/* STB6100 Silicon Tuner Copyright (C) Manu Abraham (abraham.manu@gmail.com) Copyright (C) ST Microelectronics This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include "dvb_frontend.h" #include "stb6100.h" static unsigned int verbose; module_param(verbose, int, 0644); #define FE_ERROR 0 #define FE_NOTICE 1 #define FE_INFO 2 #define FE_DEBUG 3 #define dprintk(x, y, z, format, arg...) do { \ if (z) { \ if ((x > FE_ERROR) && (x > y)) \ printk(KERN_ERR "%s: " format "\n", __func__ , ##arg); \ else if ((x > FE_NOTICE) && (x > y)) \ printk(KERN_NOTICE "%s: " format "\n", __func__ , ##arg); \ else if ((x > FE_INFO) && (x > y)) \ printk(KERN_INFO "%s: " format "\n", __func__ , ##arg); \ else if ((x > FE_DEBUG) && (x > y)) \ printk(KERN_DEBUG "%s: " format "\n", __func__ , ##arg); \ } else { \ if (x > y) \ printk(format, ##arg); \ } \ } while(0) struct stb6100_lkup { u32 val_low; u32 val_high; u8 reg; }; static int stb6100_release(struct dvb_frontend *fe); static const struct stb6100_lkup lkup[] = { { 0, 950000, 0x0a }, { 950000, 1000000, 0x0a }, { 1000000, 1075000, 0x0c }, { 1075000, 1200000, 0x00 }, { 1200000, 1300000, 0x01 }, { 1300000, 1370000, 0x02 }, { 1370000, 1470000, 0x04 }, { 1470000, 1530000, 0x05 }, { 1530000, 1650000, 0x06 }, { 1650000, 1800000, 0x08 }, { 1800000, 1950000, 0x0a }, { 1950000, 2150000, 0x0c }, { 2150000, 9999999, 0x0c }, { 0, 0, 0x00 } }; /* Register names for easy debugging. */ static const char *stb6100_regnames[] = { [STB6100_LD] = "LD", [STB6100_VCO] = "VCO", [STB6100_NI] = "NI", [STB6100_NF_LSB] = "NF", [STB6100_K] = "K", [STB6100_G] = "G", [STB6100_F] = "F", [STB6100_DLB] = "DLB", [STB6100_TEST1] = "TEST1", [STB6100_FCCK] = "FCCK", [STB6100_LPEN] = "LPEN", [STB6100_TEST3] = "TEST3", }; /* Template for normalisation, i.e. setting unused or undocumented * bits as required according to the documentation. */ struct stb6100_regmask { u8 mask; u8 set; }; static const struct stb6100_regmask stb6100_template[] = { [STB6100_LD] = { 0xff, 0x00 }, [STB6100_VCO] = { 0xff, 0x00 }, [STB6100_NI] = { 0xff, 0x00 }, [STB6100_NF_LSB] = { 0xff, 0x00 }, [STB6100_K] = { 0xc7, 0x38 }, [STB6100_G] = { 0xef, 0x10 }, [STB6100_F] = { 0x1f, 0xc0 }, [STB6100_DLB] = { 0x38, 0xc4 }, [STB6100_TEST1] = { 0x00, 0x8f }, [STB6100_FCCK] = { 0x40, 0x0d }, [STB6100_LPEN] = { 0xf0, 0x0b }, [STB6100_TEST3] = { 0x00, 0xde }, }; static void stb6100_normalise_regs(u8 regs[]) { int i; for (i = 0; i < STB6100_NUMREGS; i++) regs[i] = (regs[i] & stb6100_template[i].mask) | stb6100_template[i].set; } static int stb6100_read_regs(struct stb6100_state *state, u8 regs[]) { int rc; struct i2c_msg msg = { .addr = state->config->tuner_address, .flags = I2C_M_RD, .buf = regs, .len = STB6100_NUMREGS }; if (state->frontend->ops.i2c_gate_ctrl) if ((rc = state->frontend->ops.i2c_gate_ctrl(state->frontend, 1)) < 0) return rc; rc = i2c_transfer(state->i2c, &msg, 1); if (state->frontend->ops.i2c_gate_ctrl) { int rc2; if ((rc2 = state->frontend->ops.i2c_gate_ctrl(state->frontend, 0)) < 0) return rc2; } if (unlikely(rc != 1)) { dprintk(verbose, FE_ERROR, 1, "Read (0x%x) err, rc=[%d]", state->config->tuner_address, rc); return -EREMOTEIO; } if (unlikely(verbose > FE_DEBUG)) { int i; dprintk(verbose, FE_DEBUG, 1, " Read from 0x%02x", state->config->tuner_address); for (i = 0; i < STB6100_NUMREGS; i++) dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[i], regs[i]); } return 0; } static int stb6100_read_reg(struct stb6100_state *state, u8 reg) { u8 regs[STB6100_NUMREGS]; int rc; if (unlikely(reg >= STB6100_NUMREGS)) { dprintk(verbose, FE_ERROR, 1, "Invalid register offset 0x%x", reg); return -EINVAL; } if ((rc = stb6100_read_regs(state, regs)) < 0) return rc; return (unsigned int)regs[reg]; } static int stb6100_write_reg_range(struct stb6100_state *state, u8 buf[], int start, int len) { int rc; u8 cmdbuf[len + 1]; struct i2c_msg msg = { .addr = state->config->tuner_address, .flags = 0, .buf = cmdbuf, .len = len + 1 }; if (unlikely(start < 1 || start + len > STB6100_NUMREGS)) { dprintk(verbose, FE_ERROR, 1, "Invalid register range %d:%d", start, len); return -EINVAL; } memcpy(&cmdbuf[1], buf, len); cmdbuf[0] = start; if (unlikely(verbose > FE_DEBUG)) { int i; dprintk(verbose, FE_DEBUG, 1, " Write @ 0x%02x: [%d:%d]", state->config->tuner_address, start, len); for (i = 0; i < len; i++) dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[start + i], buf[i]); } if (state->frontend->ops.i2c_gate_ctrl) if ((rc = state->frontend->ops.i2c_gate_ctrl(state->frontend, 1)) < 0) return rc; rc = i2c_transfer(state->i2c, &msg, 1); if (state->frontend->ops.i2c_gate_ctrl) { int rc2; if ((rc2 = state->frontend->ops.i2c_gate_ctrl(state->frontend, 0)) < 0) return rc2; } if (unlikely(rc != 1)) { dprintk(verbose, FE_ERROR, 1, "(0x%x) write err [%d:%d], rc=[%d]", (unsigned int)state->config->tuner_address, start, len, rc); return -EREMOTEIO; } return 0; } static int stb6100_write_reg(struct stb6100_state *state, u8 reg, u8 data) { if (unlikely(reg >= STB6100_NUMREGS)) { dprintk(verbose, FE_ERROR, 1, "Invalid register offset 0x%x", reg); return -EREMOTEIO; } data = (data & stb6100_template[reg].mask) | stb6100_template[reg].set; return stb6100_write_reg_range(state, &data, reg, 1); } static int stb6100_write_regs(struct stb6100_state *state, u8 regs[]) { stb6100_normalise_regs(regs); return stb6100_write_reg_range(state, ®s[1], 1, STB6100_NUMREGS - 1); } static int stb6100_get_status(struct dvb_frontend *fe, u32 *status) { int rc; struct stb6100_state *state = fe->tuner_priv; if ((rc = stb6100_read_reg(state, STB6100_LD)) < 0) return rc; return (rc & STB6100_LD_LOCK) ? TUNER_STATUS_LOCKED : 0; } static int stb6100_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { int rc; u8 f; struct stb6100_state *state = fe->tuner_priv; if ((rc = stb6100_read_reg(state, STB6100_F)) < 0) return rc; f = rc & STB6100_F_F; state->status.bandwidth = (f + 5) * 2000; /* x2 for ZIF */ *bandwidth = state->bandwidth = state->status.bandwidth * 1000; dprintk(verbose, FE_DEBUG, 1, "bandwidth = %u Hz", state->bandwidth); return 0; } static int stb6100_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth) { u32 tmp; int rc; struct stb6100_state *state = fe->tuner_priv; dprintk(verbose, FE_DEBUG, 1, "set bandwidth to %u kHz", bandwidth); bandwidth *= 1000 / 2; /* kHz -> Hz, bw / 2 */ if (bandwidth > 36000000) /* F[4:0] BW/2 max =31+5=36 mhz for F=31 */ tmp = 31; if (bandwidth < 5000000) /* bw/2 min = 5Mhz for F=0 */ tmp = 0; else /* if 5 < bw/2 < 36 */ tmp = bandwidth / 1000000 - 5; /* Turn on LPF bandwidth setting clock control, * set bandwidth, wait 10ms, turn off. */ if ((rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d | STB6100_FCCK_FCCK)) < 0) return rc; if ((rc = stb6100_write_reg(state, STB6100_F, 0xc0 | tmp)) < 0) return rc; msleep(1); if ((rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d)) < 0) return rc; return 0; } static int stb6100_get_frequency(struct dvb_frontend *fe, u32 *frequency) { int rc; u32 nint, nfrac, fvco; int psd2, odiv; struct stb6100_state *state = fe->tuner_priv; u8 regs[STB6100_NUMREGS]; if ((rc = stb6100_read_regs(state, regs)) < 0) return rc; odiv = (regs[STB6100_VCO] & STB6100_VCO_ODIV) >> STB6100_VCO_ODIV_SHIFT; psd2 = (regs[STB6100_K] & STB6100_K_PSD2) >> STB6100_K_PSD2_SHIFT; nint = regs[STB6100_NI]; nfrac = ((regs[STB6100_K] & STB6100_K_NF_MSB) << 8) | regs[STB6100_NF_LSB]; fvco = (nfrac * state->reference >> (9 - psd2)) + (nint * state->reference << psd2); *frequency = state->frequency = fvco >> (odiv + 1); dprintk(verbose, FE_DEBUG, 1, "frequency = %u kHz, odiv = %u, psd2 = %u, fxtal = %u kHz, fvco = %u kHz, N(I) = %u, N(F) = %u", state->frequency, odiv, psd2, state->reference, fvco, nint, nfrac); return 0; } #if 0 static int stb6100_set_rfgain(struct dvb_frontend *fe, u32 rfgain) { return 0; } #endif static int stb6100_set_frequency(struct dvb_frontend *fe, u32 frequency) { int rc; const struct stb6100_lkup *ptr; struct stb6100_state *state = fe->tuner_priv; struct dvbfe_params params; u32 srate = 0, fvco, nint, nfrac; u8 regs[STB6100_NUMREGS]; u8 g, psd2, odiv; if ((rc = stb6100_read_regs(state, regs)) < 0) return rc; if (fe->ops.get_params) { dprintk(verbose, FE_DEBUG, 1, "Get Frontend parameters"); fe->ops.get_params(fe, ¶ms); } switch (params.delivery) { case DVBFE_DELSYS_DVBS: srate = params.delsys.dvbs.symbol_rate; dprintk(verbose, FE_DEBUG, 1, "Delivery system = DVB-S, Symbol Rate=[%d]", srate); break; case DVBFE_DELSYS_DSS: dprintk(verbose, FE_DEBUG, 1, "Delivery system = DSS, Symbol Rate=[%d]", srate); srate = params.delsys.dss.symbol_rate; break; case DVBFE_DELSYS_DVBS2: dprintk(verbose, FE_DEBUG, 1, "Delivery system = DVB-S2, Symbol Rate=[%d]", srate); srate = params.delsys.dvbs2.symbol_rate; break; default: dprintk(verbose, FE_NOTICE, 1, "symbol rate unknown!"); srate = 22000000; /* just a typical default value */ } /* Baseband gain. */ if (srate >= 15000000) g = 8; else if (state->srate >= 5000000) g = 12; else g = 14; regs[STB6100_G] = (regs[STB6100_G] & ~STB6100_G_G) | g; /* VCO divide ratio (LO divide ratio, VCO prescaler enable). */ if (frequency <= 1075000) odiv = 1; else odiv = 0; regs[STB6100_VCO] = (regs[STB6100_VCO] & ~STB6100_VCO_ODIV) | (odiv << STB6100_VCO_ODIV_SHIFT); if ((frequency > 1075000) && (frequency <= 1325000)) psd2 = 0; else psd2 = 1; regs[STB6100_K] = (regs[STB6100_K] & ~STB6100_K_PSD2) | (psd2 << STB6100_K_PSD2_SHIFT); /* OSM */ for (ptr = lkup; (ptr->val_high != 0) && !CHKRANGE(frequency, ptr->val_low, ptr->val_high); ptr++); if (ptr->val_high == 0) { printk(KERN_ERR "%s: frequency out of range: %u kHz\n", __func__, frequency); return -EINVAL; } regs[STB6100_VCO] = (regs[STB6100_VCO] & ~STB6100_VCO_OSM) | ptr->reg; /* F(VCO) = F(LO) * (ODIV == 0 ? 2 : 4) */ fvco = frequency << (1 + odiv); /* N(I) = floor(f(VCO) / (f(XTAL) * (PSD2 ? 2 : 1))) */ nint = fvco / (state->reference << psd2); /* N(F) = round(f(VCO) / f(XTAL) * (PSD2 ? 2 : 1) - N(I)) * 2 ^ 9 */ nfrac = (((fvco - (nint * state->reference << psd2)) << (9 - psd2)) + state->reference / 2) / state->reference; dprintk(verbose, FE_DEBUG, 1, "frequency = %u, srate = %u, g = %u, odiv = %u, psd2 = %u, fxtal = %u, osm = %u, fvco = %u, N(I) = %u, N(F) = %u", frequency, srate, (unsigned int)g, (unsigned int)odiv, (unsigned int)psd2, state->reference, ptr->reg, fvco, nint, nfrac); regs[STB6100_NI] = nint; regs[STB6100_NF_LSB] = nfrac; regs[STB6100_K] = (regs[STB6100_K] & ~STB6100_K_NF_MSB) | ((nfrac >> 8) & STB6100_K_NF_MSB); regs[STB6100_VCO] |= STB6100_VCO_OSCH; /* VCO search enabled */ regs[STB6100_VCO] |= STB6100_VCO_OCK; /* VCO search clock off */ regs[STB6100_FCCK] |= STB6100_FCCK_FCCK; /* LPF BW setting clock enabled */ regs[STB6100_LPEN] &= ~STB6100_LPEN_LPEN; /* PLL loop disabled */ /* Power up. */ regs[STB6100_LPEN] |= STB6100_LPEN_SYNP | STB6100_LPEN_OSCP | STB6100_LPEN_BEN; if ((rc = stb6100_write_regs(state, regs)) < 0) return rc; regs[STB6100_LPEN] |= STB6100_LPEN_LPEN; /* PLL loop enabled */ if ((rc = stb6100_write_reg(state, STB6100_LPEN, regs[STB6100_LPEN])) < 0) return rc; regs[STB6100_VCO] &= ~STB6100_VCO_OCK; /* VCO fast search */ if ((rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO])) < 0) return rc; msleep(5); /* wait for LO to lock */ regs[STB6100_VCO] &= ~STB6100_VCO_OSCH; /* vco search disabled */ regs[STB6100_VCO] |= STB6100_VCO_OCK; /* search clock off */ if ((rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO])) < 0) return rc; regs[STB6100_FCCK] &= ~STB6100_FCCK_FCCK; /* LPF BW clock disabled */ if ((rc = stb6100_write_reg(state, STB6100_FCCK, regs[STB6100_FCCK])) < 0) return rc; return 0; } static int stb6100_sleep(struct dvb_frontend *fe) { /* TODO: power down */ return 0; } static int stb6100_init(struct dvb_frontend *fe) { struct stb6100_state *state = fe->tuner_priv; struct tuner_state *status = &state->status; status->tunerstep = 125000; status->ifreq = 0; status->refclock = 27000000; /* Hz */ status->iqsense = 1; status->bandwidth = 36000; /* kHz */ state->bandwidth = status->bandwidth * 1000; /* MHz */ state->reference = status->refclock / 1000; /* kHz */ /* Set default bandwidth. */ return stb6100_set_bandwidth(fe, status->bandwidth); } static int stb6100_get_state(struct dvb_frontend *fe, enum tuner_param param, struct tuner_state *state) { switch (param) { case DVBFE_TUNER_FREQUENCY: stb6100_get_frequency(fe, &state->frequency); break; case DVBFE_TUNER_TUNERSTEP: break; case DVBFE_TUNER_IFFREQ: break; case DVBFE_TUNER_BANDWIDTH: stb6100_get_bandwidth(fe, &state->bandwidth); break; case DVBFE_TUNER_REFCLOCK: break; default: break; } return 0; } static int stb6100_set_state(struct dvb_frontend *fe, enum tuner_param param, struct tuner_state *state) { struct stb6100_state *tstate = fe->tuner_priv; switch (param) { case DVBFE_TUNER_FREQUENCY: stb6100_set_frequency(fe, state->frequency); state->frequency = tstate->frequency; break; case DVBFE_TUNER_TUNERSTEP: break; case DVBFE_TUNER_IFFREQ: break; case DVBFE_TUNER_BANDWIDTH: stb6100_set_bandwidth(fe, state->bandwidth); state->bandwidth = tstate->bandwidth; break; case DVBFE_TUNER_REFCLOCK: break; default: break; } return 0; } static struct dvb_tuner_ops stb6100_ops = { .info = { .name = "STB6100 Silicon Tuner", .frequency_min = 950000, .frequency_max = 2150000, .frequency_step = 0, }, .init = stb6100_init, .sleep = stb6100_sleep, .get_status = stb6100_get_status, .get_state = stb6100_get_state, .set_state = stb6100_set_state, .get_frequency = stb6100_get_frequency, .get_bandwidth = stb6100_get_bandwidth, .release = stb6100_release }; struct dvb_frontend *stb6100_attach(struct dvb_frontend *fe, struct stb6100_config *config, struct i2c_adapter *i2c) { struct stb6100_state *state = NULL; state = kmalloc(sizeof (struct stb6100_state), GFP_KERNEL); if (state == NULL) goto error; state->config = config; state->i2c = i2c; state->frontend = fe; state->reference = config->refclock; fe->tuner_priv = state; fe->ops.tuner_ops = stb6100_ops; printk("%s: Attaching\n", __func__); return fe; error: kfree(state); return NULL; } static int stb6100_release(struct dvb_frontend *fe) { struct stb6100_state *state = fe->tuner_priv; fe->tuner_priv = NULL; memset(&fe->ops.tuner_ops, 0, sizeof (fe->ops.tuner_ops)); kfree(state); return 0; } EXPORT_SYMBOL(stb6100_attach); MODULE_PARM_DESC(verbose, "Set Verbosity level"); MODULE_AUTHOR("Manu Abraham"); MODULE_DESCRIPTION("STB6100 Silicon tuner"); MODULE_LICENSE("GPL");