/* * cx18 ADEC audio functions * * Derived from cx25840-core.c * * Copyright (C) 2007 Hans Verkuil * Copyright (C) 2008 Andy Walls * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ #include #include "cx18-driver.h" #include "cx18-io.h" #include "cx18-cards.h" int cx18_av_write(struct cx18 *cx, u16 addr, u8 value) { u32 reg = 0xc40000 + (addr & ~3); u32 mask = 0xff; int shift = (addr & 3) * 8; u32 x = cx18_read_reg(cx, reg); x = (x & ~(mask << shift)) | ((u32)value << shift); cx18_write_reg(cx, x, reg); return 0; } int cx18_av_write_expect(struct cx18 *cx, u16 addr, u8 value, u8 eval, u8 mask) { u32 reg = 0xc40000 + (addr & ~3); int shift = (addr & 3) * 8; u32 x = cx18_read_reg(cx, reg); x = (x & ~((u32)0xff << shift)) | ((u32)value << shift); cx18_write_reg_expect(cx, x, reg, ((u32)eval << shift), ((u32)mask << shift)); return 0; } int cx18_av_write4(struct cx18 *cx, u16 addr, u32 value) { cx18_write_reg(cx, value, 0xc40000 + addr); return 0; } int cx18_av_write4_expect(struct cx18 *cx, u16 addr, u32 value, u32 eval, u32 mask) { cx18_write_reg_expect(cx, value, 0xc40000 + addr, eval, mask); return 0; } int cx18_av_write4_noretry(struct cx18 *cx, u16 addr, u32 value) { cx18_write_reg_noretry(cx, value, 0xc40000 + addr); return 0; } u8 cx18_av_read(struct cx18 *cx, u16 addr) { u32 x = cx18_read_reg(cx, 0xc40000 + (addr & ~3)); int shift = (addr & 3) * 8; return (x >> shift) & 0xff; } u32 cx18_av_read4(struct cx18 *cx, u16 addr) { return cx18_read_reg(cx, 0xc40000 + addr); } int cx18_av_and_or(struct cx18 *cx, u16 addr, unsigned and_mask, u8 or_value) { return cx18_av_write(cx, addr, (cx18_av_read(cx, addr) & and_mask) | or_value); } int cx18_av_and_or4(struct cx18 *cx, u16 addr, u32 and_mask, u32 or_value) { return cx18_av_write4(cx, addr, (cx18_av_read4(cx, addr) & and_mask) | or_value); } static void cx18_av_initialize(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; u32 v; cx18_av_loadfw(cx); /* Stop 8051 code execution */ cx18_av_write4_expect(cx, CXADEC_DL_CTL, 0x03000000, 0x03000000, 0x13000000); /* initallize the PLL by toggling sleep bit */ v = cx18_av_read4(cx, CXADEC_HOST_REG1); /* enable sleep mode - register appears to be read only... */ cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v | 1, v, 0xfffe); /* disable sleep mode */ cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v & 0xfffe, v & 0xfffe, 0xffff); /* initialize DLLs */ v = cx18_av_read4(cx, CXADEC_DLL1_DIAG_CTRL) & 0xE1FFFEFF; /* disable FLD */ cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v); /* enable FLD */ cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v | 0x10000100); v = cx18_av_read4(cx, CXADEC_DLL2_DIAG_CTRL) & 0xE1FFFEFF; /* disable FLD */ cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v); /* enable FLD */ cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v | 0x06000100); /* set analog bias currents. Set Vreg to 1.20V. */ cx18_av_write4(cx, CXADEC_AFE_DIAG_CTRL1, 0x000A1802); v = cx18_av_read4(cx, CXADEC_AFE_DIAG_CTRL3) | 1; /* enable TUNE_FIL_RST */ cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, v, v, 0x03009F0F); /* disable TUNE_FIL_RST */ cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, v & 0xFFFFFFFE, v & 0xFFFFFFFE, 0x03009F0F); /* enable 656 output */ cx18_av_and_or4(cx, CXADEC_PIN_CTRL1, ~0, 0x040C00); /* video output drive strength */ cx18_av_and_or4(cx, CXADEC_PIN_CTRL2, ~0, 0x2); /* reset video */ cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0x8000); cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0); /* set video to auto-detect */ /* Clear bits 11-12 to enable slow locking mode. Set autodetect mode */ /* set the comb notch = 1 */ cx18_av_and_or4(cx, CXADEC_MODE_CTRL, 0xFFF7E7F0, 0x02040800); /* Enable wtw_en in CRUSH_CTRL (Set bit 22) */ /* Enable maj_sel in CRUSH_CTRL (Set bit 20) */ cx18_av_and_or4(cx, CXADEC_CRUSH_CTRL, ~0, 0x00500000); /* Set VGA_TRACK_RANGE to 0x20 */ cx18_av_and_or4(cx, CXADEC_DFE_CTRL2, 0xFFFF00FF, 0x00002000); /* * Initial VBI setup * VIP-1.1, 10 bit mode, enable Raw, disable sliced, * don't clamp raw samples when codes are in use, 1 byte user D-words, * IDID0 has line #, RP code V bit transition on VBLANK, data during * blanking intervals */ cx18_av_write4(cx, CXADEC_OUT_CTRL1, 0x4013252e); /* Set the video input. The setting in MODE_CTRL gets lost when we do the above setup */ /* EncSetSignalStd(dwDevNum, pEnc->dwSigStd); */ /* EncSetVideoInput(dwDevNum, pEnc->VidIndSelection); */ v = cx18_av_read4(cx, CXADEC_AFE_CTRL); v &= 0xFFFBFFFF; /* turn OFF bit 18 for droop_comp_ch1 */ v &= 0xFFFF7FFF; /* turn OFF bit 9 for clamp_sel_ch1 */ v &= 0xFFFFFFFE; /* turn OFF bit 0 for 12db_ch1 */ /* v |= 0x00000001;*/ /* turn ON bit 0 for 12db_ch1 */ cx18_av_write4(cx, CXADEC_AFE_CTRL, v); /* if(dwEnable && dw3DCombAvailable) { */ /* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x7728021F); */ /* } else { */ /* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x6628021F); */ /* } */ cx18_av_write4(cx, CXADEC_SRC_COMB_CFG, 0x6628021F); state->default_volume = 228 - cx18_av_read(cx, 0x8d4); state->default_volume = ((state->default_volume / 2) + 23) << 9; } static int cx18_av_reset(struct v4l2_subdev *sd, u32 val) { struct cx18 *cx = v4l2_get_subdevdata(sd); cx18_av_initialize(cx); return 0; } static int cx18_av_init(struct v4l2_subdev *sd, u32 val) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); switch (val) { case CX18_AV_INIT_PLLS: /* * The crystal freq used in calculations in this driver will be * 28.636360 MHz. * Aim to run the PLLs' VCOs near 400 MHz to minimze errors. */ /* * VDCLK Integer = 0x0f, Post Divider = 0x04 * AIMCLK Integer = 0x0e, Post Divider = 0x16 */ cx18_av_write4(cx, CXADEC_PLL_CTRL1, 0x160e040f); /* VDCLK Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz before post divide */ cx18_av_write4(cx, CXADEC_VID_PLL_FRAC, 0x002be2fe); /* AIMCLK Fraction = 0x05227ad */ /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz pre post-div*/ cx18_av_write4(cx, CXADEC_AUX_PLL_FRAC, 0x005227ad); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */ cx18_av_write(cx, CXADEC_I2S_MCLK, 0x56); break; case CX18_AV_INIT_NORMAL: default: if (!state->is_initialized) { /* initialize on first use */ state->is_initialized = 1; cx18_av_initialize(cx); } break; } return 0; } void cx18_av_std_setup(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd = &state->sd; v4l2_std_id std = state->std; int hblank, hactive, burst, vblank, vactive, sc; int vblank656, src_decimation; int luma_lpf, uv_lpf, comb; u32 pll_int, pll_frac, pll_post; /* datasheet startup, step 8d */ if (std & ~V4L2_STD_NTSC) cx18_av_write(cx, 0x49f, 0x11); else cx18_av_write(cx, 0x49f, 0x14); if (std & V4L2_STD_625_50) { /* FIXME - revisit these for Sliced VBI */ hblank = 132; hactive = 720; burst = 93; vblank = 36; vactive = 580; vblank656 = 40; src_decimation = 0x21f; luma_lpf = 2; if (std & V4L2_STD_PAL) { uv_lpf = 1; comb = 0x20; sc = 688739; } else if (std == V4L2_STD_PAL_Nc) { uv_lpf = 1; comb = 0x20; sc = 556453; } else { /* SECAM */ uv_lpf = 0; comb = 0; sc = 672351; } } else { /* * The following relationships of half line counts should hold: * 525 = vsync + vactive + vblank656 * 12 = vblank656 - vblank * * vsync: always 6 half-lines of vsync pulses * vactive: half lines of active video * vblank656: half lines, after line 3, of blanked video * vblank: half lines, after line 9, of blanked video * * vblank656 starts counting from the falling edge of the first * vsync pulse (start of line 4) * vblank starts counting from the after the 6 vsync pulses and * 6 equalization pulses (start of line 10) * * For 525 line systems the driver will extract VBI information * from lines 10 through 21. To avoid the EAV RP code from * toggling at the start of hblank at line 22, where sliced VBI * data from line 21 is stuffed, also treat line 22 as blanked. */ vblank656 = 38; /* lines 4 through 22 */ vblank = 26; /* lines 10 through 22 */ vactive = 481; /* lines 23 through 262.5 */ hactive = 720; hblank = 122; luma_lpf = 1; uv_lpf = 1; src_decimation = 0x21f; if (std == V4L2_STD_PAL_60) { burst = 0x5b; luma_lpf = 2; comb = 0x20; sc = 688739; } else if (std == V4L2_STD_PAL_M) { burst = 0x61; comb = 0x20; sc = 555452; } else { burst = 0x5b; comb = 0x66; sc = 556063; } } /* DEBUG: Displays configured PLL frequency */ pll_int = cx18_av_read(cx, 0x108); pll_frac = cx18_av_read4(cx, 0x10c) & 0x1ffffff; pll_post = cx18_av_read(cx, 0x109); CX18_DEBUG_INFO_DEV(sd, "PLL regs = int: %u, frac: %u, post: %u\n", pll_int, pll_frac, pll_post); if (pll_post) { int fin, fsc, pll; pll = (28636360L * ((((u64)pll_int) << 25) + pll_frac)) >> 25; pll /= pll_post; CX18_DEBUG_INFO_DEV(sd, "PLL = %d.%06d MHz\n", pll / 1000000, pll % 1000000); CX18_DEBUG_INFO_DEV(sd, "PLL/8 = %d.%06d MHz\n", pll / 8000000, (pll / 8) % 1000000); fin = ((u64)src_decimation * pll) >> 12; CX18_DEBUG_INFO_DEV(sd, "ADC Sampling freq = %d.%06d MHz\n", fin / 1000000, fin % 1000000); fsc = (((u64)sc) * pll) >> 24L; CX18_DEBUG_INFO_DEV(sd, "Chroma sub-carrier freq = %d.%06d MHz\n", fsc / 1000000, fsc % 1000000); CX18_DEBUG_INFO_DEV(sd, "hblank %i, hactive %i, vblank %i, " "vactive %i, vblank656 %i, src_dec %i, " "burst 0x%02x, luma_lpf %i, uv_lpf %i, " "comb 0x%02x, sc 0x%06x\n", hblank, hactive, vblank, vactive, vblank656, src_decimation, burst, luma_lpf, uv_lpf, comb, sc); } /* Sets horizontal blanking delay and active lines */ cx18_av_write(cx, 0x470, hblank); cx18_av_write(cx, 0x471, 0xff & (((hblank >> 8) & 0x3) | (hactive << 4))); cx18_av_write(cx, 0x472, hactive >> 4); /* Sets burst gate delay */ cx18_av_write(cx, 0x473, burst); /* Sets vertical blanking delay and active duration */ cx18_av_write(cx, 0x474, vblank); cx18_av_write(cx, 0x475, 0xff & (((vblank >> 8) & 0x3) | (vactive << 4))); cx18_av_write(cx, 0x476, vactive >> 4); cx18_av_write(cx, 0x477, vblank656); /* Sets src decimation rate */ cx18_av_write(cx, 0x478, 0xff & src_decimation); cx18_av_write(cx, 0x479, 0xff & (src_decimation >> 8)); /* Sets Luma and UV Low pass filters */ cx18_av_write(cx, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30)); /* Enables comb filters */ cx18_av_write(cx, 0x47b, comb); /* Sets SC Step*/ cx18_av_write(cx, 0x47c, sc); cx18_av_write(cx, 0x47d, 0xff & sc >> 8); cx18_av_write(cx, 0x47e, 0xff & sc >> 16); if (std & V4L2_STD_625_50) { state->slicer_line_delay = 1; state->slicer_line_offset = (6 + state->slicer_line_delay - 2); } else { state->slicer_line_delay = 0; state->slicer_line_offset = (10 + state->slicer_line_delay - 2); } cx18_av_write(cx, 0x47f, state->slicer_line_delay); } static int cx18_av_decode_vbi_line(struct v4l2_subdev *sd, struct v4l2_decode_vbi_line *vbi_line) { struct cx18 *cx = v4l2_get_subdevdata(sd); return cx18_av_vbi(cx, VIDIOC_INT_DECODE_VBI_LINE, vbi_line); } static int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq) { struct cx18 *cx = v4l2_get_subdevdata(sd); return cx18_av_audio(cx, VIDIOC_INT_AUDIO_CLOCK_FREQ, &freq); } static void input_change(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; v4l2_std_id std = state->std; u8 v; /* Follow step 8c and 8d of section 3.16 in the cx18_av datasheet */ cx18_av_write(cx, 0x49f, (std & V4L2_STD_NTSC) ? 0x14 : 0x11); cx18_av_and_or(cx, 0x401, ~0x60, 0); cx18_av_and_or(cx, 0x401, ~0x60, 0x60); if (std & V4L2_STD_525_60) { if (std == V4L2_STD_NTSC_M_JP) { /* Japan uses EIAJ audio standard */ cx18_av_write_expect(cx, 0x808, 0xf7, 0xf7, 0xff); cx18_av_write_expect(cx, 0x80b, 0x02, 0x02, 0x3f); } else if (std == V4L2_STD_NTSC_M_KR) { /* South Korea uses A2 audio standard */ cx18_av_write_expect(cx, 0x808, 0xf8, 0xf8, 0xff); cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f); } else { /* Others use the BTSC audio standard */ cx18_av_write_expect(cx, 0x808, 0xf6, 0xf6, 0xff); cx18_av_write_expect(cx, 0x80b, 0x01, 0x01, 0x3f); } } else if (std & V4L2_STD_PAL) { /* Follow tuner change procedure for PAL */ cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff); cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f); } else if (std & V4L2_STD_SECAM) { /* Select autodetect for SECAM */ cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff); cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f); } v = cx18_av_read(cx, 0x803); if (v & 0x10) { /* restart audio decoder microcontroller */ v &= ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); v |= 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } static int cx18_av_s_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *freq) { struct cx18 *cx = v4l2_get_subdevdata(sd); input_change(cx); return 0; } static int set_input(struct cx18 *cx, enum cx18_av_video_input vid_input, enum cx18_av_audio_input aud_input) { struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd = &state->sd; u8 is_composite = (vid_input >= CX18_AV_COMPOSITE1 && vid_input <= CX18_AV_COMPOSITE8); u8 reg; u8 v; CX18_DEBUG_INFO_DEV(sd, "decoder set video input %d, audio input %d\n", vid_input, aud_input); if (is_composite) { reg = 0xf0 + (vid_input - CX18_AV_COMPOSITE1); } else { int luma = vid_input & 0xf0; int chroma = vid_input & 0xf00; if ((vid_input & ~0xff0) || luma < CX18_AV_SVIDEO_LUMA1 || luma > CX18_AV_SVIDEO_LUMA8 || chroma < CX18_AV_SVIDEO_CHROMA4 || chroma > CX18_AV_SVIDEO_CHROMA8) { CX18_ERR_DEV(sd, "0x%04x is not a valid video input!\n", vid_input); return -EINVAL; } reg = 0xf0 + ((luma - CX18_AV_SVIDEO_LUMA1) >> 4); if (chroma >= CX18_AV_SVIDEO_CHROMA7) { reg &= 0x3f; reg |= (chroma - CX18_AV_SVIDEO_CHROMA7) >> 2; } else { reg &= 0xcf; reg |= (chroma - CX18_AV_SVIDEO_CHROMA4) >> 4; } } switch (aud_input) { case CX18_AV_AUDIO_SERIAL1: case CX18_AV_AUDIO_SERIAL2: /* do nothing, use serial audio input */ break; case CX18_AV_AUDIO4: reg &= ~0x30; break; case CX18_AV_AUDIO5: reg &= ~0x30; reg |= 0x10; break; case CX18_AV_AUDIO6: reg &= ~0x30; reg |= 0x20; break; case CX18_AV_AUDIO7: reg &= ~0xc0; break; case CX18_AV_AUDIO8: reg &= ~0xc0; reg |= 0x40; break; default: CX18_ERR_DEV(sd, "0x%04x is not a valid audio input!\n", aud_input); return -EINVAL; } cx18_av_write_expect(cx, 0x103, reg, reg, 0xf7); /* Set INPUT_MODE to Composite (0) or S-Video (1) */ cx18_av_and_or(cx, 0x401, ~0x6, is_composite ? 0 : 0x02); /* Set CH_SEL_ADC2 to 1 if input comes from CH3 */ v = cx18_av_read(cx, 0x102); if (reg & 0x80) v &= ~0x2; else v |= 0x2; /* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2 and CH3 */ if ((reg & 0xc0) != 0xc0 && (reg & 0x30) != 0x30) v |= 0x4; else v &= ~0x4; cx18_av_write_expect(cx, 0x102, v, v, 0x17); /*cx18_av_and_or4(cx, 0x104, ~0x001b4180, 0x00004180);*/ state->vid_input = vid_input; state->aud_input = aud_input; cx18_av_audio_set_path(cx); input_change(cx); return 0; } static int cx18_av_s_video_routing(struct v4l2_subdev *sd, const struct v4l2_routing *route) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); return set_input(cx, route->input, state->aud_input); } static int cx18_av_s_audio_routing(struct v4l2_subdev *sd, const struct v4l2_routing *route) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); return set_input(cx, state->vid_input, route->input); } static int cx18_av_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); u8 vpres; u8 mode; int val = 0; if (state->radio) return 0; vpres = cx18_av_read(cx, 0x40e) & 0x20; vt->signal = vpres ? 0xffff : 0x0; vt->capability |= V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 | V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP; mode = cx18_av_read(cx, 0x804); /* get rxsubchans and audmode */ if ((mode & 0xf) == 1) val |= V4L2_TUNER_SUB_STEREO; else val |= V4L2_TUNER_SUB_MONO; if (mode == 2 || mode == 4) val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2; if (mode & 0x10) val |= V4L2_TUNER_SUB_SAP; vt->rxsubchans = val; vt->audmode = state->audmode; return 0; } static int cx18_av_s_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); u8 v; if (state->radio) return 0; v = cx18_av_read(cx, 0x809); v &= ~0xf; switch (vt->audmode) { case V4L2_TUNER_MODE_MONO: /* mono -> mono stereo -> mono bilingual -> lang1 */ break; case V4L2_TUNER_MODE_STEREO: case V4L2_TUNER_MODE_LANG1: /* mono -> mono stereo -> stereo bilingual -> lang1 */ v |= 0x4; break; case V4L2_TUNER_MODE_LANG1_LANG2: /* mono -> mono stereo -> stereo bilingual -> lang1/lang2 */ v |= 0x7; break; case V4L2_TUNER_MODE_LANG2: /* mono -> mono stereo -> stereo bilingual -> lang2 */ v |= 0x1; break; default: return -EINVAL; } cx18_av_write_expect(cx, 0x809, v, v, 0xff); state->audmode = vt->audmode; return 0; } static int cx18_av_s_std(struct v4l2_subdev *sd, v4l2_std_id norm) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); u8 fmt = 0; /* zero is autodetect */ u8 pal_m = 0; if (state->radio == 0 && state->std == norm) return 0; state->radio = 0; state->std = norm; /* First tests should be against specific std */ if (state->std == V4L2_STD_NTSC_M_JP) { fmt = 0x2; } else if (state->std == V4L2_STD_NTSC_443) { fmt = 0x3; } else if (state->std == V4L2_STD_PAL_M) { pal_m = 1; fmt = 0x5; } else if (state->std == V4L2_STD_PAL_N) { fmt = 0x6; } else if (state->std == V4L2_STD_PAL_Nc) { fmt = 0x7; } else if (state->std == V4L2_STD_PAL_60) { fmt = 0x8; } else { /* Then, test against generic ones */ if (state->std & V4L2_STD_NTSC) fmt = 0x1; else if (state->std & V4L2_STD_PAL) fmt = 0x4; else if (state->std & V4L2_STD_SECAM) fmt = 0xc; } CX18_DEBUG_INFO_DEV(sd, "changing video std to fmt %i\n", fmt); /* Follow step 9 of section 3.16 in the cx18_av datasheet. Without this PAL may display a vertical ghosting effect. This happens for example with the Yuan MPC622. */ if (fmt >= 4 && fmt < 8) { /* Set format to NTSC-M */ cx18_av_and_or(cx, 0x400, ~0xf, 1); /* Turn off LCOMB */ cx18_av_and_or(cx, 0x47b, ~6, 0); } cx18_av_and_or(cx, 0x400, ~0x2f, fmt | 0x20); cx18_av_and_or(cx, 0x403, ~0x3, pal_m); cx18_av_std_setup(cx); input_change(cx); return 0; } static int cx18_av_s_radio(struct v4l2_subdev *sd) { struct cx18_av_state *state = to_cx18_av_state(sd); state->radio = 1; return 0; } static int cx18_av_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct cx18 *cx = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: if (ctrl->value < 0 || ctrl->value > 255) { CX18_ERR_DEV(sd, "invalid brightness setting %d\n", ctrl->value); return -ERANGE; } cx18_av_write(cx, 0x414, ctrl->value - 128); break; case V4L2_CID_CONTRAST: if (ctrl->value < 0 || ctrl->value > 127) { CX18_ERR_DEV(sd, "invalid contrast setting %d\n", ctrl->value); return -ERANGE; } cx18_av_write(cx, 0x415, ctrl->value << 1); break; case V4L2_CID_SATURATION: if (ctrl->value < 0 || ctrl->value > 127) { CX18_ERR_DEV(sd, "invalid saturation setting %d\n", ctrl->value); return -ERANGE; } cx18_av_write(cx, 0x420, ctrl->value << 1); cx18_av_write(cx, 0x421, ctrl->value << 1); break; case V4L2_CID_HUE: if (ctrl->value < -128 || ctrl->value > 127) { CX18_ERR_DEV(sd, "invalid hue setting %d\n", ctrl->value); return -ERANGE; } cx18_av_write(cx, 0x422, ctrl->value); break; case V4L2_CID_AUDIO_VOLUME: case V4L2_CID_AUDIO_BASS: case V4L2_CID_AUDIO_TREBLE: case V4L2_CID_AUDIO_BALANCE: case V4L2_CID_AUDIO_MUTE: return cx18_av_audio(cx, VIDIOC_S_CTRL, ctrl); default: return -EINVAL; } return 0; } static int cx18_av_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct cx18 *cx = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: ctrl->value = (s8)cx18_av_read(cx, 0x414) + 128; break; case V4L2_CID_CONTRAST: ctrl->value = cx18_av_read(cx, 0x415) >> 1; break; case V4L2_CID_SATURATION: ctrl->value = cx18_av_read(cx, 0x420) >> 1; break; case V4L2_CID_HUE: ctrl->value = (s8)cx18_av_read(cx, 0x422); break; case V4L2_CID_AUDIO_VOLUME: case V4L2_CID_AUDIO_BASS: case V4L2_CID_AUDIO_TREBLE: case V4L2_CID_AUDIO_BALANCE: case V4L2_CID_AUDIO_MUTE: return cx18_av_audio(cx, VIDIOC_G_CTRL, ctrl); default: return -EINVAL; } return 0; } static int cx18_av_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc) { struct cx18_av_state *state = to_cx18_av_state(sd); switch (qc->id) { case V4L2_CID_BRIGHTNESS: return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128); case V4L2_CID_CONTRAST: case V4L2_CID_SATURATION: return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64); case V4L2_CID_HUE: return v4l2_ctrl_query_fill(qc, -128, 127, 1, 0); default: break; } switch (qc->id) { case V4L2_CID_AUDIO_VOLUME: return v4l2_ctrl_query_fill(qc, 0, 65535, 65535 / 100, state->default_volume); case V4L2_CID_AUDIO_MUTE: return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0); case V4L2_CID_AUDIO_BALANCE: case V4L2_CID_AUDIO_BASS: case V4L2_CID_AUDIO_TREBLE: return v4l2_ctrl_query_fill(qc, 0, 65535, 65535 / 100, 32768); default: return -EINVAL; } return -EINVAL; } static int cx18_av_g_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt) { struct cx18 *cx = v4l2_get_subdevdata(sd); switch (fmt->type) { case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE: return cx18_av_vbi(cx, VIDIOC_G_FMT, fmt); default: return -EINVAL; } return 0; } static int cx18_av_s_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); struct v4l2_pix_format *pix; int HSC, VSC, Vsrc, Hsrc, filter, Vlines; int is_50Hz = !(state->std & V4L2_STD_525_60); switch (fmt->type) { case V4L2_BUF_TYPE_VIDEO_CAPTURE: pix = &(fmt->fmt.pix); Vsrc = (cx18_av_read(cx, 0x476) & 0x3f) << 4; Vsrc |= (cx18_av_read(cx, 0x475) & 0xf0) >> 4; Hsrc = (cx18_av_read(cx, 0x472) & 0x3f) << 4; Hsrc |= (cx18_av_read(cx, 0x471) & 0xf0) >> 4; Vlines = pix->height + (is_50Hz ? 4 : 7); if ((pix->width * 16 < Hsrc) || (Hsrc < pix->width) || (Vlines * 8 < Vsrc) || (Vsrc < Vlines)) { CX18_ERR_DEV(sd, "%dx%d is not a valid size!\n", pix->width, pix->height); return -ERANGE; } HSC = (Hsrc * (1 << 20)) / pix->width - (1 << 20); VSC = (1 << 16) - (Vsrc * (1 << 9) / Vlines - (1 << 9)); VSC &= 0x1fff; if (pix->width >= 385) filter = 0; else if (pix->width > 192) filter = 1; else if (pix->width > 96) filter = 2; else filter = 3; CX18_DEBUG_INFO_DEV(sd, "decoder set size %dx%d -> scale %ux%u\n", pix->width, pix->height, HSC, VSC); /* HSCALE=HSC */ cx18_av_write(cx, 0x418, HSC & 0xff); cx18_av_write(cx, 0x419, (HSC >> 8) & 0xff); cx18_av_write(cx, 0x41a, HSC >> 16); /* VSCALE=VSC */ cx18_av_write(cx, 0x41c, VSC & 0xff); cx18_av_write(cx, 0x41d, VSC >> 8); /* VS_INTRLACE=1 VFILT=filter */ cx18_av_write(cx, 0x41e, 0x8 | filter); break; case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE: return cx18_av_vbi(cx, VIDIOC_S_FMT, fmt); case V4L2_BUF_TYPE_VBI_CAPTURE: return cx18_av_vbi(cx, VIDIOC_S_FMT, fmt); default: return -EINVAL; } return 0; } static int cx18_av_s_stream(struct v4l2_subdev *sd, int enable) { struct cx18 *cx = v4l2_get_subdevdata(sd); CX18_DEBUG_INFO_DEV(sd, "%s output\n", enable ? "enable" : "disable"); if (enable) { cx18_av_write(cx, 0x115, 0x8c); cx18_av_write(cx, 0x116, 0x07); } else { cx18_av_write(cx, 0x115, 0x00); cx18_av_write(cx, 0x116, 0x00); } return 0; } static void log_video_status(struct cx18 *cx) { static const char *const fmt_strs[] = { "0x0", "NTSC-M", "NTSC-J", "NTSC-4.43", "PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60", "0x9", "0xA", "0xB", "SECAM", "0xD", "0xE", "0xF" }; struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd = &state->sd; u8 vidfmt_sel = cx18_av_read(cx, 0x400) & 0xf; u8 gen_stat1 = cx18_av_read(cx, 0x40d); u8 gen_stat2 = cx18_av_read(cx, 0x40e); int vid_input = state->vid_input; CX18_INFO_DEV(sd, "Video signal: %spresent\n", (gen_stat2 & 0x20) ? "" : "not "); CX18_INFO_DEV(sd, "Detected format: %s\n", fmt_strs[gen_stat1 & 0xf]); CX18_INFO_DEV(sd, "Specified standard: %s\n", vidfmt_sel ? fmt_strs[vidfmt_sel] : "automatic detection"); if (vid_input >= CX18_AV_COMPOSITE1 && vid_input <= CX18_AV_COMPOSITE8) { CX18_INFO_DEV(sd, "Specified video input: Composite %d\n", vid_input - CX18_AV_COMPOSITE1 + 1); } else { CX18_INFO_DEV(sd, "Specified video input: " "S-Video (Luma In%d, Chroma In%d)\n", (vid_input & 0xf0) >> 4, (vid_input & 0xf00) >> 8); } CX18_INFO_DEV(sd, "Specified audioclock freq: %d Hz\n", state->audclk_freq); } static void log_audio_status(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd = &state->sd; u8 download_ctl = cx18_av_read(cx, 0x803); u8 mod_det_stat0 = cx18_av_read(cx, 0x804); u8 mod_det_stat1 = cx18_av_read(cx, 0x805); u8 audio_config = cx18_av_read(cx, 0x808); u8 pref_mode = cx18_av_read(cx, 0x809); u8 afc0 = cx18_av_read(cx, 0x80b); u8 mute_ctl = cx18_av_read(cx, 0x8d3); int aud_input = state->aud_input; char *p; switch (mod_det_stat0) { case 0x00: p = "mono"; break; case 0x01: p = "stereo"; break; case 0x02: p = "dual"; break; case 0x04: p = "tri"; break; case 0x10: p = "mono with SAP"; break; case 0x11: p = "stereo with SAP"; break; case 0x12: p = "dual with SAP"; break; case 0x14: p = "tri with SAP"; break; case 0xfe: p = "forced mode"; break; default: p = "not defined"; break; } CX18_INFO_DEV(sd, "Detected audio mode: %s\n", p); switch (mod_det_stat1) { case 0x00: p = "not defined"; break; case 0x01: p = "EIAJ"; break; case 0x02: p = "A2-M"; break; case 0x03: p = "A2-BG"; break; case 0x04: p = "A2-DK1"; break; case 0x05: p = "A2-DK2"; break; case 0x06: p = "A2-DK3"; break; case 0x07: p = "A1 (6.0 MHz FM Mono)"; break; case 0x08: p = "AM-L"; break; case 0x09: p = "NICAM-BG"; break; case 0x0a: p = "NICAM-DK"; break; case 0x0b: p = "NICAM-I"; break; case 0x0c: p = "NICAM-L"; break; case 0x0d: p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; break; case 0x0e: p = "IF FM Radio"; break; case 0x0f: p = "BTSC"; break; case 0x10: p = "detected chrominance"; break; case 0xfd: p = "unknown audio standard"; break; case 0xfe: p = "forced audio standard"; break; case 0xff: p = "no detected audio standard"; break; default: p = "not defined"; break; } CX18_INFO_DEV(sd, "Detected audio standard: %s\n", p); CX18_INFO_DEV(sd, "Audio muted: %s\n", (mute_ctl & 0x2) ? "yes" : "no"); CX18_INFO_DEV(sd, "Audio microcontroller: %s\n", (download_ctl & 0x10) ? "running" : "stopped"); switch (audio_config >> 4) { case 0x00: p = "undefined"; break; case 0x01: p = "BTSC"; break; case 0x02: p = "EIAJ"; break; case 0x03: p = "A2-M"; break; case 0x04: p = "A2-BG"; break; case 0x05: p = "A2-DK1"; break; case 0x06: p = "A2-DK2"; break; case 0x07: p = "A2-DK3"; break; case 0x08: p = "A1 (6.0 MHz FM Mono)"; break; case 0x09: p = "AM-L"; break; case 0x0a: p = "NICAM-BG"; break; case 0x0b: p = "NICAM-DK"; break; case 0x0c: p = "NICAM-I"; break; case 0x0d: p = "NICAM-L"; break; case 0x0e: p = "FM radio"; break; case 0x0f: p = "automatic detection"; break; default: p = "undefined"; break; } CX18_INFO_DEV(sd, "Configured audio standard: %s\n", p); if ((audio_config >> 4) < 0xF) { switch (audio_config & 0xF) { case 0x00: p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; break; case 0x01: p = "MONO2 (LANGUAGE B)"; break; case 0x02: p = "MONO3 (STEREO forced MONO)"; break; case 0x03: p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; break; case 0x04: p = "STEREO"; break; case 0x05: p = "DUAL1 (AC)"; break; case 0x06: p = "DUAL2 (BC)"; break; case 0x07: p = "DUAL3 (AB)"; break; default: p = "undefined"; } CX18_INFO_DEV(sd, "Configured audio mode: %s\n", p); } else { switch (audio_config & 0xF) { case 0x00: p = "BG"; break; case 0x01: p = "DK1"; break; case 0x02: p = "DK2"; break; case 0x03: p = "DK3"; break; case 0x04: p = "I"; break; case 0x05: p = "L"; break; case 0x06: p = "BTSC"; break; case 0x07: p = "EIAJ"; break; case 0x08: p = "A2-M"; break; case 0x09: p = "FM Radio (4.5 MHz)"; break; case 0x0a: p = "FM Radio (5.5 MHz)"; break; case 0x0b: p = "S-Video"; break; case 0x0f: p = "automatic standard and mode detection"; break; default: p = "undefined"; break; } CX18_INFO_DEV(sd, "Configured audio system: %s\n", p); } if (aud_input) CX18_INFO_DEV(sd, "Specified audio input: Tuner (In%d)\n", aud_input); else CX18_INFO_DEV(sd, "Specified audio input: External\n"); switch (pref_mode & 0xf) { case 0: p = "mono/language A"; break; case 1: p = "language B"; break; case 2: p = "language C"; break; case 3: p = "analog fallback"; break; case 4: p = "stereo"; break; case 5: p = "language AC"; break; case 6: p = "language BC"; break; case 7: p = "language AB"; break; default: p = "undefined"; break; } CX18_INFO_DEV(sd, "Preferred audio mode: %s\n", p); if ((audio_config & 0xf) == 0xf) { switch ((afc0 >> 3) & 0x1) { case 0: p = "system DK"; break; case 1: p = "system L"; break; } CX18_INFO_DEV(sd, "Selected 65 MHz format: %s\n", p); switch (afc0 & 0x7) { case 0: p = "Chroma"; break; case 1: p = "BTSC"; break; case 2: p = "EIAJ"; break; case 3: p = "A2-M"; break; case 4: p = "autodetect"; break; default: p = "undefined"; break; } CX18_INFO_DEV(sd, "Selected 45 MHz format: %s\n", p); } } static int cx18_av_log_status(struct v4l2_subdev *sd) { struct cx18 *cx = v4l2_get_subdevdata(sd); log_video_status(cx); log_audio_status(cx); return 0; } static inline int cx18_av_dbg_match(const struct v4l2_dbg_match *match) { return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 1; } static int cx18_av_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct cx18_av_state *state = to_cx18_av_state(sd); if (cx18_av_dbg_match(&chip->match)) { chip->ident = state->id; chip->revision = state->rev; } return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int cx18_av_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct cx18 *cx = v4l2_get_subdevdata(sd); if (!cx18_av_dbg_match(®->match)) return -EINVAL; if ((reg->reg & 0x3) != 0) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; reg->size = 4; reg->val = cx18_av_read4(cx, reg->reg & 0x00000ffc); return 0; } static int cx18_av_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct cx18 *cx = v4l2_get_subdevdata(sd); if (!cx18_av_dbg_match(®->match)) return -EINVAL; if ((reg->reg & 0x3) != 0) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; cx18_av_write4(cx, reg->reg & 0x00000ffc, reg->val); return 0; } #endif static const struct v4l2_subdev_core_ops cx18_av_general_ops = { .g_chip_ident = cx18_av_g_chip_ident, .log_status = cx18_av_log_status, .init = cx18_av_init, .reset = cx18_av_reset, .queryctrl = cx18_av_queryctrl, .g_ctrl = cx18_av_g_ctrl, .s_ctrl = cx18_av_s_ctrl, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = cx18_av_g_register, .s_register = cx18_av_s_register, #endif }; static const struct v4l2_subdev_tuner_ops cx18_av_tuner_ops = { .s_radio = cx18_av_s_radio, .s_frequency = cx18_av_s_frequency, .g_tuner = cx18_av_g_tuner, .s_tuner = cx18_av_s_tuner, .s_std = cx18_av_s_std, }; static const struct v4l2_subdev_audio_ops cx18_av_audio_ops = { .s_clock_freq = cx18_av_s_clock_freq, .s_routing = cx18_av_s_audio_routing, }; static const struct v4l2_subdev_video_ops cx18_av_video_ops = { .s_routing = cx18_av_s_video_routing, .decode_vbi_line = cx18_av_decode_vbi_line, .s_stream = cx18_av_s_stream, .g_fmt = cx18_av_g_fmt, .s_fmt = cx18_av_s_fmt, }; static const struct v4l2_subdev_ops cx18_av_ops = { .core = &cx18_av_general_ops, .tuner = &cx18_av_tuner_ops, .audio = &cx18_av_audio_ops, .video = &cx18_av_video_ops, }; int cx18_av_probe(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd; state->rev = cx18_av_read4(cx, CXADEC_CHIP_CTRL) & 0xffff; state->id = ((state->rev >> 4) == CXADEC_CHIP_TYPE_MAKO) ? V4L2_IDENT_CX23418_843 : V4L2_IDENT_UNKNOWN; state->vid_input = CX18_AV_COMPOSITE7; state->aud_input = CX18_AV_AUDIO8; state->audclk_freq = 48000; state->audmode = V4L2_TUNER_MODE_LANG1; state->slicer_line_delay = 0; state->slicer_line_offset = (10 + state->slicer_line_delay - 2); sd = &state->sd; v4l2_subdev_init(sd, &cx18_av_ops); v4l2_set_subdevdata(sd, cx); snprintf(sd->name, sizeof(sd->name), "%s %03x", cx->v4l2_dev.name, (state->rev >> 4)); sd->grp_id = CX18_HW_418_AV; return v4l2_device_register_subdev(&cx->v4l2_dev, sd); }