dvb_frontend_parameters *param = (struct dvb_frontend_parameters *)arg; int result; switch(nxt->tuner_type) { case TUNER_TYPE_ALP510: if ((result = alp510_set_tv_freq(fe, param->frequency)) < 0) return result; break; case TUNER_TYPE_SP5659: if ((result = sp5659_set_tv_freq(fe, param->frequency)) < 0) return result; break; default: return -EFAULT; } if ((result = nxt6000_set_bandwidth(fe, param->u.ofdm.bandwidth)) < 0) return result; if ((result = nxt6000_set_guard_interval(fe, param->u.ofdm.guard_interval)) < 0) return result; if ((result = nxt6000_set_transmission_mode(fe, param->u.ofdm.transmission_mode)) < 0) return result; if ((result = nxt6000_set_inversion(fe, param->inversion)) < 0) return result; break; } default: return -EOPNOTSUPP; } return 0; } static u8 demod_addr_tbl[] = {0x14, 0x18, 0x24, 0x28}; static int nxt6000_attach(struct dvb_i2c_bus *i2c) { u8 addr_nr; u8 fe_count = 0; struct nxt6000_config nxt; dprintk("nxt6000: attach\n"); for (addr_nr = 0; addr_nr < sizeof(demod_addr_tbl); addr_nr++) { if (nxt6000_read(i2c, demod_addr_tbl[addr_nr], OFDM_MSC_REV) != NXT6000ASICDEVICE) continue; if (pll_write(i2c, demod_addr_tbl[addr_nr], 0xC0, NULL, 0) == 0) { nxt.tuner_addr = 0xC0; nxt.tuner_type = TUNER_TYPE_ALP510; nxt.clock_inversion = 1; dprintk("nxt6000: detected TI ALP510 tuner at 0x%02X\n", nxt.tuner_addr); } else if (pll_write(i2c, demod_addr_tbl[addr_nr], 0xC2, NULL, 0) == 0) { nxt.tuner_addr = 0xC2; nxt.tuner_type = TUNER_TYPE_SP5659; nxt.clock_inversion = 0; dprintk("nxt6000: detected MITEL SP5659 tuner at 0x%02X\n", nxt.tuner_addr); } else { printk("nxt6000: unable to detect tuner\n"); continue; } nxt.demod_addr = demod_addr_tbl[addr_nr]; dprintk("nxt6000: attached at %d:%d\n", i2c->adapter->num, i2c->id); dvb_register_frontend(nxt6000_ioctl, i2c, (void *)(*((u32 *)&nxt)), &nxt6000_info); } return (fe_count > 0) ? 0 : -ENODEV; } static void nxt6000_detach(struct dvb_i2c_bus *i2c) { dprintk("nxt6000: detach\n"); dvb_unregister_frontend(nxt6000_ioctl, i2c); } static __init int nxt6000_init(void) { dprintk("nxt6000: init\n"); return dvb_register_i2c_device(THIS_MODULE, nxt6000_attach, nxt6000_detach); } static __exit void nxt6000_exit(void) { dprintk("nxt6000: cleanup\n"); dvb_unregister_i2c_device(nxt6000_attach); } module_init(nxt6000_init); module_exit(nxt6000_exit);