/* * Copyright (c) 2001 Jean-Fredric Clere, Nikolas Zimmermann, Georg Acher * Mark Cave-Ayland, Carlo E Prelz, Dick Streefland * Copyright (c) 2002, 2003 Tuukka Toivonen * Copyright (c) 2008 Erik Andrén * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * P/N 861037: Sensor HDCS1000 ASIC STV0600 * P/N 861050-0010: Sensor HDCS1000 ASIC STV0600 * P/N 861050-0020: Sensor Photobit PB100 ASIC STV0600-1 - QuickCam Express * P/N 861055: Sensor ST VV6410 ASIC STV0610 - LEGO cam * P/N 861075-0040: Sensor HDCS1000 ASIC * P/N 961179-0700: Sensor ST VV6410 ASIC STV0602 - Dexxa WebCam USB * P/N 861040-0000: Sensor ST VV6410 ASIC STV0610 - QuickCam Web */ /* * The spec file for the PB-0100 suggests the following for best quality * images after the sensor has been reset : * * PB_ADCGAINL = R60 = 0x03 (3 dec) : sets low reference of ADC to produce good black level * PB_PREADCTRL = R32 = 0x1400 (5120 dec) : Enables global gain changes through R53 * PB_ADCMINGAIN = R52 = 0x10 (16 dec) : Sets the minimum gain for auto-exposure * PB_ADCGLOBALGAIN = R53 = 0x10 (16 dec) : Sets the global gain * PB_EXPGAIN = R14 = 0x11 (17 dec) : Sets the auto-exposure value * PB_UPDATEINT = R23 = 0x02 (2 dec) : Sets the speed on auto-exposure routine * PB_CFILLIN = R5 = 0x0E (14 dec) : Sets the frame rate */ #include "stv06xx_pb0100.h" static const struct ctrl pb0100_ctrl[] = { #define GAIN_IDX 0 { { .id = V4L2_CID_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Gain", .minimum = 0, .maximum = 255, .step = 1, .default_value = 128 }, .set = pb0100_set_gain, .get = pb0100_get_gain }, #define RED_BALANCE_IDX 1 { { .id = V4L2_CID_RED_BALANCE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Red Balance", .minimum = -255, .maximum = 255, .step = 1, .default_value = 0 }, .set = pb0100_set_red_balance, .get = pb0100_get_red_balance }, #define BLUE_BALANCE_IDX 2 { { .id = V4L2_CID_BLUE_BALANCE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Blue Balance", .minimum = -255, .maximum = 255, .step = 1, .default_value = 0 }, .set = pb0100_set_blue_balance, .get = pb0100_get_blue_balance }, #define EXPOSURE_IDX 3 { { .id = V4L2_CID_EXPOSURE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Exposure", .minimum = 0, .maximum = 511, .step = 1, .default_value = 12 }, .set = pb0100_set_exposure, .get = pb0100_get_exposure }, #define AUTOGAIN_IDX 4 { { .id = V4L2_CID_AUTOGAIN, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Automatic Gain and Exposure", .minimum = 0, .maximum = 1, .step = 1, .default_value = 1 }, .set = pb0100_set_autogain, .get = pb0100_get_autogain }, #define AUTOGAIN_TARGET_IDX 5 { { .id = V4L2_CTRL_CLASS_USER + 0x1000, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Automatic Gain Target", .minimum = 0, .maximum = 255, .step = 1, .default_value = 128 }, .set = pb0100_set_autogain_target, .get = pb0100_get_autogain_target }, #define NATURAL_IDX 6 { { .id = V4L2_CTRL_CLASS_USER + 0x1001, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Natural Light Source", .minimum = 0, .maximum = 1, .step = 1, .default_value = 1 }, .set = pb0100_set_natural, .get = pb0100_get_natural } }; static struct v4l2_pix_format pb0100_mode[] = { /* low res / subsample modes disabled as they are only half res horizontal, halving the vertical resolution does not seem to work */ #if 0 { 160, 120, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .sizeimage = 160 * 120 * 2, .bytesperline = 160, .colorspace = V4L2_COLORSPACE_SRGB, .priv = PB0100_CROP_TO_VGA | PB0100_SUBSAMPLE }, { 176, 144, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .sizeimage = 176 * 144 * 2, .bytesperline = 176, .colorspace = V4L2_COLORSPACE_SRGB, .priv = PB0100_SUBSAMPLE }, #endif { 320, 240, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .sizeimage = 320 * 240, .bytesperline = 320, .colorspace = V4L2_COLORSPACE_SRGB, .priv = PB0100_CROP_TO_VGA }, { 352, 288, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .sizeimage = 352 * 288, .bytesperline = 352, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0 } }; static int pb0100_probe(struct sd *sd) { u16 sensor; int i, err; s32 *sensor_settings; err = stv06xx_read_sensor(sd, PB_IDENT, &sensor); if (err < 0) return -ENODEV; if ((sensor >> 8) == 0x64) { sensor_settings = kmalloc( ARRAY_SIZE(pb0100_ctrl) * sizeof(s32), GFP_KERNEL); if (!sensor_settings) return -ENOMEM; info("Photobit pb0100 sensor detected"); sd->gspca_dev.cam.cam_mode = pb0100_mode; sd->gspca_dev.cam.nmodes = ARRAY_SIZE(pb0100_mode); sd->desc.ctrls = pb0100_ctrl; sd->desc.nctrls = ARRAY_SIZE(pb0100_ctrl); for (i = 0; i < sd->desc.nctrls; i++) sensor_settings[i] = pb0100_ctrl[i].qctrl.default_value; sd->sensor_priv = sensor_settings; return 0; } return -ENODEV; } static int pb0100_start(struct sd *sd) { int err; struct cam *cam = &sd->gspca_dev.cam; s32 *sensor_settings = sd->sensor_priv; u32 mode = cam->cam_mode[sd->gspca_dev.curr_mode].priv; /* Setup sensor window */ if (mode & PB0100_CROP_TO_VGA) { stv06xx_write_sensor(sd, PB_RSTART, 30); stv06xx_write_sensor(sd, PB_CSTART, 20); stv06xx_write_sensor(sd, PB_RWSIZE, 240 - 1); stv06xx_write_sensor(sd, PB_CWSIZE, 320 - 1); } else { stv06xx_write_sensor(sd, PB_RSTART, 8); stv06xx_write_sensor(sd, PB_CSTART, 4); stv06xx_write_sensor(sd, PB_RWSIZE, 288 - 1); stv06xx_write_sensor(sd, PB_CWSIZE, 352 - 1); } if (mode & PB0100_SUBSAMPLE) { stv06xx_write_bridge(sd, STV_Y_CTRL, 0x02); /* Wrong, FIXME */ stv06xx_write_bridge(sd, STV_X_CTRL, 0x06); stv06xx_write_bridge(sd, STV_SCAN_RATE, 0x10); } else { stv06xx_write_bridge(sd, STV_Y_CTRL, 0x01); stv06xx_write_bridge(sd, STV_X_CTRL, 0x0a); /* larger -> slower */ stv06xx_write_bridge(sd, STV_SCAN_RATE, 0x20); } /* set_gain also sets red and blue balance */ pb0100_set_gain(&sd->gspca_dev, sensor_settings[GAIN_IDX]); pb0100_set_exposure(&sd->gspca_dev, sensor_settings[EXPOSURE_IDX]); pb0100_set_autogain_target(&sd->gspca_dev, sensor_settings[AUTOGAIN_TARGET_IDX]); pb0100_set_autogain(&sd->gspca_dev, sensor_settings[AUTOGAIN_IDX]); err = stv06xx_write_sensor(sd, PB_CONTROL, BIT(5)|BIT(3)|BIT(1)); PDEBUG(D_STREAM, "Started stream, status: %d", err); return (err < 0) ? err : 0; } static int pb0100_stop(struct sd *sd) { int err; err = stv06xx_write_sensor(sd, PB_ABORTFRAME, 1); if (err < 0) goto out; /* Set bit 1 to zero */ err = stv06xx_write_sensor(sd, PB_CONTROL, BIT(5)|BIT(3)); PDEBUG(D_STREAM, "Halting stream"); out: return (err < 0) ? err : 0; } static void pb0100_disconnect(struct sd *sd) { sd->sensor = NULL; kfree(sd->sensor_priv); } /* FIXME: Sort the init commands out and put them into tables, this is only for getting the camera to work */ /* FIXME: No error handling for now, add this once the init has been converted to proper tables */ static int pb0100_init(struct sd *sd) { stv06xx_write_bridge(sd, STV_REG00, 1); stv06xx_write_bridge(sd, STV_SCAN_RATE, 0); /* Reset sensor */ stv06xx_write_sensor(sd, PB_RESET, 1); stv06xx_write_sensor(sd, PB_RESET, 0); /* Disable chip */ stv06xx_write_sensor(sd, PB_CONTROL, BIT(5)|BIT(3)); /* Gain stuff...*/ stv06xx_write_sensor(sd, PB_PREADCTRL, BIT(12)|BIT(10)|BIT(6)); stv06xx_write_sensor(sd, PB_ADCGLOBALGAIN, 12); /* Set up auto-exposure */ /* ADC VREF_HI new setting for a transition from the Expose1 to the Expose2 setting */ stv06xx_write_sensor(sd, PB_R28, 12); /* gain max for autoexposure */ stv06xx_write_sensor(sd, PB_ADCMAXGAIN, 180); /* gain min for autoexposure */ stv06xx_write_sensor(sd, PB_ADCMINGAIN, 12); /* Maximum frame integration time (programmed into R8) allowed for auto-exposure routine */ stv06xx_write_sensor(sd, PB_R54, 3); /* Minimum frame integration time (programmed into R8) allowed for auto-exposure routine */ stv06xx_write_sensor(sd, PB_R55, 0); stv06xx_write_sensor(sd, PB_UPDATEINT, 1); /* R15 Expose0 (maximum that auto-exposure may use) */ stv06xx_write_sensor(sd, PB_R15, 800); /* R17 Expose2 (minimum that auto-exposure may use) */ stv06xx_write_sensor(sd, PB_R17, 10); stv06xx_write_sensor(sd, PB_EXPGAIN, 0); /* 0x14 */ stv06xx_write_sensor(sd, PB_VOFFSET, 0); /* 0x0D */ stv06xx_write_sensor(sd, PB_ADCGAINH, 11); /* Set black level (important!) */ stv06xx_write_sensor(sd, PB_ADCGAINL, 0); /* ??? */ stv06xx_write_bridge(sd, STV_REG00, 0x11); stv06xx_write_bridge(sd, STV_REG03, 0x45); stv06xx_write_bridge(sd, STV_REG04, 0x07); /* ISO-Size (0x27b: 635... why? - HDCS uses 847) */ stv06xx_write_bridge(sd, STV_ISO_SIZE_L, 847); /* Scan/timing for the sensor */ stv06xx_write_sensor(sd, PB_ROWSPEED, BIT(4)|BIT(3)|BIT(1)); stv06xx_write_sensor(sd, PB_CFILLIN, 14); stv06xx_write_sensor(sd, PB_VBL, 0); stv06xx_write_sensor(sd, PB_FINTTIME, 0); stv06xx_write_sensor(sd, PB_RINTTIME, 123); stv06xx_write_bridge(sd, STV_REG01, 0xc2); stv06xx_write_bridge(sd, STV_REG02, 0xb0); return 0; } static int pb0100_dump(struct sd *sd) { return 0; } static int pb0100_get_gain(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[GAIN_IDX]; return 0; } static int pb0100_set_gain(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; if (sensor_settings[AUTOGAIN_IDX]) return -EBUSY; sensor_settings[GAIN_IDX] = val; err = stv06xx_write_sensor(sd, PB_G1GAIN, val); if (!err) err = stv06xx_write_sensor(sd, PB_G2GAIN, val); PDEBUG(D_V4L2, "Set green gain to %d, status: %d", val, err); if (!err) err = pb0100_set_red_balance(gspca_dev, sensor_settings[RED_BALANCE_IDX]); if (!err) err = pb0100_set_blue_balance(gspca_dev, sensor_settings[BLUE_BALANCE_IDX]); return err; } static int pb0100_get_red_balance(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[RED_BALANCE_IDX]; return 0; } static int pb0100_set_red_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; if (sensor_settings[AUTOGAIN_IDX]) return -EBUSY; sensor_settings[RED_BALANCE_IDX] = val; val += sensor_settings[GAIN_IDX]; if (val < 0) val = 0; else if (val > 255) val = 255; err = stv06xx_write_sensor(sd, PB_RGAIN, val); PDEBUG(D_V4L2, "Set red gain to %d, status: %d", val, err); return err; } static int pb0100_get_blue_balance(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[BLUE_BALANCE_IDX]; return 0; } static int pb0100_set_blue_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; if (sensor_settings[AUTOGAIN_IDX]) return -EBUSY; sensor_settings[BLUE_BALANCE_IDX] = val; val += sensor_settings[GAIN_IDX]; if (val < 0) val = 0; else if (val > 255) val = 255; err = stv06xx_write_sensor(sd, PB_BGAIN, val); PDEBUG(D_V4L2, "Set blue gain to %d, status: %d", val, err); return err; } static int pb0100_get_exposure(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[EXPOSURE_IDX]; return 0; } static int pb0100_set_exposure(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; if (sensor_settings[AUTOGAIN_IDX]) return -EBUSY; sensor_settings[EXPOSURE_IDX] = val; err = stv06xx_write_sensor(sd, PB_RINTTIME, val); PDEBUG(D_V4L2, "Set exposure to %d, status: %d", val, err); return err; } static int pb0100_get_autogain(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[AUTOGAIN_IDX]; return 0; } static int pb0100_set_autogain(struct gspca_dev *gspca_dev, __s32 val) { int err; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; sensor_settings[AUTOGAIN_IDX] = val; if (sensor_settings[AUTOGAIN_IDX]) { if (sensor_settings[NATURAL_IDX]) val = BIT(6)|BIT(4)|BIT(0); else val = BIT(4)|BIT(0); } else val = 0; err = stv06xx_write_sensor(sd, PB_EXPGAIN, val); PDEBUG(D_V4L2, "Set autogain to %d (natural: %d), status: %d", sensor_settings[AUTOGAIN_IDX], sensor_settings[NATURAL_IDX], err); return err; } static int pb0100_get_autogain_target(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[AUTOGAIN_TARGET_IDX]; return 0; } static int pb0100_set_autogain_target(struct gspca_dev *gspca_dev, __s32 val) { int err, totalpixels, brightpixels, darkpixels; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; sensor_settings[AUTOGAIN_TARGET_IDX] = val; /* Number of pixels counted by the sensor when subsampling the pixels. * Slightly larger than the real value to avoid oscillation */ totalpixels = gspca_dev->width * gspca_dev->height; totalpixels = totalpixels/(8*8) + totalpixels/(64*64); brightpixels = (totalpixels * val) >> 8; darkpixels = totalpixels - brightpixels; err = stv06xx_write_sensor(sd, PB_R21, brightpixels); if (!err) err = stv06xx_write_sensor(sd, PB_R22, darkpixels); PDEBUG(D_V4L2, "Set autogain target to %d, status: %d", val, err); return err; } static int pb0100_get_natural(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[NATURAL_IDX]; return 0; } static int pb0100_set_natural(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; sensor_settings[NATURAL_IDX] = val; return pb0100_set_autogain(gspca_dev, sensor_settings[AUTOGAIN_IDX]); }