/* Driver for Philips tda10086 DVBS Demodulator (c) 2006 Andrew de Quincey This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "dvb_frontend.h" #include "tda10086.h" #include "compat.h" #define SACLK 96000000 struct tda10086_state { struct i2c_adapter* i2c; const struct tda10086_config* config; struct dvb_frontend frontend; /* private demod data */ u32 frequency; u32 symbol_rate; bool has_lock; }; static int debug; #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG "tda10086: " args); \ } while (0) static int tda10086_write_byte(struct tda10086_state *state, int reg, int data) { int ret; u8 b0[] = { reg, data }; struct i2c_msg msg = { .flags = 0, .buf = b0, .len = 2 }; msg.addr = state->config->demod_address; ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n", __func__, reg, data, ret); return (ret != 1) ? ret : 0; } static int tda10086_read_byte(struct tda10086_state *state, int reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 }, { .flags = I2C_M_RD, .buf = b1, .len = 1 }}; msg[0].addr = state->config->demod_address; msg[1].addr = state->config->demod_address; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { dprintk("%s: error reg=0x%x, ret=%i\n", __func__, reg, ret); return ret; } return b1[0]; } static int tda10086_write_mask(struct tda10086_state *state, int reg, int mask, int data) { int val; // read a byte and check val = tda10086_read_byte(state, reg); if (val < 0) return val; // mask if off val = val & ~mask; val |= data & 0xff; // write it out again return tda10086_write_byte(state, reg, val); } static int tda10086_init(struct dvb_frontend* fe) { struct tda10086_state* state = fe->demodulator_priv; u8 t22k_off = 0x80; dprintk ("%s\n", __func__); if (state->config->diseqc_tone) t22k_off = 0; // reset tda10086_write_byte(state, 0x00, 0x00); msleep(10); // misc setup tda10086_write_byte(state, 0x01, 0x94); tda10086_write_byte(state, 0x02, 0x35); // NOTE: TT drivers appear to disable CSWP tda10086_write_byte(state, 0x03, 0xe4); tda10086_write_byte(state, 0x04, 0x43); tda10086_write_byte(state, 0x0c, 0x0c); tda10086_write_byte(state, 0x1b, 0xb0); // noise threshold tda10086_write_byte(state, 0x20, 0x89); // misc tda10086_write_byte(state, 0x30, 0x04); // acquisition period length tda10086_write_byte(state, 0x32, 0x00); // irq off tda10086_write_byte(state, 0x31, 0x56); // setup AFC // setup PLL (this assumes SACLK = 96MHz) tda10086_write_byte(state, 0x55, 0x2c); // misc PLL setup if (state->config->xtal_freq == TDA10086_XTAL_16M) { tda10086_write_byte(state, 0x3a, 0x0b); // M=12 tda10086_write_byte(state, 0x3b, 0x01); // P=2 } else { tda10086_write_byte(state, 0x3a, 0x17); // M=24 tda10086_write_byte(state, 0x3b, 0x00); // P=1 } tda10086_write_mask(state, 0x55, 0x20, 0x00); // powerup PLL // setup TS interface tda10086_write_byte(state, 0x11, 0x81); tda10086_write_byte(state, 0x12, 0x81); tda10086_write_byte(state, 0x19, 0x40); // parallel mode A + MSBFIRST tda10086_write_byte(state, 0x56, 0x80); // powerdown WPLL - unused in the mode we use tda10086_write_byte(state, 0x57, 0x08); // bypass WPLL - unused in the mode we use tda10086_write_byte(state, 0x10, 0x2a); // setup ADC tda10086_write_byte(state, 0x58, 0x61); // ADC setup tda10086_write_mask(state, 0x58, 0x01, 0x00); // powerup ADC // setup AGC tda10086_write_byte(state, 0x05, 0x0B); tda10086_write_byte(state, 0x37, 0x63); tda10086_write_byte(state, 0x3f, 0x0a); // NOTE: flydvb varies it tda10086_write_byte(state, 0x40, 0x64); tda10086_write_byte(state, 0x41, 0x4f); tda10086_write_byte(state, 0x42, 0x43); // setup viterbi tda10086_write_byte(state, 0x1a, 0x11); // VBER 10^6, DVB, QPSK // setup carrier recovery tda10086_write_byte(state, 0x3d, 0x80); // setup SEC tda10086_write_byte(state, 0x36, t22k_off); // all SEC off, 22k tone tda10086_write_byte(state, 0x34, (((1<<19) * (22000/1000)) / (SACLK/1000))); // } tone frequency tda10086_write_byte(state, 0x35, (((1<<19) * (22000/1000)) / (SACLK/1000)) >> 8); // } return 0; } static void tda10086_diseqc_wait(struct tda10086_state *state) { unsigned long timeout = jiffies + msecs_to_jiffies(200); while (!(tda10086_read_byte(state, 0x50) & 0x01)) { if(time_after(jiffies, timeout)) { printk("%s: diseqc queue not ready, command may be lost.\n", __func__); break; } msleep(10); } } static int tda10086_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone) { struct tda10086_state* state = fe->demodulator_priv; u8 t22k_off = 0x80; dprintk ("%s\n", __func__); if (state->config->diseqc_tone) t22k_off = 0; switch (tone) { case SEC_TONE_OFF: tda10086_write_byte(state, 0x36, t22k_off); break; case SEC_TONE_ON: tda10086_write_byte(state, 0x36, 0x01 + t22k_off); break; } return 0; } static int tda10086_send_master_cmd (struct dvb_frontend* fe, struct dvb_diseqc_master_cmd* cmd) { struct tda10086_state* state = fe->demodulator_priv; int i; u8 oldval; u8 t22k_off = 0x80; dprintk ("%s\n", __func__); if (state->config->diseqc_tone) t22k_off = 0; if (cmd->msg_len > 6) return -EINVAL; oldval = tda10086_read_byte(state, 0x36); for(i=0; i< cmd->msg_len; i++) { tda10086_write_byte(state, 0x48+i, cmd->msg[i]); } tda10086_write_byte(state, 0x36, (0x08 + t22k_off) | ((cmd->msg_len - 1) << 4)); tda10086_diseqc_wait(state); tda10086_write_byte(state, 0x36, oldval); return 0; } static int tda10086_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd) { struct tda10086_state* state = fe->demodulator_priv; u8 oldval = tda10086_read_byte(state, 0x36); u8 t22k_off = 0x80; dprintk ("%s\n", __func__); if (state->config->diseqc_tone) t22k_off = 0; switch(minicmd) { case SEC_MINI_A: tda10086_write_byte(state, 0x36, 0x04 + t22k_off); break; case SEC_MINI_B: tda10086_write_byte(state, 0x36, 0x06 + t22k_off); break; } tda10086_diseqc_wait(state); tda10086_write_byte(state, 0x36, oldval); return 0; } static int tda10086_set_inversion(struct tda10086_state *state, struct dvb_frontend_parameters *fe_params) { u8 invval = 0x80; dprintk ("%s %i %i\n", __func__, fe_params->inversion, state->config->invert); switch(fe_params->inversion) { case INVERSION_OFF: if (state->config->invert) invval = 0x40; break; case INVERSION_ON: if (!state->config->invert) invval = 0x40; break; case INVERSION_AUTO: invval = 0x00; break; } tda10086_write_mask(state, 0x0c, 0xc0, invval); return 0; } static int tda10086_set_symbol_rate(struct tda10086_state *state, struct dvb_frontend_parameters *fe_params) { u8 dfn = 0; u8 afs = 0; u8 byp = 0; u8 reg37 = 0x43; u8 reg42 = 0x43; u64 big; u32 tmp; u32 bdr; u32 bdri; u32 symbol_rate = fe_params->u.qpsk.symbol_rate; dprintk ("%s %i\n", __func__, symbol_rate); // setup the decimation and anti-aliasing filters.. if (symbol_rate < (u32) (SACLK * 0.0137)) { dfn=4; afs=1; } else if (symbol_rate < (u32) (SACLK * 0.0208)) { dfn=4; afs=0; } else if (symbol_rate < (u32) (SACLK * 0.0270)) { dfn=3; afs=1; } else if (symbol_rate < (u32) (SACLK * 0.0416)) { dfn=3; afs=0; } else if (symbol_rate < (u32) (SACLK * 0.0550)) { dfn=2; afs=1; } else if (symbol_rate < (u32) (SACLK * 0.0833)) { dfn=2; afs=0; } else if (symbol_rate < (u32) (SACLK * 0.1100)) { dfn=1; afs=1; } else if (symbol_rate < (u32) (SACLK * 0.1666)) { dfn=1; afs=0; } else if (symbol_rate < (u32) (SACLK * 0.2200)) { dfn=0; afs=1; } else if (symbol_rate < (u32) (SACLK * 0.3333)) { dfn=0; afs=0; } else { reg37 = 0x63; reg42 = 0x4f; byp=1; } // calculate BDR big = (1ULL<<21) * ((u64) symbol_rate/1000ULL) * (1ULL<> 8); tda10086_write_byte(state, 0x08, bdr >> 16); tda10086_write_byte(state, 0x09, bdri); tda10086_write_byte(state, 0x37, reg37); tda10086_write_byte(state, 0x42, reg42); return 0; } static int tda10086_set_fec(struct tda10086_state *state, struct dvb_frontend_parameters *fe_params) { u8 fecval; dprintk ("%s %i\n", __func__, fe_params->u.qpsk.fec_inner); switch(fe_params->u.qpsk.fec_inner) { case FEC_1_2: fecval = 0x00; break; case FEC_2_3: fecval = 0x01; break; case FEC_3_4: fecval = 0x02; break; case FEC_4_5: fecval = 0x03; break; case FEC_5_6: fecval = 0x04; break; case FEC_6_7: fecval = 0x05; break; case FEC_7_8: fecval = 0x06; break; case FEC_8_9: fecval = 0x07; break; case FEC_AUTO: fecval = 0x08; break; default: return -1; } tda10086_write_byte(state, 0x0d, fecval); return 0; } static int tda10086_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params) { struct tda10086_state *state = fe->demodulator_priv; int ret; u32 freq = 0; int freqoff; dprintk ("%s\n", __func__); // modify parameters for tuning tda10086_write_byte(state, 0x02, 0x35); state->has_lock = false; // set params if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe, fe_params); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); if (fe->ops.tuner_ops.get_frequency) fe->ops.tuner_ops.get_frequency(fe, &freq); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } // calcluate the frequency offset (in *Hz* not kHz) freqoff = fe_params->frequency - freq; freqoff = ((1<<16) * freqoff) / (SACLK/1000); tda10086_write_byte(state, 0x3d, 0x80 | ((freqoff >> 8) & 0x7f)); tda10086_write_byte(state, 0x3e, freqoff); if ((ret = tda10086_set_inversion(state, fe_params)) < 0) return ret; if ((ret = tda10086_set_symbol_rate(state, fe_params)) < 0) return ret; if ((ret = tda10086_set_fec(state, fe_params)) < 0) return ret; // soft reset + disable TS output until lock tda10086_write_mask(state, 0x10, 0x40, 0x40); tda10086_write_mask(state, 0x00, 0x01, 0x00); state->symbol_rate = fe_params->u.qpsk.symbol_rate; state->frequency = fe_params->frequency; return 0; } static int tda10086_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params) { struct tda10086_state* state = fe->demodulator_priv; u8 val; int tmp; u64 tmp64; dprintk ("%s\n", __func__); // check for invalid symbol rate if (fe_params->u.qpsk.symbol_rate < 500000) return -EINVAL; // calculate the updated frequency (note: we convert from Hz->kHz) tmp64 = tda10086_read_byte(state, 0x52); tmp64 |= (tda10086_read_byte(state, 0x51) << 8); if (tmp64 & 0x8000) tmp64 |= 0xffffffffffff0000ULL; tmp64 = (tmp64 * (SACLK/1000ULL)); do_div(tmp64, (1ULL<<15) * (1ULL<<1)); fe_params->frequency = (int) state->frequency + (int) tmp64; // the inversion val = tda10086_read_byte(state, 0x0c); if (val & 0x80) { switch(val & 0x40) { case 0x00: fe_params->inversion = INVERSION_OFF; if (state->config->invert) fe_params->inversion = INVERSION_ON; break; default: fe_params->inversion = INVERSION_ON; if (state->config->invert) fe_params->inversion = INVERSION_OFF; break; } } else { tda10086_read_byte(state, 0x0f); switch(val & 0x02) { case 0x00: fe_params->inversion = INVERSION_OFF; if (state->config->invert) fe_params->inversion = INVERSION_ON; break; default: fe_params->inversion = INVERSION_ON; if (state->config->invert) fe_params->inversion = INVERSION_OFF; break; } } // calculate the updated symbol rate tmp = tda10086_read_byte(state, 0x1d); if (tmp & 0x80) tmp |= 0xffffff00; tmp = (tmp * 480 * (1<<1)) / 128; tmp = ((state->symbol_rate/1000) * tmp) / (1000000/1000); fe_params->u.qpsk.symbol_rate = state->symbol_rate + tmp; // the FEC val = (tda10086_read_byte(state, 0x0d) & 0x70) >> 4; switch(val) { case 0x00: fe_params->u.qpsk.fec_inner = FEC_1_2; break; case 0x01: fe_params->u.qpsk.fec_inner = FEC_2_3; break; case 0x02: fe_params->u.qpsk.fec_inner = FEC_3_4; break; case 0x03: fe_params->u.qpsk.fec_inner = FEC_4_5; break; case 0x04: fe_params->u.qpsk.fec_inner = FEC_5_6; break; case 0x05: fe_params->u.qpsk.fec_inner = FEC_6_7; break; case 0x06: fe_params->u.qpsk.fec_inner = FEC_7_8; break; case 0x07: fe_params->u.qpsk.fec_inner = FEC_8_9; break; } return 0; } static int tda10086_read_status(struct dvb_frontend* fe, fe_status_t *fe_status) { struct tda10086_state* state = fe->demodulator_priv; u8 val; dprintk ("%s\n", __func__); val = tda10086_read_byte(state, 0x0e); *fe_status = 0; if (val & 0x01) *fe_status |= FE_HAS_SIGNAL; if (val & 0x02) *fe_status |= FE_HAS_CARRIER; if (val & 0x04) *fe_status |= FE_HAS_VITERBI; if (val & 0x08) *fe_status |= FE_HAS_SYNC; if (val & 0x10) { *fe_status |= FE_HAS_LOCK; if (!state->has_lock) { state->has_lock = true; // modify parameters for stable reception tda10086_write_byte(state, 0x02, 0x00); } } return 0; } static int tda10086_read_signal_strength(struct dvb_frontend* fe, u16 * signal) { struct tda10086_state* state = fe->demodulator_priv; u8 _str; dprintk ("%s\n", __func__); _str = 0xff - tda10086_read_byte(state, 0x43); *signal = (_str << 8) | _str; return 0; } static int tda10086_read_snr(struct dvb_frontend* fe, u16 * snr) { struct tda10086_state* state = fe->demodulator_priv; u8 _snr; dprintk ("%s\n", __func__); _snr = 0xff - tda10086_read_byte(state, 0x1c); *snr = (_snr << 8) | _snr; return 0; } static int tda10086_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct tda10086_state* state = fe->demodulator_priv; dprintk ("%s\n", __func__); // read it *ucblocks = tda10086_read_byte(state, 0x18) & 0x7f; // reset counter tda10086_write_byte(state, 0x18, 0x00); tda10086_write_byte(state, 0x18, 0x80); return 0; } static int tda10086_read_ber(struct dvb_frontend* fe, u32* ber) { struct tda10086_state* state = fe->demodulator_priv; dprintk ("%s\n", __func__); // read it *ber = 0; *ber |= tda10086_read_byte(state, 0x15); *ber |= tda10086_read_byte(state, 0x16) << 8; *ber |= (tda10086_read_byte(state, 0x17) & 0xf) << 16; return 0; } static int tda10086_sleep(struct dvb_frontend* fe) { struct tda10086_state* state = fe->demodulator_priv; dprintk ("%s\n", __func__); tda10086_write_mask(state, 0x00, 0x08, 0x08); return 0; } static int tda10086_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) { struct tda10086_state* state = fe->demodulator_priv; dprintk ("%s\n", __func__); if (enable) { tda10086_write_mask(state, 0x00, 0x10, 0x10); } else { tda10086_write_mask(state, 0x00, 0x10, 0x00); } return 0; } static int tda10086_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings) { if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) { fesettings->min_delay_ms = 50; fesettings->step_size = 2000; fesettings->max_drift = 8000; } else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) { fesettings->min_delay_ms = 100; fesettings->step_size = 1500; fesettings->max_drift = 9000; } else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) { fesettings->min_delay_ms = 100; fesettings->step_size = 1000; fesettings->max_drift = 8000; } else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) { fesettings->min_delay_ms = 100; fesettings->step_size = 500; fesettings->max_drift = 7000; } else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) { fesettings->min_delay_ms = 200; fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000); fesettings->max_drift = 14 * fesettings->step_size; } else { fesettings->min_delay_ms = 200; fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000); fesettings->max_drift = 18 * fesettings->step_size; } return 0; } static void tda10086_release(struct dvb_frontend* fe) { struct tda10086_state *state = fe->demodulator_priv; tda10086_sleep(fe); kfree(state); } static struct dvb_frontend_ops tda10086_ops = { .info = { .name = "Philips TDA10086 DVB-S", .type = FE_QPSK, .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 125, /* kHz for QPSK frontends */ .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK }, .release = tda10086_release, .init = tda10086_init, .sleep = tda10086_sleep, .i2c_gate_ctrl = tda10086_i2c_gate_ctrl, .set_frontend = tda10086_set_frontend, .get_frontend = tda10086_get_frontend, .get_tune_settings = tda10086_get_tune_settings, .read_status = tda10086_read_status, .read_ber = tda10086_read_ber, .read_signal_strength = tda10086_read_signal_strength, .read_snr = tda10086_read_snr, .read_ucblocks = tda10086_read_ucblocks, .diseqc_send_master_cmd = tda10086_send_master_cmd, .diseqc_send_burst = tda10086_send_burst, .set_tone = tda10086_set_tone, }; struct dvb_frontend* tda10086_attach(const struct tda10086_config* config, struct i2c_adapter* i2c) { struct tda10086_state *state; dprintk ("%s\n", __func__); /* allocate memory for the internal state */ state = kmalloc(sizeof(struct tda10086_state), GFP_KERNEL); if (!state) return NULL; /* setup the state */ state->config = config; state->i2c = i2c; /* check if the demod is there */ if (tda10086_read_byte(state, 0x1e) != 0xe1) { kfree(state); return NULL; } /* create dvb_frontend */ memcpy(&state->frontend.ops, &tda10086_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; } module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("Philips TDA10086 DVB-S Demodulator"); MODULE_AUTHOR("Andrew de Quincey"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(tda10086_attach);