#include #include #include #include "dvb_frontend.h" #include "dvb_functions.h" #if 0 #define dprintk(x...) printk(x) #else #define dprintk(x...) #endif #if 0 #define LOG(dir,addr,buf,len) \ do { \ int i; \ printk("%s (%02x):", dir, addr & 0xff); \ for (i=0; ii2c; struct i2c_msg msg = { addr: addr, flags: 0, buf: buf, len: len }; int err; LOG("i2c_writebytes", msg.addr, msg.buf, msg.len); if ((err = i2c->xfer (i2c, &msg, 1)) != 1) { printk ("%s: i2c write error (addr %02x, err == %i)\n", __FUNCTION__, addr, err); return -EREMOTEIO; } return 0; } static int sp887x_writereg (struct dvb_frontend *fe, u16 reg, u16 data) { struct dvb_i2c_bus *i2c = fe->i2c; u8 b0 [] = { reg >> 8 , reg & 0xff, data >> 8, data & 0xff }; struct i2c_msg msg = { .addr = 0x70, .flags = 0, .buf = b0, .len = 4 }; int ret; LOG("sp887x_writereg", msg.addr, msg.buf, msg.len); if ((ret = i2c->xfer(i2c, &msg, 1)) != 1) { /** * in case of soft reset we ignore ACK errors... */ if (!(reg == 0xf1a && data == 0x000 && (ret == -EREMOTEIO || ret == -EFAULT))) { printk("%s: writereg error " "(reg %03x, data %03x, ret == %i)\n", __FUNCTION__, reg & 0xffff, data & 0xffff, ret); return ret; } } return 0; } static u16 sp887x_readreg (struct dvb_frontend *fe, u16 reg) { struct dvb_i2c_bus *i2c = fe->i2c; u8 b0 [] = { reg >> 8 , reg & 0xff }; u8 b1 [2]; int ret; struct i2c_msg msg[] = {{ .addr = 0x70, .flags = 0, .buf = b0, .len = 2 }, { .addr = 0x70, .flags = I2C_M_RD, .buf = b1, .len = 2 }}; LOG("sp887x_readreg (w)", msg[0].addr, msg[0].buf, msg[0].len); LOG("sp887x_readreg (r)", msg[1].addr, msg[1].buf, msg[1].len); if ((ret = i2c->xfer(i2c, msg, 2)) != 2) printk("%s: readreg error (ret == %i)\n", __FUNCTION__, ret); return (((b1[0] << 8) | b1[1]) & 0xfff); } static void sp887x_microcontroller_stop (struct dvb_frontend *fe) { sp887x_writereg(fe, 0xf08, 0x000); sp887x_writereg(fe, 0xf09, 0x000); /* microcontroller STOP */ sp887x_writereg(fe, 0xf00, 0x000); } static void sp887x_microcontroller_start (struct dvb_frontend *fe) { sp887x_writereg(fe, 0xf08, 0x000); sp887x_writereg(fe, 0xf09, 0x000); /* microcontroller START */ sp887x_writereg(fe, 0xf00, 0x001); } static void sp887x_setup_agc (struct dvb_frontend *fe) { /* setup AGC parameters */ sp887x_writereg(fe, 0x33c, 0x054); sp887x_writereg(fe, 0x33b, 0x04c); sp887x_writereg(fe, 0x328, 0x000); sp887x_writereg(fe, 0x327, 0x005); sp887x_writereg(fe, 0x326, 0x001); sp887x_writereg(fe, 0x325, 0x001); sp887x_writereg(fe, 0x324, 0x001); sp887x_writereg(fe, 0x318, 0x050); sp887x_writereg(fe, 0x317, 0x3fe); sp887x_writereg(fe, 0x316, 0x001); sp887x_writereg(fe, 0x313, 0x005); sp887x_writereg(fe, 0x312, 0x002); sp887x_writereg(fe, 0x306, 0x000); sp887x_writereg(fe, 0x303, 0x000); } #include "sp887x_firm.h" #define BLOCKSIZE 30 /** * load firmware and setup MPEG interface... */ static int sp887x_initial_setup (struct dvb_frontend *fe) { u8 buf [BLOCKSIZE]; int i; /* soft reset */ sp887x_writereg(fe, 0xf1a, 0x000); sp887x_microcontroller_stop (fe); printk ("%s: firmware upload... ", __FUNCTION__); /* setup write pointer to -1 (end of memory) */ /* bit 0x8000 in address is set to enable 13bit mode */ sp887x_writereg(fe, 0x8f08, 0x1fff); /* dummy write (wrap around to start of memory) */ sp887x_writereg(fe, 0x8f0a, 0x0000); for (i=0; i sizeof(sp887x_firm)) c = sizeof(sp887x_firm) - i; /* bit 0x8000 in address is set to enable 13bit mode */ /* bit 0x4000 enables multibyte read/write transfers */ /* write register is 0xf0a */ buf[0] = 0xcf; buf[1] = 0x0a; memcpy(&buf[2], &sp887x_firm[i], c); if ((err = i2c_writebytes (fe, 0x70, buf, c+2)) < 0) { printk ("failed.\n"); printk ("%s: i2c error (err == %i)\n", __FUNCTION__, err); return err; } } /* don't write RS bytes between packets */ sp887x_writereg(fe, 0xc13, 0x001); /* suppress clock if (!data_valid) */ sp887x_writereg(fe, 0xc14, 0x000); /* setup MPEG interface... */ sp887x_writereg(fe, 0xc1a, 0x872); sp887x_writereg(fe, 0xc1b, 0x001); sp887x_writereg(fe, 0xc1c, 0x000); /* parallel mode (serial mode == 1) */ sp887x_writereg(fe, 0xc1a, 0x871); /* ADC mode, 2 for MT8872, 3 for SP8870/SP8871 */ sp887x_writereg(fe, 0x301, 0x002); sp887x_setup_agc(fe); /* bit 0x010: enable data valid signal */ sp887x_writereg(fe, 0xd00, 0x010); sp887x_writereg(fe, 0x0d1, 0x000); printk ("done.\n"); return 0; }; /** * returns the actual tuned center frequency which can be used * to initialise the AFC registers */ static int tsa5060_setup_pll (struct dvb_frontend *fe, int freq) { u8 cfg, cpump, band_select; u8 buf [4]; u32 div; div = (36000000 + freq + 83333) / 166666; cfg = 0x88; cpump = freq < 175000000 ? 2 : freq < 390000000 ? 1 : freq < 470000000 ? 2 : freq < 750000000 ? 2 : 3; band_select = freq < 175000000 ? 0x0e : freq < 470000000 ? 0x05 : 0x03; buf [0] = (div >> 8) & 0x7f; buf [1] = div & 0xff; buf [2] = ((div >> 10) & 0x60) | cfg; buf [3] = cpump | band_select; /* open i2c gate for PLL message transmission... */ sp887x_writereg(fe, 0x206, 0x001); i2c_writebytes(fe, 0x60, buf, 4); sp887x_writereg(fe, 0x206, 0x000); return (div * 166666 - 36000000); } static int configure_reg0xc05 (struct dvb_frontend_parameters *p, u16 *reg0xc05) { int known_parameters = 1; *reg0xc05 = 0x000; switch (p->u.ofdm.constellation) { case QPSK: break; case QAM_16: *reg0xc05 |= (1 << 10); break; case QAM_64: *reg0xc05 |= (2 << 10); break; case QAM_AUTO: known_parameters = 0; break; default: return -EINVAL; }; switch (p->u.ofdm.hierarchy_information) { case HIERARCHY_NONE: break; case HIERARCHY_1: *reg0xc05 |= (1 << 7); break; case HIERARCHY_2: *reg0xc05 |= (2 << 7); break; case HIERARCHY_4: *reg0xc05 |= (3 << 7); break; case HIERARCHY_AUTO: known_parameters = 0; break; default: return -EINVAL; }; switch (p->u.ofdm.code_rate_HP) { case FEC_1_2: break; case FEC_2_3: *reg0xc05 |= (1 << 3); break; case FEC_3_4: *reg0xc05 |= (2 << 3); break; case FEC_5_6: *reg0xc05 |= (3 << 3); break; case FEC_7_8: *reg0xc05 |= (4 << 3); break; case FEC_AUTO: known_parameters = 0; break; default: return -EINVAL; }; if (known_parameters) *reg0xc05 |= (2 << 1); /* use specified parameters */ else *reg0xc05 |= (1 << 1); /* enable autoprobing */ return 0; } /** * estimates division of two 24bit numbers, * derived from the ves1820/stv0299 driver code */ static void divide (int n, int d, int *quotient_i, int *quotient_f) { unsigned int q, r; r = (n % d) << 8; q = (r / d); if (quotient_i) *quotient_i = q; if (quotient_f) { r = (r % d) << 8; q = (q << 8) | (r / d); r = (r % d) << 8; *quotient_f = (q << 8) | (r / d); } } static void sp887x_correct_offsets (struct dvb_frontend *fe, struct dvb_frontend_parameters *p, int actual_freq) { static const u32 srate_correction [] = { 1879617, 4544878, 8098561 }; int bw_index = p->u.ofdm.bandwidth - BANDWIDTH_8_MHZ; int freq_offset = actual_freq - p->frequency; int sysclock = 61003; //[kHz] int ifreq = 36000000; int freq; int frequency_shift; if (p->inversion == INVERSION_ON) freq = ifreq - freq_offset; else freq = ifreq + freq_offset; divide(freq / 333, sysclock, NULL, &frequency_shift); if (p->inversion == INVERSION_ON) frequency_shift = -frequency_shift; /* sample rate correction */ sp887x_writereg(fe, 0x319, srate_correction[bw_index] >> 12); sp887x_writereg(fe, 0x31a, srate_correction[bw_index] & 0xfff); /* carrier offset correction */ sp887x_writereg(fe, 0x309, frequency_shift >> 12); sp887x_writereg(fe, 0x30a, frequency_shift & 0xfff); } static int sp887x_setup_frontend_parameters (struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { int actual_freq, err; u16 val, reg0xc05; if (p->u.ofdm.bandwidth != BANDWIDTH_8_MHZ && p->u.ofdm.bandwidth != BANDWIDTH_7_MHZ && p->u.ofdm.bandwidth != BANDWIDTH_6_MHZ) return -EINVAL; if ((err = configure_reg0xc05(p, ®0xc05))) return err; sp887x_microcontroller_stop(fe); actual_freq = tsa5060_setup_pll(fe, p->frequency); /* read status reg in order to clear pending irqs */ sp887x_readreg(fe, 0x200); sp887x_correct_offsets(fe, p, actual_freq); /* filter for 6/7/8 Mhz channel */ if (p->u.ofdm.bandwidth == BANDWIDTH_6_MHZ) val = 2; else if (p->u.ofdm.bandwidth == BANDWIDTH_7_MHZ) val = 1; else val = 0; sp887x_writereg(fe, 0x311, val); /* scan order: 2k first = 0, 8k first = 1 */ if (p->u.ofdm.transmission_mode == TRANSMISSION_MODE_2K) sp887x_writereg(fe, 0x338, 0x000); else sp887x_writereg(fe, 0x338, 0x001); sp887x_writereg(fe, 0xc05, reg0xc05); if (p->u.ofdm.bandwidth == BANDWIDTH_6_MHZ) val = 2 << 3; else if (p->u.ofdm.bandwidth == BANDWIDTH_7_MHZ) val = 3 << 3; else val = 0 << 3; /* enable OFDM and SAW bits as lock indicators in sync register 0xf17, * optimize algorithm for given bandwidth... */ sp887x_writereg(fe, 0xf14, 0x160 | val); sp887x_writereg(fe, 0xf15, 0x000); sp887x_microcontroller_start(fe); return 0; } static int sp887x_ioctl (struct dvb_frontend *fe, unsigned int cmd, void *arg) { switch (cmd) { case FE_GET_INFO: memcpy (arg, &sp887x_info, sizeof(struct dvb_frontend_info)); break; case FE_READ_STATUS: { u16 snr12 = sp887x_readreg(fe, 0xf16); u16 sync0x200 = sp887x_readreg(fe, 0x200); u16 sync0xf17 = sp887x_readreg(fe, 0xf17); fe_status_t *status = arg; *status = 0; if (snr12 > 0x00f) *status |= FE_HAS_SIGNAL; //if (sync0x200 & 0x004) // *status |= FE_HAS_SYNC | FE_HAS_CARRIER; //if (sync0x200 & 0x008) // *status |= FE_HAS_VITERBI; if ((sync0xf17 & 0x00f) == 0x002) { *status |= FE_HAS_LOCK; *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_CARRIER; } if (sync0x200 & 0x001) { /* tuner adjustment requested...*/ int steps = (sync0x200 >> 4) & 0x00f; if (steps & 0x008) steps = -steps; dprintk("sp887x: implement tuner adjustment (%+i steps)!!\n", steps); } break; } case FE_READ_BER: { u32* ber = arg; *ber = (sp887x_readreg(fe, 0xc08) & 0x3f) | (sp887x_readreg(fe, 0xc07) << 6); sp887x_writereg(fe, 0xc08, 0x000); sp887x_writereg(fe, 0xc07, 0x000); if (*ber >= 0x3fff0) *ber = ~0; break; } case FE_READ_SIGNAL_STRENGTH: // FIXME: correct registers ? { u16 snr12 = sp887x_readreg(fe, 0xf16); u32 signal = 3 * (snr12 << 4); *((u16*) arg) = (signal < 0xffff) ? signal : 0xffff; break; } case FE_READ_SNR: { u16 snr12 = sp887x_readreg(fe, 0xf16); *(u16*) arg = (snr12 << 4) | (snr12 >> 8); break; } case FE_READ_UNCORRECTED_BLOCKS: { u32 *ublocks = (u32 *) arg; *ublocks = sp887x_readreg(fe, 0xc0c); if (*ublocks == 0xfff) *ublocks = ~0; break; } case FE_SET_FRONTEND: return sp887x_setup_frontend_parameters(fe, arg); case FE_GET_FRONTEND: // FIXME: read known values back from Hardware... break; case FE_SLEEP: /* tristate TS output and disable interface pins */ sp887x_writereg(fe, 0xc18, 0x000); break; case FE_INIT: if (fe->data == NULL) { /* first time initialisation... */ fe->data = (void*) ~0; sp887x_initial_setup (fe); } /* enable TS output and interface pins */ sp887x_writereg(fe, 0xc18, 0x00d); break; default: return -EOPNOTSUPP; }; return 0; } static int sp887x_attach (struct dvb_i2c_bus *i2c, void **data) { struct i2c_msg msg = { addr: 0x70, flags: 0, buf: NULL, len: 0 }; dprintk ("%s\n", __FUNCTION__); if (i2c->xfer (i2c, &msg, 1) != 1) return -ENODEV; return dvb_register_frontend (sp887x_ioctl, i2c, NULL, &sp887x_info); } static void sp887x_detach (struct dvb_i2c_bus *i2c, void *data) { dprintk ("%s\n", __FUNCTION__); dvb_unregister_frontend (sp887x_ioctl, i2c); } static int __init init_sp887x (void) { dprintk ("%s\n", __FUNCTION__); return dvb_register_i2c_device (NULL, sp887x_attach, sp887x_detach); } static void __exit exit_sp887x (void) { dprintk ("%s\n", __FUNCTION__); dvb_unregister_i2c_device (sp887x_attach); } module_init(init_sp887x); module_exit(exit_sp887x); MODULE_DESCRIPTION("sp887x DVB-T demodulator driver"); MODULE_LICENSE("GPL");