/* Driver for Philips tda1004xh OFDM Frontend (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* This driver needs a copy of the DLL "ttlcdacc.dll" from the Haupauge or Technotrend windows driver. Currently the DLL from v2.15a of the technotrend driver is supported. Other versions can be added reasonably painlessly. Windows driver URL: http://www.technotrend.de/ wget http://www.technotrend.de/new/215/TTweb_215a_budget_20_05_2003.zip unzip -j TTweb_215a_budget_20_05_2003.zip Software/Oem/PCI/App/ttlcdacc.dll */ #define TDA1004X_DEFAULT_FIRMWARE "tda1004x.bin" #include #include #include #include #include #include "dvb_frontend.h" #include "dvb_functions.h" #define FRONTEND_NAME "dvbfe_tda1004x" #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG FRONTEND_NAME ": " args); \ } while (0) static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); #define MC44BC374_ADDRESS 0x65 #define TDA1004X_CHIPID 0x00 #define TDA1004X_AUTO 0x01 #define TDA1004X_IN_CONF1 0x02 #define TDA1004X_IN_CONF2 0x03 #define TDA1004X_OUT_CONF1 0x04 #define TDA1004X_OUT_CONF2 0x05 #define TDA1004X_STATUS_CD 0x06 #define TDA1004X_CONFC4 0x07 #define TDA1004X_DSSPARE2 0x0C #define TDA10045H_CODE_IN 0x0D #define TDA10045H_FWPAGE 0x0E #define TDA1004X_SCAN_CPT 0x10 #define TDA1004X_DSP_CMD 0x11 #define TDA1004X_DSP_ARG 0x12 #define TDA1004X_DSP_DATA1 0x13 #define TDA1004X_DSP_DATA2 0x14 #define TDA1004X_CONFADC1 0x15 #define TDA1004X_CONFC1 0x16 #define TDA10045H_S_AGC 0x1a #define TDA10046H_AGC_TUN_LEVEL 0x1a #define TDA1004X_SNR 0x1c #define TDA1004X_CONF_TS1 0x1e #define TDA1004X_CONF_TS2 0x1f #define TDA1004X_CBER_RESET 0x20 #define TDA1004X_CBER_MSB 0x21 #define TDA1004X_CBER_LSB 0x22 #define TDA1004X_CVBER_LUT 0x23 #define TDA1004X_VBER_MSB 0x24 #define TDA1004X_VBER_MID 0x25 #define TDA1004X_VBER_LSB 0x26 #define TDA1004X_UNCOR 0x27 #define TDA10045H_CONFPLL_P 0x2D #define TDA10045H_CONFPLL_M_MSB 0x2E #define TDA10045H_CONFPLL_M_LSB 0x2F #define TDA10045H_CONFPLL_N 0x30 #define TDA10046H_CONFPLL1 0x2D #define TDA10046H_CONFPLL2 0x2F #define TDA10046H_CONFPLL3 0x30 #define TDA10046H_TIME_WREF1 0x31 #define TDA10046H_TIME_WREF2 0x32 #define TDA10046H_TIME_WREF3 0x33 #define TDA10046H_TIME_WREF4 0x34 #define TDA10046H_TIME_WREF5 0x35 #define TDA10045H_UNSURW_MSB 0x31 #define TDA10045H_UNSURW_LSB 0x32 #define TDA10045H_WREF_MSB 0x33 #define TDA10045H_WREF_MID 0x34 #define TDA10045H_WREF_LSB 0x35 #define TDA10045H_MUXOUT 0x36 #define TDA1004X_CONFADC2 0x37 #define TDA10045H_IOFFSET 0x38 #define TDA10046H_CONF_TRISTATE1 0x3B #define TDA10046H_CONF_TRISTATE2 0x3C #define TDA10046H_CONF_POLARITY 0x3D #define TDA10046H_FREQ_OFFSET 0x3E #define TDA10046H_GPIO_OUT_SEL 0x41 #define TDA10046H_GPIO_SELECT 0x42 #define TDA10046H_AGC_CONF 0x43 #define TDA10046H_AGC_GAINS 0x46 #define TDA10046H_AGC_TUN_MIN 0x47 #define TDA10046H_AGC_TUN_MAX 0x48 #define TDA10046H_AGC_IF_MIN 0x49 #define TDA10046H_AGC_IF_MAX 0x4A #define TDA10046H_FREQ_PHY2_MSB 0x4D #define TDA10046H_FREQ_PHY2_LSB 0x4E #define TDA10046H_CVBER_CTRL 0x4F #define TDA10046H_AGC_IF_LEVEL 0x52 #define TDA10046H_CODE_CPT 0x57 #define TDA10046H_CODE_IN 0x58 #define FE_TYPE_TDA10045H 0 #define FE_TYPE_TDA10046H 1 #define TUNER_TYPE_TD1344 0 #define TUNER_TYPE_TD1316 1 static struct dvb_frontend_info tda10045h_info = { .name = "Philips TDA10045H", .type = FE_OFDM, .frequency_min = 51000000, .frequency_max = 858000000, .frequency_stepsize = 166667, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO }; static struct dvb_frontend_info tda10046h_info = { .name = "Philips TDA10046H", .type = FE_OFDM, .frequency_min = 51000000, .frequency_max = 858000000, .frequency_stepsize = 166667, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO }; struct tda1004x_state { u8 tda1004x_address; u8 tuner_address; u8 initialised; u8 tuner_type; u8 fe_type; struct i2c_adapter *i2c; struct dvb_adapter *dvb; int dspCodeCounterReg; int dspCodeInReg; int dspVersion; }; struct fwinfo { int file_size; int fw_offset; int fw_size; }; static struct fwinfo tda10045h_fwinfo[] = { { .file_size = 286720, .fw_offset = 0x34cc5, .fw_size = 30555 }, }; static int tda10045h_fwinfo_count = sizeof(tda10045h_fwinfo) / sizeof(struct fwinfo); static struct fwinfo tda10046h_fwinfo[] = { { .file_size = 286720, .fw_offset = 0x3c4f9, .fw_size = 24479 } }; static int tda10046h_fwinfo_count = sizeof(tda10046h_fwinfo) / sizeof(struct fwinfo); static int tda1004x_write_byte(struct i2c_adapter *i2c, struct tda1004x_state *tda_state, int reg, int data) { int ret; u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr=0, .flags=0, .buf=buf, .len=2 }; dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data); msg.addr = tda_state->tda1004x_address; ret = i2c_transfer(i2c, &msg, 1); if (ret != 1) dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__, reg, data, ret); dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__, reg, data, ret); return (ret != 1) ? -1 : 0; } static int tda1004x_read_byte(struct i2c_adapter *i2c, struct tda1004x_state *tda_state, int reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = {{ .addr=0, .flags=0, .buf=b0, .len=1}, { .addr=0, .flags=I2C_M_RD, .buf=b1, .len = 1}}; dprintk("%s: reg=0x%x\n", __FUNCTION__, reg); msg[0].addr = tda_state->tda1004x_address; msg[1].addr = tda_state->tda1004x_address; ret = i2c_transfer(i2c, msg, 2); if (ret != 2) { dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg, ret); return -1; } dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__, reg, b1[0], ret); return b1[0]; } static int tda1004x_write_mask(struct i2c_adapter *i2c, struct tda1004x_state *tda_state, int reg, int mask, int data) { int val; dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg, mask, data); // read a byte and check val = tda1004x_read_byte(i2c, tda_state, reg); if (val < 0) return val; // mask if off val = val & ~mask; val |= data & 0xff; // write it out again return tda1004x_write_byte(i2c, tda_state, reg, val); } static int tda1004x_write_buf(struct i2c_adapter *i2c, struct tda1004x_state *tda_state, int reg, unsigned char *buf, int len) { int i; int result; dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len); result = 0; for (i = 0; i < len; i++) { result = tda1004x_write_byte(i2c, tda_state, reg + i, buf[i]); if (result != 0) break; } return result; } static int tda1004x_enable_tuner_i2c(struct i2c_adapter *i2c, struct tda1004x_state *tda_state) { int result; dprintk("%s\n", __FUNCTION__); result = tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 2, 2); dvb_delay(1); return result; } static int tda1004x_disable_tuner_i2c(struct i2c_adapter *i2c, struct tda1004x_state *tda_state) { dprintk("%s\n", __FUNCTION__); return tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 2, 0); } static int tda10045h_set_bandwidth(struct i2c_adapter *i2c, struct tda1004x_state *tda_state, fe_bandwidth_t bandwidth) { static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f }; static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb }; static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 }; switch (bandwidth) { case BANDWIDTH_6_MHZ: tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0x14); tda1004x_write_buf(i2c, tda_state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz)); break; case BANDWIDTH_7_MHZ: tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0x80); tda1004x_write_buf(i2c, tda_state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz)); break; case BANDWIDTH_8_MHZ: tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0x14); tda1004x_write_buf(i2c, tda_state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz)); break; default: return -EINVAL; } tda1004x_write_byte(i2c, tda_state, TDA10045H_IOFFSET, 0); return 0; } static int tda10046h_set_bandwidth(struct i2c_adapter *i2c, struct tda1004x_state *tda_state, fe_bandwidth_t bandwidth) { static u8 bandwidth_6mhz[] = { 0x80, 0x15, 0xfe, 0xab, 0x8e }; static u8 bandwidth_7mhz[] = { 0x6e, 0x02, 0x53, 0xc8, 0x25 }; static u8 bandwidth_8mhz[] = { 0x60, 0x12, 0xa8, 0xe4, 0xbd }; switch (bandwidth) { case BANDWIDTH_6_MHZ: tda1004x_write_buf(i2c, tda_state, TDA10046H_TIME_WREF1, bandwidth_6mhz, sizeof(bandwidth_6mhz)); tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0); break; case BANDWIDTH_7_MHZ: tda1004x_write_buf(i2c, tda_state, TDA10046H_TIME_WREF1, bandwidth_7mhz, sizeof(bandwidth_7mhz)); tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0); break; case BANDWIDTH_8_MHZ: tda1004x_write_buf(i2c, tda_state, TDA10046H_TIME_WREF1, bandwidth_8mhz, sizeof(bandwidth_8mhz)); tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0xFF); break; default: return -EINVAL; } return 0; } static int tda1004x_do_upload(struct i2c_adapter *i2c, struct tda1004x_state *state, unsigned char *mem, unsigned int len) { u8 buf[65]; struct i2c_msg fw_msg = {.addr = 0,.flags = 0,.buf = buf,.len = 0 }; int tx_size; int pos = 0; /* clear code counter */ tda1004x_write_byte(i2c, state, state->dspCodeCounterReg, 0); fw_msg.addr = state->tda1004x_address; buf[0] = state->dspCodeInReg; while (pos != len) { // work out how much to send this time tx_size = len - pos; if (tx_size > 0x10) { tx_size = 0x10; } // send the chunk memcpy(buf + 1, mem + pos, tx_size); fw_msg.len = tx_size + 1; if (i2c_transfer(i2c, &fw_msg, 1) != 1) { printk("tda1004x: Error during firmware upload\n"); return -EIO; } pos += tx_size; dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos); } return 0; } static int tda1004x_find_extraction_params(struct fwinfo* fwInfo, int fwInfoCount, int size) { int fwinfo_idx; for (fwinfo_idx = 0; fwinfo_idx < fwInfoCount; fwinfo_idx++) { if (fwInfo[fwinfo_idx].file_size == size) break; } if (fwinfo_idx >= fwInfoCount) { printk("tda1004x: Unsupported firmware uploaded.\n"); return -EIO; } return fwinfo_idx; } static int tda1004x_check_upload_ok(struct i2c_adapter *i2c, struct tda1004x_state *state) { u8 data1, data2; // check upload was OK tda1004x_write_mask(i2c, state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP tda1004x_write_byte(i2c, state, TDA1004X_DSP_CMD, 0x67); data1 = tda1004x_read_byte(i2c, state, TDA1004X_DSP_DATA1); data2 = tda1004x_read_byte(i2c, state, TDA1004X_DSP_DATA2); if (data1 != 0x67 || data2 != state->dspVersion) { printk("tda1004x: firmware upload failed!\n"); return -EIO; } return 0; } static int tda10045_fwupload(struct i2c_adapter *i2c, struct tda1004x_state *state, const struct firmware *fw) { int index; int ret; index = tda1004x_find_extraction_params(tda10045h_fwinfo, tda10045h_fwinfo_count, fw->size); if (index < 0) return index; /* set some valid bandwith parameters before uploading */ /* reset chip */ tda1004x_write_mask(i2c, state, TDA1004X_CONFC4, 0x10, 0); tda1004x_write_mask(i2c, state, TDA1004X_CONFC4, 8, 8); tda1004x_write_mask(i2c, state, TDA1004X_CONFC4, 8, 0); dvb_delay(10); /* set parameters */ tda10045h_set_bandwidth(i2c, state, BANDWIDTH_8_MHZ); ret = tda1004x_do_upload(i2c, state, fw->data + tda10045h_fwinfo[index].fw_offset, tda10045h_fwinfo[index].fw_size); if (ret) return ret; /* wait for DSP to initialise */ /* DSPREADY doesn't seem to work on the TDA10045H */ dvb_delay(100); ret = tda1004x_check_upload_ok(i2c, state); if (ret) return ret; return 0; } static int tda10046_fwupload(struct i2c_adapter *i2c, struct tda1004x_state *state, const struct firmware *fw) { unsigned long timeout; int index; int ret; index = tda1004x_find_extraction_params(tda10046h_fwinfo, tda10046h_fwinfo_count, fw->size); if (index < 0) return index; /* set some valid bandwith parameters before uploading */ /* reset chip */ tda1004x_write_mask(i2c, state, TDA1004X_CONFC4, 1, 0); tda1004x_write_mask(i2c, state, TDA10046H_CONF_TRISTATE1, 1, 0); dvb_delay(10); /* set parameters */ tda1004x_write_byte(i2c, state, TDA10046H_CONFPLL2, 10); tda1004x_write_byte(i2c, state, TDA10046H_CONFPLL3, 0); tda1004x_write_byte(i2c, state, TDA10046H_FREQ_OFFSET, 99); tda1004x_write_byte(i2c, state, TDA10046H_FREQ_PHY2_MSB, 0xd4); tda1004x_write_byte(i2c, state, TDA10046H_FREQ_PHY2_LSB, 0x2c); tda1004x_write_mask(i2c, state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST ret = tda1004x_do_upload(i2c, state, fw->data + tda10046h_fwinfo[index].fw_offset, tda10046h_fwinfo[index].fw_size); if (ret) return ret; /* wait for DSP to initialise */ timeout = jiffies + HZ; while(!(tda1004x_read_byte(i2c, state, TDA1004X_STATUS_CD) & 0x20)) { if (time_after(jiffies, timeout)) { printk("tda1004x: DSP failed to initialised.\n"); return -EIO; } dvb_delay(1); } ret = tda1004x_check_upload_ok(i2c, state); if (ret) return ret; return 0; } static int tda10045h_init(struct i2c_adapter *i2c, struct tda1004x_state *tda_state) { struct i2c_msg tuner_msg = {.addr = 0,.flags = 0,.buf = 0,.len = 0 }; static u8 disable_mc44BC374c[] = { 0x1d, 0x74, 0xa0, 0x68 }; dprintk("%s\n", __FUNCTION__); tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC // Disable the MC44BC374C tda1004x_enable_tuner_i2c(i2c, tda_state); tuner_msg.addr = MC44BC374_ADDRESS; tuner_msg.buf = disable_mc44BC374c; tuner_msg.len = sizeof(disable_mc44BC374c); if (i2c_transfer(i2c, &tuner_msg, 1) != 1) { i2c_transfer(i2c, &tuner_msg, 1); } tda1004x_disable_tuner_i2c(i2c, tda_state); // tda setup tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 8, 0); // select HP stream tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x40, 0); // no frequency inversion tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset tda1004x_write_byte(i2c, tda_state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface tda1004x_write_byte(i2c, tda_state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface tda1004x_write_mask(i2c, tda_state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity tda1004x_write_byte(i2c, tda_state, TDA1004X_CONFADC1, 0x2e); return 0; } static int tda10046h_init(struct i2c_adapter *i2c, struct tda1004x_state *tda_state) { struct i2c_msg tuner_msg = {.addr = 0,.flags = 0,.buf = 0,.len = 0 }; static u8 disable_mc44BC374c[] = { 0x1d, 0x74, 0xa0, 0x68 }; dprintk("%s\n", __FUNCTION__); tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 1, 0); // wake up the chip // Disable the MC44BC374C tda1004x_enable_tuner_i2c(i2c, tda_state); tuner_msg.addr = MC44BC374_ADDRESS; tuner_msg.buf = disable_mc44BC374c; tuner_msg.len = sizeof(disable_mc44BC374c); if (i2c_transfer(i2c, &tuner_msg, 1) != 1) { i2c_transfer(i2c, &tuner_msg, 1); } tda1004x_disable_tuner_i2c(i2c, tda_state); // tda setup tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x40, 0x40); // TT TDA10046H needs inversion ON tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 8, 0); // select HP stream tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x80, 0); // disable pulse killer tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL2, 10); // PLL M = 10 tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0 tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_OFFSET, 99); // FREQOFFS = 99 tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_MSB, 0xd4); // } PHY2 = -11221 tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_LSB, 0x2c); // } tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_CONF, 0); // AGC setup tda1004x_write_mask(i2c, tda_state, TDA10046H_CONF_POLARITY, 0x60, 0x60); // set AGC polarities tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_TUN_MIN, 0); // } tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_IF_MIN, 0); // } tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_IF_MAX, 0xff); // } tda1004x_write_mask(i2c, tda_state, TDA10046H_CVBER_CTRL, 0x30, 0x10); // 10^6 VBER measurement bits tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_GAINS, 1); // IF gain 2, TUN gain 1 tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x80, 0); // crystal is 50ppm tda1004x_write_byte(i2c, tda_state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config tda1004x_write_mask(i2c, tda_state, TDA1004X_CONF_TS2, 0x31, 0); // MPEG2 interface config tda1004x_write_mask(i2c, tda_state, TDA10046H_CONF_TRISTATE1, 0x9e, 0); // disable AGC_TUN tda1004x_write_byte(i2c, tda_state, TDA10046H_CONF_TRISTATE2, 0xe1); // tristate setup tda1004x_write_byte(i2c, tda_state, TDA10046H_GPIO_OUT_SEL, 0xcc); // GPIO output config tda1004x_write_mask(i2c, tda_state, TDA10046H_GPIO_SELECT, 8, 8); // GPIO select tda10046h_set_bandwidth(i2c, tda_state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz return 0; } static int tda1004x_encode_fec(int fec) { // convert known FEC values switch (fec) { case FEC_1_2: return 0; case FEC_2_3: return 1; case FEC_3_4: return 2; case FEC_5_6: return 3; case FEC_7_8: return 4; } // unsupported return -EINVAL; } static int tda1004x_decode_fec(int tdafec) { // convert known FEC values switch (tdafec) { case 0: return FEC_1_2; case 1: return FEC_2_3; case 2: return FEC_3_4; case 3: return FEC_5_6; case 4: return FEC_7_8; } // unsupported return -1; } static int tda1004x_set_frequency(struct i2c_adapter *i2c, struct tda1004x_state *tda_state, struct dvb_frontend_parameters *fe_params) { u8 tuner_buf[4]; struct i2c_msg tuner_msg = {.addr=0, .flags=0, .buf=tuner_buf, .len=sizeof(tuner_buf) }; int tuner_frequency = 0; u8 band, cp, filter; int counter, counter2; dprintk("%s\n", __FUNCTION__); // setup the frequency buffer switch (tda_state->tuner_type) { case TUNER_TYPE_TD1344: // setup tuner buffer // ((Fif+((1000000/6)/2)) + Finput)/(1000000/6) tuner_frequency = (((fe_params->frequency / 1000) * 6) + 217502) / 1000; tuner_buf[0] = tuner_frequency >> 8; tuner_buf[1] = tuner_frequency & 0xff; tuner_buf[2] = 0x88; if (fe_params->frequency < 550000000) { tuner_buf[3] = 0xab; } else { tuner_buf[3] = 0xeb; } // tune it tda1004x_enable_tuner_i2c(i2c, tda_state); tuner_msg.addr = tda_state->tuner_address; tuner_msg.len = 4; i2c_transfer(i2c, &tuner_msg, 1); // wait for it to finish tuner_msg.len = 1; tuner_msg.flags = I2C_M_RD; counter = 0; counter2 = 0; while (counter++ < 100) { if (i2c_transfer(i2c, &tuner_msg, 1) == 1) { if (tuner_buf[0] & 0x40) { counter2++; } else { counter2 = 0; } } if (counter2 > 10) { break; } } tda1004x_disable_tuner_i2c(i2c, tda_state); break; case TUNER_TYPE_TD1316: // determine charge pump tuner_frequency = fe_params->frequency + 36130000; if (tuner_frequency < 87000000) { return -EINVAL; } else if (tuner_frequency < 130000000) { cp = 3; } else if (tuner_frequency < 160000000) { cp = 5; } else if (tuner_frequency < 200000000) { cp = 6; } else if (tuner_frequency < 290000000) { cp = 3; } else if (tuner_frequency < 420000000) { cp = 5; } else if (tuner_frequency < 480000000) { cp = 6; } else if (tuner_frequency < 620000000) { cp = 3; } else if (tuner_frequency < 830000000) { cp = 5; } else if (tuner_frequency < 895000000) { cp = 7; } else { return -EINVAL; } // determine band if (fe_params->frequency < 49000000) { return -EINVAL; } else if (fe_params->frequency < 159000000) { band = 1; } else if (fe_params->frequency < 444000000) { band = 2; } else if (fe_params->frequency < 861000000) { band = 4; } else { return -EINVAL; } // work out filter switch (fe_params->u.ofdm.bandwidth) { case BANDWIDTH_6_MHZ: filter = 0; break; case BANDWIDTH_7_MHZ: filter = 0; break; case BANDWIDTH_8_MHZ: filter = 1; break; default: return -EINVAL; } // calculate divisor // ((36130000+((1000000/6)/2)) + Finput)/(1000000/6) tuner_frequency = (((fe_params->frequency / 1000) * 6) + 217280) / 1000; // setup tuner buffer tuner_buf[0] = tuner_frequency >> 8; tuner_buf[1] = tuner_frequency & 0xff; tuner_buf[2] = 0xca; tuner_buf[3] = (cp << 5) | (filter << 3) | band; // tune it if (tda_state->fe_type == FE_TYPE_TDA10046H) { // setup auto offset tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x10, 0x10); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x80, 0); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0xC0, 0); // disable agc_conf[2] tda1004x_write_mask(i2c, tda_state, TDA10046H_AGC_CONF, 4, 0); } tda1004x_enable_tuner_i2c(i2c, tda_state); tuner_msg.addr = tda_state->tuner_address; tuner_msg.len = 4; if (i2c_transfer(i2c, &tuner_msg, 1) != 1) { return -EIO; } dvb_delay(1); tda1004x_disable_tuner_i2c(i2c, tda_state); if (tda_state->fe_type == FE_TYPE_TDA10046H) tda1004x_write_mask(i2c, tda_state, TDA10046H_AGC_CONF, 4, 4); break; default: return -EINVAL; } dprintk("%s: success\n", __FUNCTION__); return 0; } static int tda1004x_set_fe(struct i2c_adapter *i2c, struct tda1004x_state *tda_state, struct dvb_frontend_parameters *fe_params) { int tmp; int inversion; dprintk("%s\n", __FUNCTION__); // set frequency if ((tmp = tda1004x_set_frequency(i2c, tda_state, fe_params)) < 0) return tmp; // hardcoded to use auto as much as possible fe_params->u.ofdm.code_rate_HP = FEC_AUTO; fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO; fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO; // Set standard params.. or put them to auto if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) || (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) || (fe_params->u.ofdm.constellation == QAM_AUTO) || (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) { tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 1, 1); // enable auto tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits } else { tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 1, 0); // disable auto // set HP FEC tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP); if (tmp < 0) return tmp; tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 7, tmp); // set LP FEC tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP); if (tmp < 0) return tmp; tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0x38, tmp << 3); // set constellation switch (fe_params->u.ofdm.constellation) { case QPSK: tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 3, 0); break; case QAM_16: tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 3, 1); break; case QAM_64: tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 3, 2); break; default: return -EINVAL; } // set hierarchy switch (fe_params->u.ofdm.hierarchy_information) { case HIERARCHY_NONE: tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 0 << 5); break; case HIERARCHY_1: tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 1 << 5); break; case HIERARCHY_2: tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 2 << 5); break; case HIERARCHY_4: tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 3 << 5); break; default: return -EINVAL; } } // set bandwidth switch(tda_state->fe_type) { case FE_TYPE_TDA10045H: tda10045h_set_bandwidth(i2c, tda_state, fe_params->u.ofdm.bandwidth); break; case FE_TYPE_TDA10046H: tda10046h_set_bandwidth(i2c, tda_state, fe_params->u.ofdm.bandwidth); break; } // need to invert the inversion for TT TDA10046H inversion = fe_params->inversion; if (tda_state->fe_type == FE_TYPE_TDA10046H) { inversion = inversion ? INVERSION_OFF : INVERSION_ON; } // set inversion switch (inversion) { case INVERSION_OFF: tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x20, 0); break; case INVERSION_ON: tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x20, 0x20); break; default: return -EINVAL; } // set guard interval switch (fe_params->u.ofdm.guard_interval) { case GUARD_INTERVAL_1_32: tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 0 << 2); break; case GUARD_INTERVAL_1_16: tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 1 << 2); break; case GUARD_INTERVAL_1_8: tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 2 << 2); break; case GUARD_INTERVAL_1_4: tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 3 << 2); break; case GUARD_INTERVAL_AUTO: tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 2); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 0 << 2); break; default: return -EINVAL; } // set transmission mode switch (fe_params->u.ofdm.transmission_mode) { case TRANSMISSION_MODE_2K: tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 4, 0); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x10, 0 << 4); break; case TRANSMISSION_MODE_8K: tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 4, 0); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x10, 1 << 4); break; case TRANSMISSION_MODE_AUTO: tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 4, 4); tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x10, 0); break; default: return -EINVAL; } // start the lock switch(tda_state->fe_type) { case FE_TYPE_TDA10045H: tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 8); tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 0); dvb_delay(10); break; case FE_TYPE_TDA10046H: tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x40, 0x40); dvb_delay(10); break; } return 0; } static int tda1004x_get_fe(struct i2c_adapter *i2c, struct tda1004x_state* tda_state, struct dvb_frontend_parameters *fe_params) { dprintk("%s\n", __FUNCTION__); // inversion status fe_params->inversion = INVERSION_OFF; if (tda1004x_read_byte(i2c, tda_state, TDA1004X_CONFC1) & 0x20) { fe_params->inversion = INVERSION_ON; } // need to invert the inversion for TT TDA10046H if (tda_state->fe_type == FE_TYPE_TDA10046H) { fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON; } // bandwidth switch(tda_state->fe_type) { case FE_TYPE_TDA10045H: switch (tda1004x_read_byte(i2c, tda_state, TDA10045H_WREF_LSB)) { case 0x14: fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ; break; case 0xdb: fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ; break; case 0x4f: fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ; break; } break; case FE_TYPE_TDA10046H: switch (tda1004x_read_byte(i2c, tda_state, TDA10046H_TIME_WREF1)) { case 0x60: fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ; break; case 0x6e: fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ; break; case 0x80: fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ; break; } break; } // FEC fe_params->u.ofdm.code_rate_HP = tda1004x_decode_fec(tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF2) & 7); fe_params->u.ofdm.code_rate_LP = tda1004x_decode_fec((tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF2) >> 3) & 7); // constellation switch (tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 3) { case 0: fe_params->u.ofdm.constellation = QPSK; break; case 1: fe_params->u.ofdm.constellation = QAM_16; break; case 2: fe_params->u.ofdm.constellation = QAM_64; break; } // transmission mode fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; if (tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 0x10) { fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; } // guard interval switch ((tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) { case 0: fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; case 1: fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; case 2: fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; case 3: fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; } // hierarchy switch ((tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 0x60) >> 5) { case 0: fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE; break; case 1: fe_params->u.ofdm.hierarchy_information = HIERARCHY_1; break; case 2: fe_params->u.ofdm.hierarchy_information = HIERARCHY_2; break; case 3: fe_params->u.ofdm.hierarchy_information = HIERARCHY_4; break; } return 0; } static int tda1004x_read_status(struct i2c_adapter *i2c, struct tda1004x_state* tda_state, fe_status_t * fe_status) { int status; int cber; int vber; dprintk("%s\n", __FUNCTION__); // read status status = tda1004x_read_byte(i2c, tda_state, TDA1004X_STATUS_CD); if (status == -1) { return -EIO; } // decode *fe_status = 0; if (status & 4) *fe_status |= FE_HAS_SIGNAL; if (status & 2) *fe_status |= FE_HAS_CARRIER; if (status & 8) *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi // is getting anything valid if (!(*fe_status & FE_HAS_VITERBI)) { // read the CBER cber = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_LSB); if (cber == -1) return -EIO; status = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_MSB); if (status == -1) return -EIO; cber |= (status << 8); tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_RESET); if (cber != 65535) { *fe_status |= FE_HAS_VITERBI; } } // if we DO have some valid VITERBI output, but don't already have SYNC // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid. if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) { // read the VBER vber = tda1004x_read_byte(i2c, tda_state, TDA1004X_VBER_LSB); if (vber == -1) return -EIO; status = tda1004x_read_byte(i2c, tda_state, TDA1004X_VBER_MID); if (status == -1) return -EIO; vber |= (status << 8); status = tda1004x_read_byte(i2c, tda_state, TDA1004X_VBER_MSB); if (status == -1) return -EIO; vber |= ((status << 16) & 0x0f); tda1004x_read_byte(i2c, tda_state, TDA1004X_CVBER_LUT); // if RS has passed some valid TS packets, then we must be // getting some SYNC bytes if (vber < 16632) { *fe_status |= FE_HAS_SYNC; } } // success dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status); return 0; } static int tda1004x_read_signal_strength(struct i2c_adapter *i2c, struct tda1004x_state* tda_state, u16 * signal) { int tmp; int reg = 0; dprintk("%s\n", __FUNCTION__); // determine the register to use switch(tda_state->fe_type) { case FE_TYPE_TDA10045H: reg = TDA10045H_S_AGC; break; case FE_TYPE_TDA10046H: reg = TDA10046H_AGC_IF_LEVEL; break; } // read it tmp = tda1004x_read_byte(i2c, tda_state, reg); if (tmp < 0) return -EIO; *signal = (tmp << 8) | tmp; dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal); return 0; } static int tda1004x_read_snr(struct i2c_adapter *i2c, struct tda1004x_state* tda_state, u16 * snr) { int tmp; dprintk("%s\n", __FUNCTION__); // read it tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_SNR); if (tmp < 0) return -EIO; if (tmp) { tmp = 255 - tmp; } *snr = ((tmp << 8) | tmp); dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr); return 0; } static int tda1004x_read_ucblocks(struct i2c_adapter *i2c, struct tda1004x_state* tda_state, u32* ucblocks) { int tmp; int tmp2; int counter; dprintk("%s\n", __FUNCTION__); // read the UCBLOCKS and reset counter = 0; tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_UNCOR); if (tmp < 0) return -EIO; tmp &= 0x7f; while (counter++ < 5) { tda1004x_write_mask(i2c, tda_state, TDA1004X_UNCOR, 0x80, 0); tda1004x_write_mask(i2c, tda_state, TDA1004X_UNCOR, 0x80, 0); tda1004x_write_mask(i2c, tda_state, TDA1004X_UNCOR, 0x80, 0); tmp2 = tda1004x_read_byte(i2c, tda_state, TDA1004X_UNCOR); if (tmp2 < 0) return -EIO; tmp2 &= 0x7f; if ((tmp2 < tmp) || (tmp2 == 0)) break; } if (tmp != 0x7f) { *ucblocks = tmp; } else { *ucblocks = 0xffffffff; } dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks); return 0; } static int tda1004x_read_ber(struct i2c_adapter *i2c, struct tda1004x_state* tda_state, u32* ber) { int tmp; dprintk("%s\n", __FUNCTION__); // read it in tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_LSB); if (tmp < 0) return -EIO; *ber = tmp << 1; tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_MSB); if (tmp < 0) return -EIO; *ber |= (tmp << 9); tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_RESET); dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber); return 0; } static int tda1004x_sleep(struct i2c_adapter *i2c, struct tda1004x_state* tda_state) { switch(tda_state->fe_type) { case FE_TYPE_TDA10045H: tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFADC1, 0x10, 0x10); break; case FE_TYPE_TDA10046H: tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 1, 1); break; } return 0; } static int tda1004x_ioctl(struct dvb_frontend *fe, unsigned int cmd, void *arg) { struct tda1004x_state *tda_state = (struct tda1004x_state *) fe->data; struct i2c_adapter *i2c = tda_state->i2c; int status = 0; dprintk("%s: cmd=0x%x\n", __FUNCTION__, cmd); switch (cmd) { case FE_GET_INFO: switch(tda_state->fe_type) { case FE_TYPE_TDA10045H: memcpy(arg, &tda10045h_info, sizeof(struct dvb_frontend_info)); break; case FE_TYPE_TDA10046H: memcpy(arg, &tda10046h_info, sizeof(struct dvb_frontend_info)); break; } break; case FE_READ_STATUS: return tda1004x_read_status(i2c, tda_state, (fe_status_t *) arg); case FE_READ_BER: return tda1004x_read_ber(i2c, tda_state, (u32 *) arg); case FE_READ_SIGNAL_STRENGTH: return tda1004x_read_signal_strength(i2c, tda_state, (u16 *) arg); case FE_READ_SNR: return tda1004x_read_snr(i2c, tda_state, (u16 *) arg); case FE_READ_UNCORRECTED_BLOCKS: return tda1004x_read_ucblocks(i2c, tda_state, (u32 *) arg); case FE_SET_FRONTEND: return tda1004x_set_fe(i2c, tda_state, (struct dvb_frontend_parameters*) arg); case FE_GET_FRONTEND: return tda1004x_get_fe(i2c, tda_state, (struct dvb_frontend_parameters*) arg); case FE_SLEEP: tda_state->initialised = 0; return tda1004x_sleep(i2c, tda_state); case FE_INIT: // don't bother reinitialising if (tda_state->initialised) return 0; // OK, perform initialisation switch(tda_state->fe_type) { case FE_TYPE_TDA10045H: status = tda10045h_init(i2c, tda_state); break; case FE_TYPE_TDA10046H: status = tda10046h_init(i2c, tda_state); break; } if (status == 0) tda_state->initialised = 1; return status; case FE_GET_TUNE_SETTINGS: { struct dvb_frontend_tune_settings* fesettings = (struct dvb_frontend_tune_settings*) arg; fesettings->min_delay_ms = 800; fesettings->step_size = 166667; fesettings->max_drift = 166667*2; return 0; } default: return -EOPNOTSUPP; } return 0; } static int tda1004x_attach(struct i2c_adapter *i2c, struct tda1004x_state* state) { int tda1004x_address = -1; int tuner_address = -1; int fe_type = -1; int tuner_type = -1; struct i2c_msg tuner_msg = {.addr=0, .flags=0, .buf=0, .len=0 }; static u8 td1344_init[] = { 0x0b, 0xf5, 0x88, 0xab }; static u8 td1316_init[] = { 0x0b, 0xf5, 0x85, 0xab }; static u8 td1316_init_tda10046h[] = { 0x0b, 0xf5, 0x80, 0xab }; dprintk("%s\n", __FUNCTION__); // probe for tda10045h if (tda1004x_address == -1) { state->tda1004x_address = 0x08; if (tda1004x_read_byte(i2c, state, TDA1004X_CHIPID) == 0x25) { tda1004x_address = 0x08; fe_type = FE_TYPE_TDA10045H; printk("tda1004x: Detected Philips TDA10045H.\n"); } } // probe for tda10046h if (tda1004x_address == -1) { state->tda1004x_address = 0x08; if (tda1004x_read_byte(i2c, state, TDA1004X_CHIPID) == 0x46) { tda1004x_address = 0x08; fe_type = FE_TYPE_TDA10046H; printk("tda1004x: Detected Philips TDA10046H.\n"); } } // did we find a frontend? if (tda1004x_address == -1) { return -ENODEV; } // enable access to the tuner tda1004x_enable_tuner_i2c(i2c, state); // check for a TD1344 first if (tuner_address == -1) { tuner_msg.addr = 0x61; tuner_msg.buf = td1344_init; tuner_msg.len = sizeof(td1344_init); if (i2c_transfer(i2c, &tuner_msg, 1) == 1) { dvb_delay(1); tuner_address = 0x61; tuner_type = TUNER_TYPE_TD1344; printk("tda1004x: Detected Philips TD1344 tuner.\n"); } } // OK, try a TD1316 on address 0x63 if (tuner_address == -1) { tuner_msg.addr = 0x63; tuner_msg.buf = td1316_init; tuner_msg.len = sizeof(td1316_init); if (i2c_transfer(i2c, &tuner_msg, 1) == 1) { dvb_delay(1); tuner_address = 0x63; tuner_type = TUNER_TYPE_TD1316; printk("tda1004x: Detected Philips TD1316 tuner.\n"); } } // OK, TD1316 again, on address 0x60 (TDA10046H) if (tuner_address == -1) { tuner_msg.addr = 0x60; tuner_msg.buf = td1316_init_tda10046h; tuner_msg.len = sizeof(td1316_init_tda10046h); if (i2c_transfer(i2c, &tuner_msg, 1) == 1) { dvb_delay(1); tuner_address = 0x60; tuner_type = TUNER_TYPE_TD1316; printk("tda1004x: Detected Philips TD1316 tuner.\n"); } } tda1004x_disable_tuner_i2c(i2c, state); // did we find a tuner? if (tuner_address == -1) { printk("tda1004x: Detected, but with unknown tuner.\n"); return -ENODEV; } // create state state->tda1004x_address = tda1004x_address; state->fe_type = fe_type; state->tuner_address = tuner_address; state->tuner_type = tuner_type; state->initialised = 0; return 0; } static struct i2c_client client_template; static int attach_adapter(struct i2c_adapter *adapter) { struct i2c_client *client; struct tda1004x_state *state; const struct firmware *fw; int ret; dprintk ("%s\n", __FUNCTION__); if (NULL == (client = kmalloc(sizeof(struct i2c_client), GFP_KERNEL))) { return -ENOMEM; } if (NULL == (state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL))) { kfree(client); return -ENOMEM; } state->i2c = adapter; ret = tda1004x_attach(adapter, state); if (ret) { kfree(state); kfree(client); return -ENODEV; } memcpy(client, &client_template, sizeof(struct i2c_client)); client->adapter = adapter; client->addr = state->tda1004x_address; i2c_set_clientdata(client, (void*)state); ret = i2c_attach_client(client); if (ret) { kfree(client); kfree(state); return ret; } // upload firmware BUG_ON(!state->dvb); /* request the firmware, this will block until someone uploads it */ printk("tda1004x: waiting for firmware upload...\n"); ret = request_firmware(&fw, TDA1004X_DEFAULT_FIRMWARE, &client->dev); if (ret) { printk("tda1004x: no firmware upload (timeout or file not found?)\n"); goto out; } switch(state->fe_type) { case FE_TYPE_TDA10045H: state->dspCodeCounterReg = TDA10045H_FWPAGE; state->dspCodeInReg = TDA10045H_CODE_IN; state->dspVersion = 0x2c; ret = tda10045_fwupload(adapter, state, fw); if (ret) { printk("tda1004x: firmware upload failed\n"); goto out; } ret = dvb_register_frontend_new(tda1004x_ioctl, state->dvb, state, &tda10045h_info, THIS_MODULE); break; case FE_TYPE_TDA10046H: state->dspCodeCounterReg = TDA10046H_CODE_CPT; state->dspCodeInReg = TDA10046H_CODE_IN; state->dspVersion = 0x20; ret = tda10046_fwupload(adapter, state, fw); if (ret) { printk("tda1004x: firmware upload failed\n"); goto out; } ret = dvb_register_frontend_new(tda1004x_ioctl, state->dvb, state, &tda10046h_info, THIS_MODULE); break; default: BUG_ON(1); } if (ret) { printk("tda1004x: registering frontend failed\n"); goto out; } return 0; out: i2c_detach_client(client); kfree(client); kfree(state); return ret; } static int detach_client(struct i2c_client *client) { struct tda1004x_state *state = (struct tda1004x_state*)i2c_get_clientdata(client); dprintk ("%s\n", __FUNCTION__); dvb_unregister_frontend_new (tda1004x_ioctl, state->dvb); i2c_detach_client(client); BUG_ON(state->dvb); kfree(client); kfree(state); return 0; } static int command (struct i2c_client *client, unsigned int cmd, void *arg) { struct tda1004x_state *state = (struct tda1004x_state*)i2c_get_clientdata(client); dprintk ("%s\n", __FUNCTION__); switch (cmd) { case FE_REGISTER: state->dvb = (struct dvb_adapter*)arg; break; case FE_UNREGISTER: state->dvb = NULL; break; default: return -EOPNOTSUPP; } return 0; } static struct i2c_driver driver = { .owner = THIS_MODULE, .name = FRONTEND_NAME, .id = I2C_DRIVERID_DVBFE_TDA1004X, .flags = I2C_DF_NOTIFY, .attach_adapter = attach_adapter, .detach_client = detach_client, .command = command, }; static struct i2c_client client_template = { .name = FRONTEND_NAME, .flags = I2C_CLIENT_ALLOW_USE, .driver = &driver, }; static int __init init_tda1004x(void) { return i2c_add_driver(&driver); } static void __exit exit_tda1004x(void) { if (i2c_del_driver(&driver)) printk("tda1004x: driver deregistration failed\n"); } module_init(init_tda1004x); module_exit(exit_tda1004x); MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Frontend"); MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach"); MODULE_LICENSE("GPL");