/* * Driver for the mt9m111 sensor * * Copyright (C) 2008 Erik Andrén * Copyright (C) 2007 Ilyes Gouta. Based on the m5603x Linux Driver Project. * Copyright (C) 2005 m5603x Linux Driver Project * * Portions of code to USB interface and ALi driver software, * Copyright (c) 2006 Willem Duinker * v4l2 interface modeled after the V4L2 driver * for SN9C10x PC Camera Controllers * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. * */ #include "m5602_mt9m111.h" static int mt9m111_set_vflip(struct gspca_dev *gspca_dev, __s32 val); static int mt9m111_get_vflip(struct gspca_dev *gspca_dev, __s32 *val); static int mt9m111_get_hflip(struct gspca_dev *gspca_dev, __s32 *val); static int mt9m111_set_hflip(struct gspca_dev *gspca_dev, __s32 val); static int mt9m111_get_gain(struct gspca_dev *gspca_dev, __s32 *val); static int mt9m111_set_gain(struct gspca_dev *gspca_dev, __s32 val); static int mt9m111_set_auto_white_balance(struct gspca_dev *gspca_dev, __s32 val); static int mt9m111_get_auto_white_balance(struct gspca_dev *gspca_dev, __s32 *val); static int mt9m111_get_green_balance(struct gspca_dev *gspca_dev, __s32 *val); static int mt9m111_set_green_balance(struct gspca_dev *gspca_dev, __s32 val); static int mt9m111_get_blue_balance(struct gspca_dev *gspca_dev, __s32 *val); static int mt9m111_set_blue_balance(struct gspca_dev *gspca_dev, __s32 val); static int mt9m111_get_red_balance(struct gspca_dev *gspca_dev, __s32 *val); static int mt9m111_set_red_balance(struct gspca_dev *gspca_dev, __s32 val); static struct v4l2_pix_format mt9m111_modes[] = { { 320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 320 * 240, .bytesperline = 320, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0 }, { 640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 640 * 480, .bytesperline = 640, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0 } }; const static struct ctrl mt9m111_ctrls[] = { #define VFLIP_IDX 0 { { .id = V4L2_CID_VFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "vertical flip", .minimum = 0, .maximum = 1, .step = 1, .default_value = 1 }, .set = mt9m111_set_vflip, .get = mt9m111_get_vflip }, #define HFLIP_IDX 1 { { .id = V4L2_CID_HFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "horizontal flip", .minimum = 0, .maximum = 1, .step = 1, .default_value = 1 }, .set = mt9m111_set_hflip, .get = mt9m111_get_hflip }, #define GAIN_IDX 2 { { .id = V4L2_CID_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "gain", .minimum = 0, .maximum = (INITIAL_MAX_GAIN - 1) * 2 * 2 * 2, .step = 1, .default_value = DEFAULT_GAIN, .flags = V4L2_CTRL_FLAG_SLIDER }, .set = mt9m111_set_gain, .get = mt9m111_get_gain }, #define AUTO_WHITE_BALANCE_IDX 3 { { .id = V4L2_CID_AUTO_WHITE_BALANCE, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "auto white balance", .minimum = 0, .maximum = 1, .step = 1, .default_value = 0, }, .set = mt9m111_set_auto_white_balance, .get = mt9m111_get_auto_white_balance }, #define GREEN_BALANCE_IDX 4 { { .id = M5602_V4L2_CID_GREEN_BALANCE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "green balance", .minimum = 0x00, .maximum = 0x7ff, .step = 0x1, .default_value = MT9M111_GREEN_GAIN_DEFAULT, .flags = V4L2_CTRL_FLAG_SLIDER }, .set = mt9m111_set_green_balance, .get = mt9m111_get_green_balance }, #define BLUE_BALANCE_IDX 5 { { .id = V4L2_CID_BLUE_BALANCE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "blue balance", .minimum = 0x00, .maximum = 0x7ff, .step = 0x1, .default_value = MT9M111_BLUE_GAIN_DEFAULT, .flags = V4L2_CTRL_FLAG_SLIDER }, .set = mt9m111_set_blue_balance, .get = mt9m111_get_blue_balance }, #define RED_BALANCE_IDX 5 { { .id = V4L2_CID_RED_BALANCE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "red balance", .minimum = 0x00, .maximum = 0x7ff, .step = 0x1, .default_value = MT9M111_RED_GAIN_DEFAULT, .flags = V4L2_CTRL_FLAG_SLIDER }, .set = mt9m111_set_red_balance, .get = mt9m111_get_red_balance }, }; static void mt9m111_dump_registers(struct sd *sd); int mt9m111_probe(struct sd *sd) { u8 data[2] = {0x00, 0x00}; int i; s32 *sensor_settings; if (force_sensor) { if (force_sensor == MT9M111_SENSOR) { info("Forcing a %s sensor", mt9m111.name); goto sensor_found; } /* If we want to force another sensor, don't try to probe this * one */ return -ENODEV; } info("Probing for a mt9m111 sensor"); /* Do the preinit */ for (i = 0; i < ARRAY_SIZE(preinit_mt9m111); i++) { if (preinit_mt9m111[i][0] == BRIDGE) { m5602_write_bridge(sd, preinit_mt9m111[i][1], preinit_mt9m111[i][2]); } else { data[0] = preinit_mt9m111[i][2]; data[1] = preinit_mt9m111[i][3]; m5602_write_sensor(sd, preinit_mt9m111[i][1], data, 2); } } if (m5602_read_sensor(sd, MT9M111_SC_CHIPVER, data, 2)) return -ENODEV; if ((data[0] == 0x14) && (data[1] == 0x3a)) { info("Detected a mt9m111 sensor"); goto sensor_found; } return -ENODEV; sensor_found: sensor_settings = kmalloc(ARRAY_SIZE(mt9m111_ctrls) * sizeof(s32), GFP_KERNEL); if (!sensor_settings) return -ENOMEM; sd->gspca_dev.cam.cam_mode = mt9m111_modes; sd->gspca_dev.cam.nmodes = ARRAY_SIZE(mt9m111_modes); sd->desc->ctrls = mt9m111_ctrls; sd->desc->nctrls = ARRAY_SIZE(mt9m111_ctrls); for (i = 0; i < ARRAY_SIZE(mt9m111_ctrls); i++) sensor_settings[i] = mt9m111_ctrls[i].qctrl.default_value; sd->sensor_priv = sensor_settings; return 0; } int mt9m111_init(struct sd *sd) { int i, err = 0; s32 *sensor_settings = sd->sensor_priv; /* Init the sensor */ for (i = 0; i < ARRAY_SIZE(init_mt9m111) && !err; i++) { u8 data[2]; if (init_mt9m111[i][0] == BRIDGE) { err = m5602_write_bridge(sd, init_mt9m111[i][1], init_mt9m111[i][2]); } else { data[0] = init_mt9m111[i][2]; data[1] = init_mt9m111[i][3]; err = m5602_write_sensor(sd, init_mt9m111[i][1], data, 2); } } if (dump_sensor) mt9m111_dump_registers(sd); err = mt9m111_set_vflip(&sd->gspca_dev, sensor_settings[VFLIP_IDX]); if (err < 0) return err; err = mt9m111_set_hflip(&sd->gspca_dev, sensor_settings[HFLIP_IDX]); if (err < 0) return err; err = mt9m111_set_green_balance(&sd->gspca_dev, sensor_settings[GREEN_BALANCE_IDX]); if (err < 0) return err; err = mt9m111_set_blue_balance(&sd->gspca_dev, sensor_settings[BLUE_BALANCE_IDX]); if (err < 0) return err; err = mt9m111_set_red_balance(&sd->gspca_dev, sensor_settings[RED_BALANCE_IDX]); if (err < 0) return err; return mt9m111_set_gain(&sd->gspca_dev, sensor_settings[GAIN_IDX]); } int mt9m111_start(struct sd *sd) { int i, err = 0; u8 data[2]; struct cam *cam = &sd->gspca_dev.cam; s32 *sensor_settings = sd->sensor_priv; int width = cam->cam_mode[sd->gspca_dev.curr_mode].width - 1; int height = cam->cam_mode[sd->gspca_dev.curr_mode].height; for (i = 0; i < ARRAY_SIZE(start_mt9m111) && !err; i++) { if (start_mt9m111[i][0] == BRIDGE) { err = m5602_write_bridge(sd, start_mt9m111[i][1], start_mt9m111[i][2]); } else { data[0] = start_mt9m111[i][2]; data[1] = start_mt9m111[i][3]; err = m5602_write_sensor(sd, start_mt9m111[i][1], data, 2); } } if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (height >> 8) & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (height & 0xff)); if (err < 0) return err; for (i = 0; i < 2 && !err; i++) err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, 0); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_SIG_INI, 0); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_SIG_INI, 2); if (err < 0) return err; for (i = 0; i < 2 && !err; i++) err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, 0); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, (width >> 8) & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, width & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_SIG_INI, 0); if (err < 0) return err; switch (width) { case 640: PDEBUG(D_V4L2, "Configuring camera for VGA mode"); data[0] = MT9M111_RMB_OVER_SIZED; data[1] = MT9M111_RMB_ROW_SKIP_2X | MT9M111_RMB_COLUMN_SKIP_2X | (sensor_settings[VFLIP_IDX] << 0) | (sensor_settings[HFLIP_IDX] << 1); err = m5602_write_sensor(sd, MT9M111_SC_R_MODE_CONTEXT_B, data, 2); break; case 320: PDEBUG(D_V4L2, "Configuring camera for QVGA mode"); data[0] = MT9M111_RMB_OVER_SIZED; data[1] = MT9M111_RMB_ROW_SKIP_4X | MT9M111_RMB_COLUMN_SKIP_4X | (sensor_settings[VFLIP_IDX] << 0) | (sensor_settings[HFLIP_IDX] << 1); err = m5602_write_sensor(sd, MT9M111_SC_R_MODE_CONTEXT_B, data, 2); break; } return err; } void mt9m111_disconnect(struct sd *sd) { sd->sensor = NULL; kfree(sd->sensor_priv); } static int mt9m111_get_vflip(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[VFLIP_IDX]; PDEBUG(D_V4L2, "Read vertical flip %d", *val); return 0; } static int mt9m111_set_vflip(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 data[2] = {0x00, 0x00}; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Set vertical flip to %d", val); sensor_settings[VFLIP_IDX] = val; /* Set the correct page map */ err = m5602_write_sensor(sd, MT9M111_PAGE_MAP, data, 2); if (err < 0) return err; err = m5602_read_sensor(sd, MT9M111_SC_R_MODE_CONTEXT_B, data, 2); if (err < 0) return err; data[1] = (data[1] & 0xfe) | val; err = m5602_write_sensor(sd, MT9M111_SC_R_MODE_CONTEXT_B, data, 2); return err; } static int mt9m111_get_hflip(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[HFLIP_IDX]; PDEBUG(D_V4L2, "Read horizontal flip %d", *val); return 0; } static int mt9m111_set_hflip(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 data[2] = {0x00, 0x00}; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Set horizontal flip to %d", val); sensor_settings[HFLIP_IDX] = val; /* Set the correct page map */ err = m5602_write_sensor(sd, MT9M111_PAGE_MAP, data, 2); if (err < 0) return err; err = m5602_read_sensor(sd, MT9M111_SC_R_MODE_CONTEXT_B, data, 2); if (err < 0) return err; data[1] = (data[1] & 0xfd) | ((val << 1) & 0x02); err = m5602_write_sensor(sd, MT9M111_SC_R_MODE_CONTEXT_B, data, 2); return err; } static int mt9m111_get_gain(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[GAIN_IDX]; PDEBUG(D_V4L2, "Read gain %d", *val); return 0; } static int mt9m111_set_auto_white_balance(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; int err; u8 data[2]; err = m5602_read_sensor(sd, MT9M111_CP_OPERATING_MODE_CTL, data, 2); if (err < 0) return err; sensor_settings[AUTO_WHITE_BALANCE_IDX] = val & 0x01; data[1] = ((data[1] & 0xfd) | ((val & 0x01) << 1)); err = m5602_write_sensor(sd, MT9M111_CP_OPERATING_MODE_CTL, data, 2); PDEBUG(D_V4L2, "Set auto white balance %d", val); return err; } static int mt9m111_get_auto_white_balance(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[AUTO_WHITE_BALANCE_IDX]; PDEBUG(D_V4L2, "Read auto white balance %d", *val); return 0; } static int mt9m111_set_gain(struct gspca_dev *gspca_dev, __s32 val) { int err, tmp; u8 data[2] = {0x00, 0x00}; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; sensor_settings[GAIN_IDX] = val; /* Set the correct page map */ err = m5602_write_sensor(sd, MT9M111_PAGE_MAP, data, 2); if (err < 0) return err; if (val >= INITIAL_MAX_GAIN * 2 * 2 * 2) return -EINVAL; if ((val >= INITIAL_MAX_GAIN * 2 * 2) && (val < (INITIAL_MAX_GAIN - 1) * 2 * 2 * 2)) tmp = (1 << 10) | (val << 9) | (val << 8) | (val / 8); else if ((val >= INITIAL_MAX_GAIN * 2) && (val < INITIAL_MAX_GAIN * 2 * 2)) tmp = (1 << 9) | (1 << 8) | (val / 4); else if ((val >= INITIAL_MAX_GAIN) && (val < INITIAL_MAX_GAIN * 2)) tmp = (1 << 8) | (val / 2); else tmp = val; data[1] = (tmp & 0xff); data[0] = (tmp & 0xff00) >> 8; PDEBUG(D_V4L2, "tmp=%d, data[1]=%d, data[0]=%d", tmp, data[1], data[0]); err = m5602_write_sensor(sd, MT9M111_SC_GLOBAL_GAIN, data, 2); return err; } static int mt9m111_set_green_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 data[2]; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; sensor_settings[GREEN_BALANCE_IDX] = val; data[1] = (val & 0xff); data[0] = (val & 0xff00) >> 8; PDEBUG(D_V4L2, "Set green balance %d", val); err = m5602_write_sensor(sd, MT9M111_SC_GREEN_1_GAIN, data, 2); if (err < 0) return err; return m5602_write_sensor(sd, MT9M111_SC_GREEN_2_GAIN, data, 2); } static int mt9m111_get_green_balance(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[GREEN_BALANCE_IDX]; PDEBUG(D_V4L2, "Read green balance %d", *val); return 0; } static int mt9m111_set_blue_balance(struct gspca_dev *gspca_dev, __s32 val) { u8 data[2]; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; sensor_settings[BLUE_BALANCE_IDX] = val; data[1] = (val & 0xff); data[0] = (val & 0xff00) >> 8; PDEBUG(D_V4L2, "Set blue balance %d", val); return m5602_write_sensor(sd, MT9M111_SC_BLUE_GAIN, data, 2); } static int mt9m111_get_blue_balance(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[BLUE_BALANCE_IDX]; PDEBUG(D_V4L2, "Read blue balance %d", *val); return 0; } static int mt9m111_set_red_balance(struct gspca_dev *gspca_dev, __s32 val) { u8 data[2]; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; sensor_settings[RED_BALANCE_IDX] = val; data[1] = (val & 0xff); data[0] = (val & 0xff00) >> 8; PDEBUG(D_V4L2, "Set red balance %d", val); return m5602_write_sensor(sd, MT9M111_SC_RED_GAIN, data, 2); } static int mt9m111_get_red_balance(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[RED_BALANCE_IDX]; PDEBUG(D_V4L2, "Read red balance %d", *val); return 0; } static void mt9m111_dump_registers(struct sd *sd) { u8 address, value[2] = {0x00, 0x00}; info("Dumping the mt9m111 register state"); info("Dumping the mt9m111 sensor core registers"); value[1] = MT9M111_SENSOR_CORE; m5602_write_sensor(sd, MT9M111_PAGE_MAP, value, 2); for (address = 0; address < 0xff; address++) { m5602_read_sensor(sd, address, value, 2); info("register 0x%x contains 0x%x%x", address, value[0], value[1]); } info("Dumping the mt9m111 color pipeline registers"); value[1] = MT9M111_COLORPIPE; m5602_write_sensor(sd, MT9M111_PAGE_MAP, value, 2); for (address = 0; address < 0xff; address++) { m5602_read_sensor(sd, address, value, 2); info("register 0x%x contains 0x%x%x", address, value[0], value[1]); } info("Dumping the mt9m111 camera control registers"); value[1] = MT9M111_CAMERA_CONTROL; m5602_write_sensor(sd, MT9M111_PAGE_MAP, value, 2); for (address = 0; address < 0xff; address++) { m5602_read_sensor(sd, address, value, 2); info("register 0x%x contains 0x%x%x", address, value[0], value[1]); } info("mt9m111 register state dump complete"); }