/* DVB compliant Linux driver for the DVB-S si2109/2110 demodulator * * Copyright (C) 2008 Igor M. Liplianin (liplianin@me.by) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "si21xx.h" #define REVISION_REG 0x00 #define SYSTEM_MODE_REG 0x01 #define TS_CTRL_REG_1 0x02 #define TS_CTRL_REG_2 0x03 #define PIN_CTRL_REG_1 0x04 #define PIN_CTRL_REG_2 0x05 #define LOCK_STATUS_REG_1 0x0f #define LOCK_STATUS_REG_2 0x10 #define ACQ_STATUS_REG 0x11 #define ACQ_CTRL_REG_1 0x13 #define ACQ_CTRL_REG_2 0x14 #define PLL_DIVISOR_REG 0x15 #define COARSE_TUNE_REG 0x16 #define FINE_TUNE_REG_L 0x17 #define FINE_TUNE_REG_H 0x18 #define ANALOG_AGC_POWER_LEVEL_REG 0x28 #define CFO_ESTIMATOR_CTRL_REG_1 0x29 #define CFO_ESTIMATOR_CTRL_REG_2 0x2a #define CFO_ESTIMATOR_CTRL_REG_3 0x2b #define SYM_RATE_ESTIMATE_REG_L 0x31 #define SYM_RATE_ESTIMATE_REG_M 0x32 #define SYM_RATE_ESTIMATE_REG_H 0x33 #define CFO_ESTIMATOR_OFFSET_REG_L 0x36 #define CFO_ESTIMATOR_OFFSET_REG_H 0x37 #define CFO_ERROR_REG_L 0x38 #define CFO_ERROR_REG_H 0x39 #define SYM_RATE_ESTIMATOR_CTRL_REG 0x3a #define SYM_RATE_REG_L 0x3f #define SYM_RATE_REG_M 0x40 #define SYM_RATE_REG_H 0x41 #define SYM_RATE_ESTIMATOR_MAXIMUM_REG 0x42 #define SYM_RATE_ESTIMATOR_MINIMUM_REG 0x43 #define C_N_ESTIMATOR_CTRL_REG 0x7c #define C_N_ESTIMATOR_THRSHLD_REG 0x7d #define C_N_ESTIMATOR_LEVEL_REG_L 0x7e #define C_N_ESTIMATOR_LEVEL_REG_H 0x7f #define BLIND_SCAN_CTRL_REG 0x80 #define LSA_CTRL_REG_1 0x8D #define SPCTRM_TILT_CORR_THRSHLD_REG 0x8f #define ONE_DB_BNDWDTH_THRSHLD_REG 0x90 #define TWO_DB_BNDWDTH_THRSHLD_REG 0x91 #define THREE_DB_BNDWDTH_THRSHLD_REG 0x92 #define INBAND_POWER_THRSHLD_REG 0x93 #define REF_NOISE_LVL_MRGN_THRSHLD_REG 0x94 #define VIT_SRCH_CTRL_REG_1 0xa0 #define VIT_SRCH_CTRL_REG_2 0xa1 #define VIT_SRCH_CTRL_REG_3 0xa2 #define VIT_SRCH_STATUS_REG 0xa3 #define VITERBI_BER_COUNT_REG_L 0xab #define REED_SOLOMON_CTRL_REG 0xb0 #define REED_SOLOMON_ERROR_COUNT_REG_L 0xb1 #define PRBS_CTRL_REG 0xb5 #define LNB_CTRL_REG_1 0xc0 #define LNB_CTRL_REG_2 0xc1 #define LNB_CTRL_REG_3 0xc2 #define LNB_CTRL_REG_4 0xc3 #define LNB_CTRL_STATUS_REG 0xc4 #define LNB_FIFO_REGS_0 0xc5 #define LNB_FIFO_REGS_1 0xc6 #define LNB_FIFO_REGS_2 0xc7 #define LNB_FIFO_REGS_3 0xc8 #define LNB_FIFO_REGS_4 0xc9 #define LNB_FIFO_REGS_5 0xca #define LNB_SUPPLY_CTRL_REG_1 0xcb #define LNB_SUPPLY_CTRL_REG_2 0xcc #define LNB_SUPPLY_CTRL_REG_3 0xcd #define LNB_SUPPLY_CTRL_REG_4 0xce #define LNB_SUPPLY_STATUS_REG 0xcf #define FALSE 0 #define TRUE 1 #define FAIL -1 #define PASS 0 #define ALLOWABLE_FS_COUNT 10 #define STATUS_BER 0 #define STATUS_UCBLOCKS 1 static int debug; #define dprintk(args...) \ do { \ if (debug) \ printk(KERN_DEBUG "si21xx: " args); \ } while (0) enum { ACTIVE_HIGH, ACTIVE_LOW }; enum { BYTE_WIDE, BIT_WIDE }; enum { CLK_GAPPED_MODE, CLK_CONTINUOUS_MODE }; enum { RISING_EDGE, FALLING_EDGE }; enum { MSB_FIRST, LSB_FIRST }; enum { SERIAL, PARALLEL }; struct si21xx_state { struct i2c_adapter *i2c; const struct si21xx_config *config; struct dvb_frontend frontend; u8 initialised:1; int errmode; int fs; /*Sampling rate of the ADC in MHz*/ }; /* register default initialization */ static u8 serit_sp1511lhb_inittab[] = { 0x01, 0x28, /* set i2c_inc_disable */ 0x20, 0x03, 0x27, 0x20, 0xe0, 0x45, 0xe1, 0x08, 0xfe, 0x01, 0x01, 0x28, 0x89, 0x09, 0x04, 0x80, 0x05, 0x01, 0x06, 0x00, 0x20, 0x03, 0x24, 0x88, 0x29, 0x09, 0x2a, 0x0f, 0x2c, 0x10, 0x2d, 0x19, 0x2e, 0x08, 0x2f, 0x10, 0x30, 0x19, 0x34, 0x20, 0x35, 0x03, 0x45, 0x02, 0x46, 0x45, 0x47, 0xd0, 0x48, 0x00, 0x49, 0x40, 0x4a, 0x03, 0x4c, 0xfd, 0x4f, 0x2e, 0x50, 0x2e, 0x51, 0x10, 0x52, 0x10, 0x56, 0x92, 0x59, 0x00, 0x5a, 0x2d, 0x5b, 0x33, 0x5c, 0x1f, 0x5f, 0x76, 0x62, 0xc0, 0x63, 0xc0, 0x64, 0xf3, 0x65, 0xf3, 0x79, 0x40, 0x6a, 0x40, 0x6b, 0x0a, 0x6c, 0x80, 0x6d, 0x27, 0x71, 0x06, 0x75, 0x60, 0x78, 0x00, 0x79, 0xb5, 0x7c, 0x05, 0x7d, 0x1a, 0x87, 0x55, 0x88, 0x72, 0x8f, 0x08, 0x90, 0xe0, 0x94, 0x40, 0xa0, 0x3f, 0xa1, 0xc0, 0xa4, 0xcc, 0xa5, 0x66, 0xa6, 0x66, 0xa7, 0x7b, 0xa8, 0x7b, 0xa9, 0x7b, 0xaa, 0x9a, 0xed, 0x04, 0xad, 0x00, 0xae, 0x03, 0xcc, 0xab, 0x01, 0x08, 0xff, 0xff }; /* low level read/writes */ static int si21_writeregs(struct si21xx_state *state, u8 reg1, u8 *data, int len) { int ret; u8 buf[60];/* = { reg1, data };*/ struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = len + 1 }; msg.buf[0] = reg1; memcpy(msg.buf + 1, data, len); ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) dprintk("%s: writereg error (reg1 == 0x%02x, data == 0x%02x, " "ret == %i)\n", __func__, reg1, data[0], ret); return (ret != 1) ? -EREMOTEIO : 0; } static int si21_writereg(struct si21xx_state *state, u8 reg, u8 data) { int ret; u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) dprintk("%s: writereg error (reg == 0x%02x, data == 0x%02x, " "ret == %i)\n", __func__, reg, data, ret); return (ret != 1) ? -EREMOTEIO : 0; } static int si21_write(struct dvb_frontend *fe, u8 *buf, int len) { struct si21xx_state *state = fe->demodulator_priv; if (len != 2) return -EINVAL; return si21_writereg(state, buf[0], buf[1]); } static u8 si21_readreg(struct si21xx_state *state, u8 reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret); return b1[0]; } static int si21_readregs(struct si21xx_state *state, u8 reg1, u8 *b, u8 len) { int ret; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = ®1, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = len } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) dprintk("%s: readreg error (ret == %i)\n", __func__, ret); return ret == 2 ? 0 : -1; } #if 0 static int si21xx_wait_diseqc_fifo(struct si21xx_state *state, int timeout) { unsigned long start = jiffies; dprintk("%s\n", __func__); while (((si21_readreg(state, 0xc4) >> 7) & 1) == 0) { if (jiffies - start > timeout) { dprintk("%s: timeout!!\n", __func__); return -ETIMEDOUT; } msleep(10); }; return 0; } #endif static int si21xx_wait_diseqc_idle(struct si21xx_state *state, int timeout) { unsigned long start = jiffies; dprintk("%s\n", __func__); while ((si21_readreg(state, LNB_CTRL_REG_1) & 0x8) == 8) { if (jiffies - start > timeout) { dprintk("%s: timeout!!\n", __func__); return -ETIMEDOUT; } msleep(10); }; return 0; } static int si21xx_set_symbolrate(struct dvb_frontend *fe, u32 srate) { struct si21xx_state *state = fe->demodulator_priv; u32 sym_rate, data_rate; int i; u8 sym_rate_bytes[3]; dprintk("%s : srate = %i\n", __func__ , srate); if ((srate < 1000000) || (srate > 45000000)) return -EINVAL; data_rate = srate; sym_rate = 0; for (i = 0; i < 4; ++i) { sym_rate /= 100; sym_rate = sym_rate + ((data_rate % 100) * 0x800000) / state->fs; data_rate /= 100; } for (i = 0; i < 3; ++i) sym_rate_bytes[i] = (u8)((sym_rate >> (i * 8)) & 0xff); si21_writeregs(state, SYM_RATE_REG_L, sym_rate_bytes, 0x03); return 0; } static int si21xx_send_diseqc_msg(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *m) { struct si21xx_state *state = fe->demodulator_priv; #if 0 u8 val; int i; if (si21xx_wait_diseqc_idle(state, 100) < 0) return -ETIMEDOUT; val = si21_readreg(state, 0x08); /* DiSEqC mode */ if (si21_writereg(state, 0x08, (val & ~0x7) | 0x6)) return -EREMOTEIO; for (i = 0; i < m->msg_len; i++) { if (si21xx_wait_diseqc_fifo(state, 100) < 0) return -ETIMEDOUT; if (si21_writereg(state, 0x09, m->msg[i])) return -EREMOTEIO; } if (si21xx_wait_diseqc_idle(state, 100) < 0) return -ETIMEDOUT; return 0; } int si21xx_set_lnb_msg(state, lnb_cmd) { #endif u8 lnb_status; u8 LNB_CTRL_1; int status; dprintk("%s\n", __func__); status = PASS; LNB_CTRL_1 = 0; status |= si21_readregs(state, LNB_CTRL_STATUS_REG, &lnb_status, 0x01); status |= si21_readregs(state, LNB_CTRL_REG_1, &lnb_status, 0x01); /*fill the FIFO*/ status |= si21_writeregs(state, LNB_FIFO_REGS_0, m->msg, m->msg_len); LNB_CTRL_1 = (lnb_status & 0x70); #if 0 LNB_CTRL_1 |= voltage << 6; /*voltage select*/ LNB_CTRL_1 |= tone << 5; /*continuous tone selection*/ LNB_CTRL_1 |= burst << 4; /*tone burst selection*/ LNB_CTRL_1 |= mmsg << 3; /*more messages indicator*/ #endif LNB_CTRL_1 |= m->msg_len; LNB_CTRL_1 |= 0x80; /* begin LNB signaling */ status |= si21_writeregs(state, LNB_CTRL_REG_1, &LNB_CTRL_1, 0x01); return status; } static int si21xx_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst) { struct si21xx_state *state = fe->demodulator_priv; u8 val; dprintk("%s\n", __func__); if (si21xx_wait_diseqc_idle(state, 100) < 0) return -ETIMEDOUT; val = (0x80 | si21_readreg(state, 0xc1)); #if 0 /* burst mode */ if (si21_writereg(state, LNB_CTRL_REG_1, (val & ~0x10)) return -EREMOTEIO; #endif if (si21_writereg(state, LNB_CTRL_REG_1, burst == SEC_MINI_A ? (val & ~0x10) : (val | 0x10))) return -EREMOTEIO; if (si21xx_wait_diseqc_idle(state, 100) < 0) return -ETIMEDOUT; if (si21_writereg(state, LNB_CTRL_REG_1, val)) return -EREMOTEIO; return 0; } /* 30.06.2008 */ static int si21xx_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone) { struct si21xx_state *state = fe->demodulator_priv; u8 val; dprintk("%s\n", __func__); #if 0 if (si21xx_wait_diseqc_idle(state, 100) < 0) return -ETIMEDOUT; #endif val = (0x80 | si21_readreg(state, LNB_CTRL_REG_1)); switch (tone) { case SEC_TONE_ON: return si21_writereg(state, LNB_CTRL_REG_1, val | 0x20); case SEC_TONE_OFF: return si21_writereg(state, LNB_CTRL_REG_1, (val & ~0x20)); default: return -EINVAL; } } static int si21xx_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t volt) { struct si21xx_state *state = fe->demodulator_priv; u8 val; dprintk("%s: %s\n", __func__, volt == SEC_VOLTAGE_13 ? "SEC_VOLTAGE_13" : volt == SEC_VOLTAGE_18 ? "SEC_VOLTAGE_18" : "??"); val = (0x80 | si21_readreg(state, LNB_CTRL_REG_1)); switch (volt) { case SEC_VOLTAGE_18: return si21_writereg(state, LNB_CTRL_REG_1, val | 0x40); break; case SEC_VOLTAGE_13: return si21_writereg(state, LNB_CTRL_REG_1, (val & ~0x40)); break; default: return -EINVAL; }; } static int si21xx_init(struct dvb_frontend *fe) { struct si21xx_state *state = fe->demodulator_priv; int i; int status = 0; u8 reg1; u8 val; u8 reg2[2]; dprintk("%s\n", __func__); for (i = 0; ; i += 2) { reg1 = serit_sp1511lhb_inittab[i]; val = serit_sp1511lhb_inittab[i+1]; if (reg1 == 0xff && val == 0xff) break; si21_writeregs(state, reg1, &val, 1); } /*DVB QPSK SYSTEM MODE REG*/ reg1 = 0x08; si21_writeregs(state, SYSTEM_MODE_REG, ®1, 0x01); /*transport stream config*/ /* mode = PARALLEL; sdata_form = LSB_FIRST; clk_edge = FALLING_EDGE; clk_mode = CLK_GAPPED_MODE; strt_len = BYTE_WIDE; sync_pol = ACTIVE_HIGH; val_pol = ACTIVE_HIGH; err_pol = ACTIVE_HIGH; sclk_rate = 0x00; parity = 0x00 ; data_delay = 0x00; clk_delay = 0x00; pclk_smooth = 0x00; */ reg2[0] = PARALLEL + (LSB_FIRST << 1) + (FALLING_EDGE << 2) + (CLK_GAPPED_MODE << 3) + (BYTE_WIDE << 4) + (ACTIVE_HIGH << 5) + (ACTIVE_HIGH << 6) + (ACTIVE_HIGH << 7); reg2[1] = 0; /* sclk_rate + (parity << 2) + (data_delay << 3) + (clk_delay << 4) + (pclk_smooth << 5); */ status |= si21_writeregs(state, TS_CTRL_REG_1, reg2, 0x02); if (status != 0) dprintk(" %s : TS Set Error\n", __func__); #if 0 lnb_cmd.tone = ON; /* 22khz continuous */ lnb_cmd.mmsg = OFF; /* diseqc more message */ /* diseqc command */ lnb_cmd.msg[6] = { "0xE0", "0x10", "0x38", "0xF0" }; lnb_cmd.msg_len = OFF; /* diseqc command length */ lnb_cmd.burst = OFF; /* tone burst a,b */ lnb_cmd.volt = OFF; /* 13v 18v select */ status |= si21xx_set_lnb_msg(state, lnb_cmd); if (status != PASS) dprintk("%s LNB Set Error\n", __func__); #endif return 0; } static int si21_read_status(struct dvb_frontend *fe, fe_status_t *status) { struct si21xx_state *state = fe->demodulator_priv; u8 regs_read[2]; u8 reg_read; u8 i; u8 lock; u8 signal = si21_readreg(state, ANALOG_AGC_POWER_LEVEL_REG); si21_readregs(state, LOCK_STATUS_REG_1, regs_read, 0x02); reg_read = 0; for (i = 0; i < 7; ++i) reg_read |= ((regs_read[0] >> i) & 0x01) << (6 - i); lock = ((reg_read & 0x7f) | (regs_read[1] & 0x80)); dprintk("%s : FE_READ_STATUS : VSTATUS: 0x%02x\n", __func__, lock); *status = 0; if (signal > 10) *status |= FE_HAS_SIGNAL; if (lock & 0x2) *status |= FE_HAS_CARRIER; if (lock & 0x20) *status |= FE_HAS_VITERBI; if (lock & 0x40) *status |= FE_HAS_SYNC; if ((lock & 0x7b) == 0x7b) *status |= FE_HAS_LOCK; return 0; } static int si21_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct si21xx_state *state = fe->demodulator_priv; /*status = si21_readreg(state, ANALOG_AGC_POWER_LEVEL_REG, (u8*)agclevel, 0x01);*/ u16 signal = (3 * si21_readreg(state, 0x27) * si21_readreg(state, 0x28)); dprintk("%s : AGCPWR: 0x%02x%02x, signal=0x%04x\n", __func__, si21_readreg(state, 0x27), si21_readreg(state, 0x28), (int) signal); signal <<= 4; *strength = signal; return 0; } static int si21_read_ber(struct dvb_frontend *fe, u32 *ber) { struct si21xx_state *state = fe->demodulator_priv; dprintk("%s\n", __func__); if (state->errmode != STATUS_BER) return 0; *ber = (si21_readreg(state, 0x1d) << 8) | si21_readreg(state, 0x1e); return 0; } static int si21_read_snr(struct dvb_frontend *fe, u16 *snr) { struct si21xx_state *state = fe->demodulator_priv; s32 xsnr = 0xffff - ((si21_readreg(state, 0x24) << 8) | si21_readreg(state, 0x25)); xsnr = 3 * (xsnr - 0xa100); *snr = (xsnr > 0xffff) ? 0xffff : (xsnr < 0) ? 0 : xsnr; dprintk("%s\n", __func__); return 0; } static int si21_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct si21xx_state *state = fe->demodulator_priv; dprintk("%s\n", __func__); if (state->errmode != STATUS_UCBLOCKS) *ucblocks = 0; else *ucblocks = (si21_readreg(state, 0x1d) << 8) | si21_readreg(state, 0x1e); return 0; } /* initiates a channel acquisition sequence using the specified symbol rate and code rate */ static int si21xx_setacquire(struct dvb_frontend *fe, int symbrate, fe_code_rate_t crate) { struct si21xx_state *state = fe->demodulator_priv; u8 coderates[] = { 0x0, 0x01, 0x02, 0x04, 0x00, 0x8, 0x10, 0x20, 0x00, 0x3f }; u8 coderate_ptr; int status; u8 start_acq = 0x80; u8 reg, regs[3]; dprintk("%s\n", __func__); status = PASS; coderate_ptr = coderates[crate]; si21xx_set_symbolrate(fe, symbrate); /* write code rates to use in the Viterbi search */ status |= si21_writeregs(state, VIT_SRCH_CTRL_REG_1, &coderate_ptr, 0x01); /* clear acq_start bit */ status |= si21_readregs(state, ACQ_CTRL_REG_2, ®, 0x01); reg &= ~start_acq; status |= si21_writeregs(state, ACQ_CTRL_REG_2, ®, 0x01); /* use new Carrier Frequency Offset Estimator (QuickLock) */ regs[0] = 0xCB; regs[1] = 0x40; regs[2] = 0xCB; status |= si21_writeregs(state, TWO_DB_BNDWDTH_THRSHLD_REG, ®s[0], 0x03); reg = 0x56; status |= si21_writeregs(state, LSA_CTRL_REG_1, ®, 1); reg = 0x05; status |= si21_writeregs(state, BLIND_SCAN_CTRL_REG, ®, 1); /* start automatic acq */ status |= si21_writeregs(state, ACQ_CTRL_REG_2, &start_acq, 0x01); return status; } static int si21xx_set_property(struct dvb_frontend *fe, struct dtv_property *p) { dprintk("%s(..)\n", __func__); return 0; } static int si21xx_get_property(struct dvb_frontend *fe, struct dtv_property *p) { dprintk("%s(..)\n", __func__); return 0; } static int si21xx_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *dfp) { struct si21xx_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; /* freq Channel carrier frequency in KHz (i.e. 1550000 KHz) datarate Channel symbol rate in Sps (i.e. 22500000 Sps)*/ /* in MHz */ unsigned char coarse_tune_freq; int fine_tune_freq; unsigned char sample_rate = 0; /* boolean */ unsigned int inband_interferer_ind; /* INTERMEDIATE VALUES */ int icoarse_tune_freq; /* MHz */ int ifine_tune_freq; /* MHz */ unsigned int band_high; unsigned int band_low; unsigned int x1; unsigned int x2; int i; unsigned int inband_interferer_div2[ALLOWABLE_FS_COUNT] = { FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE }; unsigned int inband_interferer_div4[ALLOWABLE_FS_COUNT] = { FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE }; int status; /* allowable sample rates for ADC in MHz */ int afs[ALLOWABLE_FS_COUNT] = { 200, 192, 193, 194, 195, 196, 204, 205, 206, 207 }; /* in MHz */ int if_limit_high; int if_limit_low; int lnb_lo; int lnb_uncertanity; int rf_freq; int data_rate; unsigned char regs[4]; dprintk("%s : FE_SET_FRONTEND\n", __func__); if (c->delivery_system != SYS_DVBS) { dprintk("%s: unsupported delivery system selected (%d)\n", __func__, c->delivery_system); return -EOPNOTSUPP; } for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) inband_interferer_div2[i] = inband_interferer_div4[i] = FALSE; if_limit_high = -700000; if_limit_low = -100000; /* in MHz */ lnb_lo = 0; lnb_uncertanity = 0; rf_freq = 10 * c->frequency ; data_rate = c->symbol_rate / 100; status = PASS; band_low = (rf_freq - lnb_lo) - ((lnb_uncertanity * 200) + (data_rate * 135)) / 200; band_high = (rf_freq - lnb_lo) + ((lnb_uncertanity * 200) + (data_rate * 135)) / 200; icoarse_tune_freq = 100000 * (((rf_freq - lnb_lo) - (if_limit_low + if_limit_high) / 2) / 100000); ifine_tune_freq = (rf_freq - lnb_lo) - icoarse_tune_freq ; for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) { x1 = ((rf_freq - lnb_lo) / (afs[i] * 2500)) * (afs[i] * 2500) + afs[i] * 2500; x2 = ((rf_freq - lnb_lo) / (afs[i] * 2500)) * (afs[i] * 2500); if (((band_low < x1) && (x1 < band_high)) || ((band_low < x2) && (x2 < band_high))) inband_interferer_div4[i] = TRUE; } for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) { x1 = ((rf_freq - lnb_lo) / (afs[i] * 5000)) * (afs[i] * 5000) + afs[i] * 5000; x2 = ((rf_freq - lnb_lo) / (afs[i] * 5000)) * (afs[i] * 5000); if (((band_low < x1) && (x1 < band_high)) || ((band_low < x2) && (x2 < band_high))) inband_interferer_div2[i] = TRUE; } inband_interferer_ind = TRUE; for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) inband_interferer_ind &= inband_interferer_div2[i] | inband_interferer_div4[i]; if (inband_interferer_ind) { for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) { if (inband_interferer_div2[i] == FALSE) { sample_rate = (u8) afs[i]; break; } } } else { for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) { if ((inband_interferer_div2[i] | inband_interferer_div4[i]) == FALSE) { sample_rate = (u8) afs[i]; break; } } } if (sample_rate > 207 || sample_rate < 192) sample_rate = 200; fine_tune_freq = ((0x4000 * (ifine_tune_freq / 10)) / ((sample_rate) * 1000)); coarse_tune_freq = (u8)(icoarse_tune_freq / 100000); regs[0] = sample_rate; regs[1] = coarse_tune_freq; regs[2] = fine_tune_freq & 0xFF; regs[3] = fine_tune_freq >> 8 & 0xFF; status |= si21_writeregs(state, PLL_DIVISOR_REG, ®s[0], 0x04); state->fs = sample_rate;/*ADC MHz*/ si21xx_setacquire(fe, c->symbol_rate, c->fec_inner); return 0; } static int si21xx_sleep(struct dvb_frontend *fe) { struct si21xx_state *state = fe->demodulator_priv; u8 regdata; dprintk("%s\n", __func__); si21_readregs(state, SYSTEM_MODE_REG, ®data, 0x01); regdata |= 1 << 6; si21_writeregs(state, SYSTEM_MODE_REG, ®data, 0x01); state->initialised = 0; return 0; } static void si21xx_release(struct dvb_frontend *fe) { struct si21xx_state *state = fe->demodulator_priv; dprintk("%s\n", __func__); kfree(state); } static struct dvb_frontend_ops si21xx_ops = { .info = { .name = "SL SI21XX DVB-S", .type = FE_QPSK, .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 125, /* kHz for QPSK frontends */ .frequency_tolerance = 0, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .symbol_rate_tolerance = 500, /* ppm */ .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_QPSK | FE_CAN_FEC_AUTO }, .release = si21xx_release, .init = si21xx_init, .sleep = si21xx_sleep, .write = si21_write, .read_status = si21_read_status, .read_ber = si21_read_ber, .read_signal_strength = si21_read_signal_strength, .read_snr = si21_read_snr, .read_ucblocks = si21_read_ucblocks, .diseqc_send_master_cmd = si21xx_send_diseqc_msg, .diseqc_send_burst = si21xx_send_diseqc_burst, .set_tone = si21xx_set_tone, .set_voltage = si21xx_set_voltage, .set_property = si21xx_set_property, .get_property = si21xx_get_property, .set_frontend = si21xx_set_frontend, }; struct dvb_frontend *si21xx_attach(const struct si21xx_config *config, struct i2c_adapter *i2c) { struct si21xx_state *state = NULL; int id; dprintk("%s\n", __func__); /* allocate memory for the internal state */ state = kmalloc(sizeof(struct si21xx_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->initialised = 0; state->errmode = STATUS_BER; /* check if the demod is there */ id = si21_readreg(state, SYSTEM_MODE_REG); si21_writereg(state, SYSTEM_MODE_REG, id | 0x40); /* standby off */ msleep(200); id = si21_readreg(state, 0x00); /* register 0x00 contains: 0x34 for SI2107 0x24 for SI2108 0x14 for SI2109 0x04 for SI2110 */ if (id != 0x04 && id != 0x14) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &si21xx_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(si21xx_attach); module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("SL SI21XX DVB Demodulator driver"); MODULE_AUTHOR("Igor M. Liplianin"); MODULE_LICENSE("GPL");