/* Driver for STV0297 demodulator Copyright (C) 2004 Andrew de Quincey Copyright (C) 2003-2004 Dennis Noermann This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "dvb_frontend.h" #include "stv0297.h" struct stv0297_state { struct i2c_adapter *i2c; struct dvb_frontend_ops ops; const struct stv0297_config *config; struct dvb_frontend frontend; int freq_off; unsigned long base_freq; u8 pwm; }; #if 1 #define dprintk(x...) printk(x) #else #define dprintk(x...) #endif #define STV0297_CLOCK_KHZ 28900 static u8 init_tab[] = { 0x00, 0x09, 0x01, 0x69, 0x03, 0x00, 0x04, 0x00, 0x07, 0x00, 0x08, 0x00, 0x20, 0x00, 0x21, 0x40, 0x22, 0x00, 0x23, 0x00, 0x24, 0x40, 0x25, 0x88, 0x30, 0xff, 0x31, 0x00, 0x32, 0xff, 0x33, 0x00, 0x34, 0x50, 0x35, 0x7f, 0x36, 0x00, 0x37, 0x20, 0x38, 0x00, 0x40, 0x1c, 0x41, 0xff, 0x42, 0x29, 0x43, 0x00, 0x44, 0xff, 0x45, 0x00, 0x46, 0x00, 0x49, 0x04, 0x4a, 0xff, 0x4b, 0x7f, 0x52, 0x30, 0x55, 0xae, 0x56, 0x47, 0x57, 0xe1, 0x58, 0x3a, 0x5a, 0x1e, 0x5b, 0x34, 0x60, 0x00, 0x63, 0x00, 0x64, 0x00, 0x65, 0x00, 0x66, 0x00, 0x67, 0x00, 0x68, 0x00, 0x69, 0x00, 0x6a, 0x02, 0x6b, 0x00, 0x70, 0xff, 0x71, 0x00, 0x72, 0x00, 0x73, 0x00, 0x74, 0x0c, 0x80, 0x00, 0x81, 0x00, 0x82, 0x00, 0x83, 0x00, 0x84, 0x04, 0x85, 0x80, 0x86, 0x24, 0x87, 0x78, 0x88, 0x00, 0x89, 0x00, 0x90, 0x01, 0x91, 0x01, 0xa0, 0x00, 0xa1, 0x00, 0xa2, 0x00, 0xb0, 0x91, 0xb1, 0x0b, 0xc0, 0x53, 0xc1, 0x70, 0xc2, 0x12, 0xd0, 0x00, 0xd1, 0x00, 0xd2, 0x00, 0xd3, 0x00, 0xd4, 0x00, 0xd5, 0x00, 0xde, 0x00, 0xdf, 0x00, 0x61, 0x49, 0x62, 0x0b, 0x53, 0x08, 0x59, 0x08, }; static int stv0297_writereg(struct stv0297_state *state, u8 reg, u8 data) { int ret; u8 buf[] = { reg, data }; struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 }; ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) dprintk("%s: writereg error (reg == 0x%02x, val == 0x%02x, " "ret == %i)\n", __FUNCTION__, reg, data, ret); return (ret != 1) ? -1 : 0; } static int stv0297_readreg(struct stv0297_state *state, u8 reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1}, {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1} }; // this device needs a STOP between the register and data if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) { dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg, ret); return -1; } if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) { dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg, ret); return -1; } return b1[0]; } static int stv0297_writereg_mask(struct stv0297_state *state, u8 reg, u8 mask, u8 data) { int val; val = stv0297_readreg(state, reg); val &= ~mask; val |= (data & mask); stv0297_writereg(state, reg, val); return 0; } static int stv0297_readregs(struct stv0297_state *state, u8 reg1, u8 * b, u8 len) { int ret; struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf = ®1,.len = 1}, {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b,.len = len} }; // this device needs a STOP between the register and data if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) { dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg1, ret); return -1; } if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) { dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg1, ret); return -1; } return 0; } static u32 stv0297_get_symbolrate(struct stv0297_state *state) { u64 tmp; tmp = stv0297_readreg(state, 0x55); tmp |= stv0297_readreg(state, 0x56) << 8; tmp |= stv0297_readreg(state, 0x57) << 16; tmp |= stv0297_readreg(state, 0x58) << 24; tmp *= STV0297_CLOCK_KHZ; tmp >>= 32; return (u32) tmp; } static void stv0297_set_symbolrate(struct stv0297_state *state, u32 srate) { long tmp; tmp = 131072L * srate; /* 131072 = 2^17 */ tmp = tmp / (STV0297_CLOCK_KHZ / 4); /* 1/4 = 2^-2 */ tmp = tmp * 8192L; /* 8192 = 2^13 */ stv0297_writereg(state, 0x55, (unsigned char) (tmp & 0xFF)); stv0297_writereg(state, 0x56, (unsigned char) (tmp >> 8)); stv0297_writereg(state, 0x57, (unsigned char) (tmp >> 16)); stv0297_writereg(state, 0x58, (unsigned char) (tmp >> 24)); } static void stv0297_set_sweeprate(struct stv0297_state *state, short fshift, long symrate) { long tmp; tmp = (long) fshift *262144L; /* 262144 = 2*18 */ tmp /= symrate; tmp *= 1024; /* 1024 = 2*10 */ // adjust if (tmp >= 0) { tmp += 500000; } else { tmp -= 500000; } tmp /= 1000000; stv0297_writereg(state, 0x60, tmp & 0xFF); stv0297_writereg_mask(state, 0x69, 0xF0, (tmp >> 4) & 0xf0); } static void stv0297_set_carrieroffset(struct stv0297_state *state, long offset) { long tmp; /* symrate is hardcoded to 10000 */ tmp = offset * 26844L; /* (2**28)/10000 */ if (tmp < 0) tmp += 0x10000000; tmp &= 0x0FFFFFFF; stv0297_writereg(state, 0x66, (unsigned char) (tmp & 0xFF)); stv0297_writereg(state, 0x67, (unsigned char) (tmp >> 8)); stv0297_writereg(state, 0x68, (unsigned char) (tmp >> 16)); stv0297_writereg_mask(state, 0x69, 0x0F, (tmp >> 24) & 0x0f); } static long stv0297_get_carrieroffset(struct stv0297_state *state) { s64 tmp; stv0297_writereg(state, 0x6B, 0x00); tmp = stv0297_readreg(state, 0x66); tmp |= (stv0297_readreg(state, 0x67) << 8); tmp |= (stv0297_readreg(state, 0x68) << 16); tmp |= (stv0297_readreg(state, 0x69) & 0x0F) << 24; tmp *= stv0297_get_symbolrate(state); tmp >>= 28; return (s32) tmp; } static void stv0297_set_initialdemodfreq(struct stv0297_state *state, long freq) { s32 tmp; if (freq > 10000) freq -= STV0297_CLOCK_KHZ; tmp = (STV0297_CLOCK_KHZ * 1000) / (1 << 16); tmp = (freq * 1000) / tmp; if (tmp > 0xffff) tmp = 0xffff; stv0297_writereg_mask(state, 0x25, 0x80, 0x80); stv0297_writereg(state, 0x21, tmp >> 8); stv0297_writereg(state, 0x20, tmp); } static int stv0297_set_qam(struct stv0297_state *state, fe_modulation_t modulation) { int val = 0; switch (modulation) { case QAM_16: val = 0; break; case QAM_32: val = 1; break; case QAM_64: val = 4; break; case QAM_128: val = 2; break; case QAM_256: val = 3; break; default: return -EINVAL; } stv0297_writereg_mask(state, 0x00, 0x70, val << 4); return 0; } static int stv0297_set_inversion(struct stv0297_state *state, fe_spectral_inversion_t inversion) { int val = 0; switch (inversion) { case INVERSION_OFF: val = 0; break; case INVERSION_ON: val = 1; break; default: return -EINVAL; } stv0297_writereg_mask(state, 0x83, 0x08, val << 3); return 0; } int stv0297_enable_plli2c(struct dvb_frontend *fe) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; stv0297_writereg(state, 0x87, 0x78); stv0297_writereg(state, 0x86, 0xc8); return 0; } static int stv0297_init(struct dvb_frontend *fe) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; int i; /* soft reset */ stv0297_writereg_mask(state, 0x80, 1, 1); stv0297_writereg_mask(state, 0x80, 1, 0); /* reset deinterleaver */ stv0297_writereg_mask(state, 0x81, 1, 1); stv0297_writereg_mask(state, 0x81, 1, 0); /* load init table */ for (i = 0; i < sizeof(init_tab); i += 2) { stv0297_writereg(state, init_tab[i], init_tab[i + 1]); } /* set a dummy symbol rate */ stv0297_set_symbolrate(state, 6900); /* invert AGC1 polarity */ stv0297_writereg_mask(state, 0x88, 0x10, 0x10); /* setup bit error counting */ stv0297_writereg_mask(state, 0xA0, 0x80, 0x00); stv0297_writereg_mask(state, 0xA0, 0x10, 0x00); stv0297_writereg_mask(state, 0xA0, 0x08, 0x00); stv0297_writereg_mask(state, 0xA0, 0x07, 0x04); /* min + max PWM */ stv0297_writereg(state, 0x4a, 0x00); stv0297_writereg(state, 0x4b, state->pwm); msleep(200); if (state->config->pll_init) state->config->pll_init(fe); return 0; } static int stv0297_sleep(struct dvb_frontend *fe) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; stv0297_writereg_mask(state, 0x80, 1, 1); return 0; } static int stv0297_read_status(struct dvb_frontend *fe, fe_status_t * status) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; u8 sync = stv0297_readreg(state, 0xDF); *status = 0; if (sync & 0x80) *status |= FE_HAS_SYNC | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_LOCK; return 0; } static int stv0297_read_ber(struct dvb_frontend *fe, u32 * ber) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; u8 BER[3]; stv0297_writereg(state, 0xA0, 0x80); // Start Counting bit errors for 4096 Bytes mdelay(25); // Hopefully got 4096 Bytes stv0297_readregs(state, 0xA0, BER, 3); mdelay(25); *ber = (BER[2] << 8 | BER[1]) / (8 * 4096); return 0; } static int stv0297_read_signal_strength(struct dvb_frontend *fe, u16 * strength) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; u8 STRENGTH[2]; stv0297_readregs(state, 0x41, STRENGTH, 2); *strength = (STRENGTH[1] & 0x03) << 8 | STRENGTH[0]; return 0; } static int stv0297_read_snr(struct dvb_frontend *fe, u16 * snr) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; u8 SNR[2]; stv0297_readregs(state, 0x07, SNR, 2); *snr = SNR[1] << 8 | SNR[0]; return 0; } static int stv0297_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; *ucblocks = (stv0297_readreg(state, 0xD5) << 8) | stv0297_readreg(state, 0xD4); return 0; } static int stv0297_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; int u_threshold; int initial_u; int blind_u; int delay; int sweeprate; int carrieroffset; int freq_off; unsigned long starttime; unsigned long timeout; fe_spectral_inversion_t inversion; switch (p->u.qam.modulation) { case QAM_16: case QAM_32: case QAM_64: delay = 100; sweeprate = 1500; break; case QAM_128: delay = 150; sweeprate = 1000; break; case QAM_256: delay = 200; sweeprate = 500; break; default: return -EINVAL; } // determine inversion dependant parameters inversion = p->inversion; if (state->config->invert) inversion = (inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON; carrieroffset = -330; switch (inversion) { case INVERSION_OFF: break; case INVERSION_ON: sweeprate = -sweeprate; carrieroffset = -carrieroffset; break; default: return -EINVAL; } stv0297_init(fe); state->config->pll_set(fe, p); /* clear software interrupts */ stv0297_writereg(state, 0x82, 0x0); /* set initial demodulation frequency */ stv0297_set_initialdemodfreq(state, state->freq_off + 7250); /* setup AGC */ stv0297_writereg_mask(state, 0x43, 0x10, 0x00); stv0297_writereg(state, 0x41, 0x00); stv0297_writereg_mask(state, 0x42, 0x03, 0x01); stv0297_writereg_mask(state, 0x36, 0x60, 0x00); stv0297_writereg_mask(state, 0x36, 0x18, 0x00); stv0297_writereg_mask(state, 0x71, 0x80, 0x80); stv0297_writereg(state, 0x72, 0x00); stv0297_writereg(state, 0x73, 0x00); stv0297_writereg_mask(state, 0x74, 0x0F, 0x00); stv0297_writereg_mask(state, 0x43, 0x08, 0x00); stv0297_writereg_mask(state, 0x71, 0x80, 0x00); /* setup STL */ stv0297_writereg_mask(state, 0x5a, 0x20, 0x20); stv0297_writereg_mask(state, 0x5b, 0x02, 0x02); stv0297_writereg_mask(state, 0x5b, 0x02, 0x00); stv0297_writereg_mask(state, 0x5b, 0x01, 0x00); stv0297_writereg_mask(state, 0x5a, 0x40, 0x40); /* disable frequency sweep */ stv0297_writereg_mask(state, 0x6a, 0x01, 0x00); /* reset deinterleaver */ stv0297_writereg_mask(state, 0x81, 0x01, 0x01); stv0297_writereg_mask(state, 0x81, 0x01, 0x00); /* ??? */ stv0297_writereg_mask(state, 0x83, 0x20, 0x20); stv0297_writereg_mask(state, 0x83, 0x20, 0x00); /* reset equaliser */ u_threshold = stv0297_readreg(state, 0x00) & 0xf; initial_u = stv0297_readreg(state, 0x01) >> 4; blind_u = stv0297_readreg(state, 0x01) & 0xf; stv0297_writereg_mask(state, 0x84, 0x01, 0x01); stv0297_writereg_mask(state, 0x84, 0x01, 0x00); stv0297_writereg_mask(state, 0x00, 0x0f, u_threshold); stv0297_writereg_mask(state, 0x01, 0xf0, initial_u << 4); stv0297_writereg_mask(state, 0x01, 0x0f, blind_u); /* data comes from internal A/D */ stv0297_writereg_mask(state, 0x87, 0x80, 0x00); /* clear phase registers */ stv0297_writereg(state, 0x63, 0x00); stv0297_writereg(state, 0x64, 0x00); stv0297_writereg(state, 0x65, 0x00); stv0297_writereg(state, 0x66, 0x00); stv0297_writereg(state, 0x67, 0x00); stv0297_writereg(state, 0x68, 0x00); stv0297_writereg_mask(state, 0x69, 0x0f, 0x00); /* set parameters */ stv0297_set_qam(state, p->u.qam.modulation); stv0297_set_symbolrate(state, p->u.qam.symbol_rate / 1000); stv0297_set_sweeprate(state, sweeprate, p->u.qam.symbol_rate / 1000); stv0297_set_carrieroffset(state, carrieroffset); stv0297_set_inversion(state, inversion); /* kick off lock */ stv0297_writereg_mask(state, 0x88, 0x08, 0x08); stv0297_writereg_mask(state, 0x5a, 0x20, 0x00); stv0297_writereg_mask(state, 0x6a, 0x01, 0x01); stv0297_writereg_mask(state, 0x43, 0x40, 0x40); stv0297_writereg_mask(state, 0x5b, 0x30, 0x00); stv0297_writereg_mask(state, 0x03, 0x0c, 0x0c); stv0297_writereg_mask(state, 0x03, 0x03, 0x03); stv0297_writereg_mask(state, 0x43, 0x10, 0x10); /* wait for WGAGC lock */ starttime = jiffies; timeout = jiffies + (200 * HZ) / 1000; while (time_before(jiffies, timeout)) { msleep(10); if (stv0297_readreg(state, 0x43) & 0x08) break; } if (time_after(jiffies, timeout)) { goto timeout; } msleep(20); /* wait for equaliser partial convergence */ timeout = jiffies + (50 * HZ) / 1000; while (time_before(jiffies, timeout)) { msleep(10); if (stv0297_readreg(state, 0x82) & 0x04) { break; } } if (time_after(jiffies, timeout)) { goto timeout; } /* wait for equaliser full convergence */ timeout = jiffies + (delay * HZ) / 1000; while (time_before(jiffies, timeout)) { msleep(10); if (stv0297_readreg(state, 0x82) & 0x08) { break; } } if (time_after(jiffies, timeout)) { goto timeout; } /* disable sweep */ stv0297_writereg_mask(state, 0x6a, 1, 0); stv0297_writereg_mask(state, 0x88, 8, 0); /* wait for main lock */ timeout = jiffies + (20 * HZ) / 1000; while (time_before(jiffies, timeout)) { msleep(10); if (stv0297_readreg(state, 0xDF) & 0x80) { break; } } if (time_after(jiffies, timeout)) { goto timeout; } msleep(100); /* is it still locked after that delay? */ if (!(stv0297_readreg(state, 0xDF) & 0x80)) { goto timeout; } /* success!! */ stv0297_writereg_mask(state, 0x5a, 0x40, 0x00); freq_off = stv0297_get_carrieroffset(state); if (freq_off < 0) freq_off = -freq_off; if (freq_off <= 1500) state->freq_off = freq_off; state->base_freq = p->frequency; return 0; timeout: stv0297_writereg_mask(state, 0x6a, 0x01, 0x00); return 0; } static int stv0297_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; int reg_00, reg_83; reg_00 = stv0297_readreg(state, 0x00); reg_83 = stv0297_readreg(state, 0x83); p->frequency = state->base_freq + state->freq_off; p->inversion = (reg_83 & 0x08) ? INVERSION_ON : INVERSION_OFF; if (state->config->invert) p->inversion = (p->inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON; p->u.qam.symbol_rate = stv0297_get_symbolrate(state) * 1000; p->u.qam.fec_inner = FEC_NONE; switch ((reg_00 >> 4) & 0x7) { case 0: p->u.qam.modulation = QAM_16; break; case 1: p->u.qam.modulation = QAM_32; break; case 2: p->u.qam.modulation = QAM_128; break; case 3: p->u.qam.modulation = QAM_256; break; case 4: p->u.qam.modulation = QAM_64; break; } return 0; } static void stv0297_release(struct dvb_frontend *fe) { struct stv0297_state *state = (struct stv0297_state *) fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops stv0297_ops; struct dvb_frontend *stv0297_attach(const struct stv0297_config *config, struct i2c_adapter *i2c, int pwm) { struct stv0297_state *state = NULL; /* allocate memory for the internal state */ state = (struct stv0297_state *) kmalloc(sizeof(struct stv0297_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; memcpy(&state->ops, &stv0297_ops, sizeof(struct dvb_frontend_ops)); state->freq_off = 0; state->base_freq = 0; state->pwm = pwm; /* check if the demod is there */ if ((stv0297_readreg(state, 0x80) & 0x70) != 0x20) goto error; /* create dvb_frontend */ state->frontend.ops = &state->ops; state->frontend.demodulator_priv = state; return &state->frontend; error: if (state) kfree(state); return NULL; } static struct dvb_frontend_ops stv0297_ops = { .info = { .name = "ST STV0297 DVB-C", .type = FE_QAM, .frequency_min = 64000000, .frequency_max = 1300000000, .frequency_stepsize = 62500, .symbol_rate_min = 870000, .symbol_rate_max = 11700000, .caps = FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 | FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO}, .release = stv0297_release, .init = stv0297_init, .sleep = stv0297_sleep, .set_frontend = stv0297_set_frontend, .get_frontend = stv0297_get_frontend, .read_status = stv0297_read_status, .read_ber = stv0297_read_ber, .read_signal_strength = stv0297_read_signal_strength, .read_snr = stv0297_read_snr, .read_ucblocks = stv0297_read_ucblocks, }; MODULE_DESCRIPTION("ST STV0297 DVB-C Demodulator driver"); MODULE_AUTHOR("Dennis Noermann and Andrew de Quincey"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(stv0297_attach); EXPORT_SYMBOL(stv0297_enable_plli2c);