/* * pluto2.c - Satelco Easywatch Mobile Terrestrial Receiver [DVB-T] * * Copyright (C) 2005 Andreas Oberritter * * based on pluto2.c 1.10 - http://instinct-wp8.no-ip.org/pluto/ * by Dany Salman * Copyright (c) 2004 TDF * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include #include #include "demux.h" #include "dmxdev.h" #include "dvb_demux.h" #include "dvb_frontend.h" #include "dvb_net.h" #include "dvbdev.h" #include "tda1004x.h" #define DRIVER_NAME "pluto2" #define REG_PIDn(n) ((n) << 2) /* PID n pattern registers */ #define REG_PCAR 0x0020 /* PC address register */ #define REG_TSCR 0x0024 /* TS ctrl & status */ #define REG_MISC 0x0028 /* miscellaneous */ #define REG_MMAC 0x002c /* MSB MAC address */ #define REG_IMAC 0x0030 /* ISB MAC address */ #define REG_LMAC 0x0034 /* LSB MAC address */ #define REG_SPID 0x0038 /* SPI data */ #define REG_SLCS 0x003c /* serial links ctrl/status */ #define PID0_NOFIL (0x0001 << 16) #define PIDn_ENP (0x0001 << 15) #define PID0_END (0x0001 << 14) #define PID0_AFIL (0x0001 << 13) #define PIDn_PID (0x1fff << 0) #define TSCR_NBPACKETS (0x00ff << 24) #define TSCR_DEM (0x0001 << 17) #define TSCR_DE (0x0001 << 16) #define TSCR_RSTN (0x0001 << 15) #define TSCR_MSKO (0x0001 << 14) #define TSCR_MSKA (0x0001 << 13) #define TSCR_MSKL (0x0001 << 12) #define TSCR_OVR (0x0001 << 11) #define TSCR_AFUL (0x0001 << 10) #define TSCR_LOCK (0x0001 << 9) #define TSCR_IACK (0x0001 << 8) #define TSCR_ADEF (0x007f << 0) #define MISC_DVR (0x0fff << 4) #define MISC_ALED (0x0001 << 3) #define MISC_FRST (0x0001 << 2) #define MISC_LED1 (0x0001 << 1) #define MISC_LED0 (0x0001 << 0) #define SPID_SPIDR (0x00ff << 0) #define SLCS_SCL (0x0001 << 7) #define SLCS_SDA (0x0001 << 6) #define SLCS_CSN (0x0001 << 2) #define SLCS_OVR (0x0001 << 1) #define SLCS_SWC (0x0001 << 0) #define TS_DMA_PACKETS (21) #define TS_DMA_BYTES (188 * TS_DMA_PACKETS) #define I2C_ADDR_TDA10046 0x10 #define I2C_ADDR_TUA6034 0xc2 #define NHWFILTERS 8 struct pluto { /* pci */ struct pci_dev *pdev; u8 __iomem *io_mem; /* dvb */ struct dmx_frontend hw_frontend; struct dmx_frontend mem_frontend; struct dmxdev dmxdev; struct dvb_adapter dvb_adapter; struct dvb_demux demux; struct dvb_frontend *fe; struct dvb_net dvbnet; unsigned int full_ts_users; /* i2c */ struct i2c_algo_bit_data i2c_bit; struct i2c_adapter i2c_adap; unsigned int i2cbug; /* irq */ unsigned int overflow; /* dma */ dma_addr_t dma_addr; u8 dma_buf[TS_DMA_BYTES]; }; static inline struct pluto *feed_to_pluto(struct dvb_demux_feed *feed) { return container_of(feed->demux, struct pluto, demux); } static inline struct pluto *frontend_to_pluto(struct dvb_frontend *fe) { return container_of(fe->dvb, struct pluto, dvb_adapter); } static inline u32 pluto_readreg(struct pluto *pluto, u32 reg) { return readl(&pluto->io_mem[reg]); } static inline void pluto_writereg(struct pluto *pluto, u32 reg, u32 val) { writel(val, &pluto->io_mem[reg]); } static inline void pluto_rw(struct pluto *pluto, u32 reg, u32 mask, u32 bits) { u32 val = readl(&pluto->io_mem[reg]); val &= ~mask; val |= bits; writel(val, &pluto->io_mem[reg]); } static void pluto_setsda(void *data, int state) { struct pluto *pluto = data; if (state) pluto_rw(pluto, REG_SLCS, SLCS_SDA, SLCS_SDA); else pluto_rw(pluto, REG_SLCS, SLCS_SDA, 0); } static void pluto_setscl(void *data, int state) { struct pluto *pluto = data; if (state) pluto_rw(pluto, REG_SLCS, SLCS_SCL, SLCS_SCL); else pluto_rw(pluto, REG_SLCS, SLCS_SCL, 0); /* try to detect i2c_inb() to workaround hardware bug: * reset SDA to high after SCL has been set to low */ if ((state) && (pluto->i2cbug == 0)) { pluto->i2cbug = 1; } else { if ((!state) && (pluto->i2cbug == 1)) pluto_setsda(pluto, 1); pluto->i2cbug = 0; } } static int pluto_getsda(void *data) { struct pluto *pluto = data; return pluto_readreg(pluto, REG_SLCS) & SLCS_SDA; } static int pluto_getscl(void *data) { struct pluto *pluto = data; return pluto_readreg(pluto, REG_SLCS) & SLCS_SCL; } static void pluto_reset_frontend(struct pluto *pluto, int reenable) { u32 val = pluto_readreg(pluto, REG_MISC); if (val & MISC_FRST) { val &= ~MISC_FRST; pluto_writereg(pluto, REG_MISC, val); } if (reenable) { val |= MISC_FRST; pluto_writereg(pluto, REG_MISC, val); } } static void pluto_reset_ts(struct pluto *pluto, int reenable) { u32 val = pluto_readreg(pluto, REG_TSCR); if (val & TSCR_RSTN) { val &= ~TSCR_RSTN; pluto_writereg(pluto, REG_TSCR, val); } if (reenable) { val |= TSCR_RSTN; pluto_writereg(pluto, REG_TSCR, val); } } static void pluto_set_dma_addr(struct pluto *pluto) { pluto_writereg(pluto, REG_PCAR, cpu_to_le32(pluto->dma_addr)); } static int __devinit pluto_dma_map(struct pluto *pluto) { pluto->dma_addr = pci_map_single(pluto->pdev, pluto->dma_buf, TS_DMA_BYTES, PCI_DMA_FROMDEVICE); return pci_dma_mapping_error(pluto->dma_addr); } static void pluto_dma_unmap(struct pluto *pluto) { pci_unmap_single(pluto->pdev, pluto->dma_addr, TS_DMA_BYTES, PCI_DMA_FROMDEVICE); } static int pluto_start_feed(struct dvb_demux_feed *f) { struct pluto *pluto = feed_to_pluto(f); if ((f->pid < 0x2000) && (f->index < NHWFILTERS)) pluto_rw(pluto, REG_PIDn(f->index), PIDn_ENP | PIDn_PID, PIDn_ENP | f->pid); else if (pluto->full_ts_users++ == 0) pluto_rw(pluto, REG_PIDn(0), PID0_NOFIL, PID0_NOFIL); return 0; } static int pluto_stop_feed(struct dvb_demux_feed *f) { struct pluto *pluto = feed_to_pluto(f); if ((f->pid < 0x2000) && (f->index < NHWFILTERS)) pluto_rw(pluto, REG_PIDn(f->index), PIDn_ENP | PIDn_PID, 0x1fff); else if (--pluto->full_ts_users == 0) pluto_rw(pluto, REG_PIDn(0), PID0_NOFIL, 0); return 0; } static void pluto_dma_end(struct pluto *pluto, unsigned int nbpackets) { /* synchronize the DMA transfer with the CPU * first so that we see updated contents. */ pci_dma_sync_single_for_cpu(pluto->pdev, pluto->dma_addr, TS_DMA_BYTES, PCI_DMA_FROMDEVICE); /* Workaround for broken hardware: * [1] On startup NBPACKETS seems to contain an uninitialized value, * but no packets have been transfered. * [2] Sometimes (actually very often) NBPACKETS stays at zero * although one packet has been transfered. */ if ((nbpackets == 0) || (nbpackets > TS_DMA_PACKETS)) { unsigned int i, valid = 0; for (i = 0; i < TS_DMA_BYTES; i += 188) if (pluto->dma_buf[i] == 0x47) valid++; /* bug [1] */ if (valid == 0) return; /* bug [2] */ if (valid != nbpackets) nbpackets = valid; } dvb_dmx_swfilter_packets(&pluto->demux, pluto->dma_buf, nbpackets); /* clear the dma buffer. this is needed to be able to identify * new valid ts packets above */ memset(pluto->dma_buf, 0, TS_DMA_BYTES); /* reset the dma address */ pluto_set_dma_addr(pluto); /* sync the buffer and give it back to the card */ pci_dma_sync_single_for_device(pluto->pdev, pluto->dma_addr, TS_DMA_BYTES, PCI_DMA_FROMDEVICE); } static irqreturn_t pluto_irq(int irq, void *dev_id, struct pt_regs *regs) { struct pluto *pluto = dev_id; u32 tscr; /* check whether an interrupt occured on this device */ tscr = pluto_readreg(pluto, REG_TSCR); if (!(tscr & (TSCR_DE | TSCR_OVR))) return IRQ_NONE; /* dma end interrupt */ if (tscr & TSCR_DE) { pluto_dma_end(pluto, (tscr & TSCR_NBPACKETS) >> 24); /* overflow interrupt */ if (tscr & TSCR_OVR) pluto->overflow++; if (pluto->overflow) { dev_err(&pluto->pdev->dev, "overflow irq (%d)\n", pluto->overflow); pluto_reset_ts(pluto, 1); pluto->overflow = 0; } } else if (tscr & TSCR_OVR) { pluto->overflow++; } /* ACK the interrupt */ pluto_writereg(pluto, REG_TSCR, tscr | TSCR_IACK); return IRQ_HANDLED; } static void __devinit pluto_enable_irqs(struct pluto *pluto) { u32 val = pluto_readreg(pluto, REG_TSCR); /* disable AFUL and LOCK interrupts */ val |= (TSCR_MSKA | TSCR_MSKL); /* enable DMA and OVERFLOW interrupts */ val &= ~(TSCR_DEM | TSCR_MSKO); /* clear pending interrupts */ val |= TSCR_IACK; pluto_writereg(pluto, REG_TSCR, val); pci_write_config_dword(pluto->pdev, 0x6c, 0x8000); } static void pluto_disable_irqs(struct pluto *pluto) { u32 val = pluto_readreg(pluto, REG_TSCR); /* disable all interrupts */ val |= (TSCR_DEM | TSCR_MSKO | TSCR_MSKA | TSCR_MSKL); /* clear pending interrupts */ val |= TSCR_IACK; pluto_writereg(pluto, REG_TSCR, val); pci_write_config_dword(pluto->pdev, 0x6c, 0x0000); } static int __devinit pluto_hw_init(struct pluto *pluto) { pluto_reset_frontend(pluto, 1); /* set automatic LED control by FPGA */ pluto_rw(pluto, REG_MISC, MISC_ALED, MISC_ALED); /* set data endianess */ #ifdef __LITTLE_ENDIAN pluto_rw(pluto, REG_PIDn(0), PID0_END, PID0_END); #else pluto_rw(pluto, REG_PIDn(0), PID0_END, 0); #endif /* map DMA and set address */ pluto_dma_map(pluto); pluto_set_dma_addr(pluto); /* enable interrupts */ pluto_enable_irqs(pluto); /* reset TS logic */ pluto_reset_ts(pluto, 1); /* enable PID filtering */ pluto_rw(pluto, REG_PIDn(0), PID0_NOFIL | PID0_AFIL, 0); return 0; } static void pluto_hw_exit(struct pluto *pluto) { /* disable interrupts */ pluto_disable_irqs(pluto); pluto_reset_ts(pluto, 0); /* disable PID filtering */ pluto_rw(pluto, REG_PIDn(0), PID0_AFIL, PID0_AFIL); /* LED: disable automatic control, enable yellow, disable green */ pluto_rw(pluto, REG_MISC, MISC_ALED | MISC_LED1 | MISC_LED0, MISC_LED1); /* unmap DMA */ pluto_dma_unmap(pluto); pluto_reset_frontend(pluto, 0); } static inline u32 divide(u32 numerator, u32 denominator) { if (denominator == 0) return ~0; return (numerator + denominator / 2) / denominator; } /* LG Innotek TDTE-E001P (Infineon TUA6034) */ static int lg_tdtpe001p_pll_set(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct pluto *pluto = frontend_to_pluto(fe); struct i2c_msg msg; int ret; u8 buf[4]; u32 div; // Fref = 166.667 Hz // Fref * 3 = 500.000 Hz // IF = 36166667 // IF / Fref = 217 //div = divide(p->frequency + 36166667, 166667); div = divide(p->frequency * 3, 500000) + 217; buf[0] = (div >> 8) & 0x7f; buf[1] = (div >> 0) & 0xff; if (p->frequency < 611000000) buf[2] = 0xb4; else if (p->frequency < 811000000) buf[2] = 0xbc; else buf[2] = 0xf4; // VHF: 174-230 MHz // center: 350 MHz // UHF: 470-862 MHz if (p->frequency < 350000000) buf[3] = 0x02; else buf[3] = 0x04; if (p->u.ofdm.bandwidth == BANDWIDTH_8_MHZ) buf[3] |= 0x08; if (sizeof(buf) == 6) { buf[4] = buf[2]; buf[4] &= ~0x1c; buf[4] |= 0x18; buf[5] = (0 << 7) | (2 << 4); } msg.addr = I2C_ADDR_TUA6034 >> 1; msg.flags = 0; msg.buf = buf; msg.len = sizeof(buf); ret = i2c_transfer(&pluto->i2c_adap, &msg, 1); if (ret < 0) return ret; else if (ret == 0) return -EREMOTEIO; return 0; } static int pluto2_request_firmware(struct dvb_frontend *fe, const struct firmware **fw, char *name) { struct pluto *pluto = frontend_to_pluto(fe); return request_firmware(fw, name, &pluto->pdev->dev); } static struct tda1004x_config pluto2_fe_config __devinitdata = { .demod_address = I2C_ADDR_TDA10046 >> 1, .invert = 1, .pll_set = lg_tdtpe001p_pll_set, .request_firmware = pluto2_request_firmware, }; static int __devinit frontend_init(struct pluto *pluto) { int ret; pluto->fe = tda10046_attach(&pluto2_fe_config, &pluto->i2c_adap); if (!pluto->fe) { printk(KERN_ERR "pluto2: could not attach frontend\n"); return -ENODEV; } ret = dvb_register_frontend(&pluto->dvb_adapter, pluto->fe); if (ret < 0) { if (pluto->fe->ops->release) pluto->fe->ops->release(pluto->fe); return ret; } return 0; } static void __devinit pluto_read_rev(struct pluto *pluto) { u32 val = pluto_readreg(pluto, REG_MISC) & MISC_DVR; dev_info(&pluto->pdev->dev, "board revision %d.%d\n", (val >> 12) & 0x0f, (val >> 4) & 0xff); } static void __devinit pluto_read_mac(struct pluto *pluto, u8 *mac) { u32 val = pluto_readreg(pluto, REG_MMAC); mac[0] = (val >> 8) & 0xff; mac[1] = (val >> 0) & 0xff; val = pluto_readreg(pluto, REG_IMAC); mac[2] = (val >> 8) & 0xff; mac[3] = (val >> 0) & 0xff; val = pluto_readreg(pluto, REG_LMAC); mac[4] = (val >> 8) & 0xff; mac[5] = (val >> 0) & 0xff; dev_info(&pluto->pdev->dev, "MAC %02x:%02x:%02x:%02x:%02x:%02x\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); } static int __devinit pluto2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct pluto *pluto; struct dvb_adapter *dvb_adapter; struct dvb_demux *dvbdemux; struct dmx_demux *dmx; int ret = -ENOMEM; pluto = kmalloc(sizeof(struct pluto), GFP_KERNEL); if (!pluto) goto out; memset(pluto, 0, sizeof(struct pluto)); pluto->pdev = pdev; ret = pci_enable_device(pdev); if (ret < 0) goto err_kfree; ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (ret < 0) goto err_pci_disable_device; pci_set_master(pdev); ret = pci_request_regions(pdev, DRIVER_NAME); if (ret < 0) goto err_pci_disable_device; pluto->io_mem = pci_iomap(pdev, 0, 0x40); if (!pluto->io_mem) { ret = -EIO; goto err_pci_release_regions; } pci_set_drvdata(pdev, pluto); ret = request_irq(pdev->irq, pluto_irq, SA_SHIRQ, DRIVER_NAME, pluto); if (ret < 0) goto err_pci_iounmap; ret = pluto_hw_init(pluto); if (ret < 0) goto err_free_irq; /* i2c */ i2c_set_adapdata(&pluto->i2c_adap, pluto); strcpy(pluto->i2c_adap.name, DRIVER_NAME); pluto->i2c_adap.owner = THIS_MODULE; pluto->i2c_adap.id = I2C_ALGO_BIT; pluto->i2c_adap.class = I2C_CLASS_TV_DIGITAL; pluto->i2c_adap.dev.parent = &pdev->dev; pluto->i2c_adap.algo_data = &pluto->i2c_bit; pluto->i2c_bit.data = pluto; pluto->i2c_bit.setsda = pluto_setsda; pluto->i2c_bit.setscl = pluto_setscl; pluto->i2c_bit.getsda = pluto_getsda; pluto->i2c_bit.getscl = pluto_getscl; pluto->i2c_bit.udelay = 10; pluto->i2c_bit.timeout = 10; /* Raise SCL and SDA */ pluto_setsda(pluto, 1); pluto_setscl(pluto, 1); ret = i2c_bit_add_bus(&pluto->i2c_adap); if (ret < 0) goto err_pluto_hw_exit; /* dvb */ ret = dvb_register_adapter(&pluto->dvb_adapter, DRIVER_NAME, THIS_MODULE); if (ret < 0) goto err_i2c_del_adapter; dvb_adapter = &pluto->dvb_adapter; pluto_read_rev(pluto); pluto_read_mac(pluto, dvb_adapter->proposed_mac); dvbdemux = &pluto->demux; dvbdemux->filternum = 256; dvbdemux->feednum = 256; dvbdemux->start_feed = pluto_start_feed; dvbdemux->stop_feed = pluto_stop_feed; dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING); ret = dvb_dmx_init(dvbdemux); if (ret < 0) goto err_dvb_unregister_adapter; dmx = &dvbdemux->dmx; pluto->hw_frontend.source = DMX_FRONTEND_0; pluto->mem_frontend.source = DMX_MEMORY_FE; pluto->dmxdev.filternum = NHWFILTERS; pluto->dmxdev.demux = dmx; ret = dvb_dmxdev_init(&pluto->dmxdev, dvb_adapter); if (ret < 0) goto err_dvb_dmx_release; ret = dmx->add_frontend(dmx, &pluto->hw_frontend); if (ret < 0) goto err_dvb_dmxdev_release; ret = dmx->add_frontend(dmx, &pluto->mem_frontend); if (ret < 0) goto err_remove_hw_frontend; ret = dmx->connect_frontend(dmx, &pluto->hw_frontend); if (ret < 0) goto err_remove_mem_frontend; ret = frontend_init(pluto); if (ret < 0) goto err_disconnect_frontend; dvb_net_init(dvb_adapter, &pluto->dvbnet, dmx); out: return ret; err_disconnect_frontend: dmx->disconnect_frontend(dmx); err_remove_mem_frontend: dmx->remove_frontend(dmx, &pluto->mem_frontend); err_remove_hw_frontend: dmx->remove_frontend(dmx, &pluto->hw_frontend); err_dvb_dmxdev_release: dvb_dmxdev_release(&pluto->dmxdev); err_dvb_dmx_release: dvb_dmx_release(dvbdemux); err_dvb_unregister_adapter: dvb_unregister_adapter(dvb_adapter); err_i2c_del_adapter: i2c_bit_del_bus(&pluto->i2c_adap); err_pluto_hw_exit: pluto_hw_exit(pluto); err_free_irq: free_irq(pdev->irq, pluto); err_pci_iounmap: pci_iounmap(pdev, pluto->io_mem); err_pci_release_regions: pci_release_regions(pdev); err_pci_disable_device: pci_disable_device(pdev); err_kfree: pci_set_drvdata(pdev, NULL); kfree(pluto); goto out; } static void __devexit pluto2_remove(struct pci_dev *pdev) { struct pluto *pluto = pci_get_drvdata(pdev); struct dvb_adapter *dvb_adapter = &pluto->dvb_adapter; struct dvb_demux *dvbdemux = &pluto->demux; struct dmx_demux *dmx = &dvbdemux->dmx; dmx->close(dmx); dvb_net_release(&pluto->dvbnet); if (pluto->fe) dvb_unregister_frontend(pluto->fe); dmx->disconnect_frontend(dmx); dmx->remove_frontend(dmx, &pluto->mem_frontend); dmx->remove_frontend(dmx, &pluto->hw_frontend); dvb_dmxdev_release(&pluto->dmxdev); dvb_dmx_release(dvbdemux); dvb_unregister_adapter(dvb_adapter); i2c_bit_del_bus(&pluto->i2c_adap); pluto_hw_exit(pluto); free_irq(pdev->irq, pluto); pci_iounmap(pdev, pluto->io_mem); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); kfree(pluto); } #ifndef PCI_VENDOR_ID_SCM #define PCI_VENDOR_ID_SCM 0x0432 #endif #ifndef PCI_DEVICE_ID_PLUTO2 #define PCI_DEVICE_ID_PLUTO2 0x0001 #endif static struct pci_device_id pluto2_id_table[] __devinitdata = { { .vendor = PCI_VENDOR_ID_SCM, .device = PCI_DEVICE_ID_PLUTO2, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { /* empty */ }, }; MODULE_DEVICE_TABLE(pci, pluto2_id_table); static struct pci_driver pluto2_driver = { .name = DRIVER_NAME, .id_table = pluto2_id_table, .probe = pluto2_probe, .remove = __devexit_p(pluto2_remove), }; static int __init pluto2_init(void) { return pci_register_driver(&pluto2_driver); } static void __exit pluto2_exit(void) { pci_unregister_driver(&pluto2_driver); } module_init(pluto2_init); module_exit(pluto2_exit); MODULE_AUTHOR("Andreas Oberritter "); MODULE_DESCRIPTION("Pluto2 driver"); MODULE_LICENSE("GPL");