/* * drivers/media/video/omap24xxcam.c * * OMAP 2 camera block driver. * * Copyright (C) 2004 MontaVista Software, Inc. * Copyright (C) 2004 Texas Instruments. * Copyright (C) 2007-2008 Nokia Corporation. * * Contact: Sakari Ailus * * Based on code from Andy Lowe * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA */ #include #include #include #include #include /* needed for videobufs */ #include #include #include #include #include #include #include "omap24xxcam.h" #define OMAP24XXCAM_VERSION KERNEL_VERSION(0, 0, 0) #define RESET_TIMEOUT_NS 10000 static void omap24xxcam_reset(struct omap24xxcam_device *cam); static int omap24xxcam_sensor_if_enable(struct omap24xxcam_device *cam); static void omap24xxcam_device_unregister(struct v4l2_int_device *s); static int omap24xxcam_remove(struct platform_device *pdev); /* module parameters */ static int video_nr = -1; /* video device minor (-1 ==> auto assign) */ /* * Maximum amount of memory to use for capture buffers. * Default is 4800KB, enough to double-buffer SXGA. */ static int capture_mem = 1280 * 960 * 2 * 2; static struct v4l2_int_device omap24xxcam; /* * * Clocks. * */ static void omap24xxcam_clock_put(struct omap24xxcam_device *cam) { if (cam->ick != NULL && !IS_ERR(cam->ick)) clk_put(cam->ick); if (cam->fck != NULL && !IS_ERR(cam->fck)) clk_put(cam->fck); cam->ick = cam->fck = NULL; } static int omap24xxcam_clock_get(struct omap24xxcam_device *cam) { int rval = 0; cam->fck = clk_get(cam->dev, "cam_fck"); if (IS_ERR(cam->fck)) { dev_err(cam->dev, "can't get cam_fck"); rval = PTR_ERR(cam->fck); omap24xxcam_clock_put(cam); return rval; } cam->ick = clk_get(cam->dev, "cam_ick"); if (IS_ERR(cam->ick)) { dev_err(cam->dev, "can't get cam_ick"); rval = PTR_ERR(cam->ick); omap24xxcam_clock_put(cam); } return rval; } static void omap24xxcam_clock_on(struct omap24xxcam_device *cam) { clk_enable(cam->fck); clk_enable(cam->ick); } static void omap24xxcam_clock_off(struct omap24xxcam_device *cam) { clk_disable(cam->fck); clk_disable(cam->ick); } /* * * Camera core * */ /* * Set xclk. * * To disable xclk, use value zero. */ static void omap24xxcam_core_xclk_set(const struct omap24xxcam_device *cam, u32 xclk) { if (xclk) { u32 divisor = CAM_MCLK / xclk; if (divisor == 1) omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL_XCLK, CC_CTRL_XCLK_DIV_BYPASS); else omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL_XCLK, divisor); } else omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL_XCLK, CC_CTRL_XCLK_DIV_STABLE_LOW); } static void omap24xxcam_core_hwinit(const struct omap24xxcam_device *cam) { /* * Setting the camera core AUTOIDLE bit causes problems with frame * synchronization, so we will clear the AUTOIDLE bit instead. */ omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_SYSCONFIG, CC_SYSCONFIG_AUTOIDLE); /* program the camera interface DMA packet size */ omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL_DMA, CC_CTRL_DMA_EN | (DMA_THRESHOLD / 4 - 1)); /* enable camera core error interrupts */ omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_IRQENABLE, CC_IRQENABLE_FW_ERR_IRQ | CC_IRQENABLE_FSC_ERR_IRQ | CC_IRQENABLE_SSC_ERR_IRQ | CC_IRQENABLE_FIFO_OF_IRQ); } /* * Enable the camera core. * * Data transfer to the camera DMA starts from next starting frame. */ static void omap24xxcam_core_enable(const struct omap24xxcam_device *cam) { omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL, cam->cc_ctrl); } /* * Disable camera core. * * The data transfer will be stopped immediately (CC_CTRL_CC_RST). The * core internal state machines will be reset. Use * CC_CTRL_CC_FRAME_TRIG instead if you want to transfer the current * frame completely. */ static void omap24xxcam_core_disable(const struct omap24xxcam_device *cam) { omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL, CC_CTRL_CC_RST); } /* Interrupt service routine for camera core interrupts. */ static void omap24xxcam_core_isr(struct omap24xxcam_device *cam) { u32 cc_irqstatus; const u32 cc_irqstatus_err = CC_IRQSTATUS_FW_ERR_IRQ | CC_IRQSTATUS_FSC_ERR_IRQ | CC_IRQSTATUS_SSC_ERR_IRQ | CC_IRQSTATUS_FIFO_UF_IRQ | CC_IRQSTATUS_FIFO_OF_IRQ; cc_irqstatus = omap24xxcam_reg_in(cam->mmio_base + CC_REG_OFFSET, CC_IRQSTATUS); omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_IRQSTATUS, cc_irqstatus); if (cc_irqstatus & cc_irqstatus_err && !atomic_read(&cam->in_reset)) { dev_dbg(cam->dev, "resetting camera, cc_irqstatus 0x%x\n", cc_irqstatus); omap24xxcam_reset(cam); } } /* * * videobuf_buffer handling. * * Memory for mmapped videobuf_buffers is not allocated * conventionally, but by several kmalloc allocations and then * creating the scatterlist on our own. User-space buffers are handled * normally. * */ /* * Free the memory-mapped buffer memory allocated for a * videobuf_buffer and the associated scatterlist. */ static void omap24xxcam_vbq_free_mmap_buffer(struct videobuf_buffer *vb) { struct videobuf_dmabuf *dma = videobuf_to_dma(vb); size_t alloc_size; struct page *page; int i; if (dma->sglist == NULL) return; i = dma->sglen; while (i) { i--; alloc_size = sg_dma_len(&dma->sglist[i]); page = sg_page(&dma->sglist[i]); do { ClearPageReserved(page++); } while (alloc_size -= PAGE_SIZE); __free_pages(sg_page(&dma->sglist[i]), get_order(sg_dma_len(&dma->sglist[i]))); } kfree(dma->sglist); dma->sglist = NULL; } /* Release all memory related to the videobuf_queue. */ static void omap24xxcam_vbq_free_mmap_buffers(struct videobuf_queue *vbq) { int i; mutex_lock(&vbq->vb_lock); for (i = 0; i < VIDEO_MAX_FRAME; i++) { if (NULL == vbq->bufs[i]) continue; if (V4L2_MEMORY_MMAP != vbq->bufs[i]->memory) continue; vbq->ops->buf_release(vbq, vbq->bufs[i]); omap24xxcam_vbq_free_mmap_buffer(vbq->bufs[i]); kfree(vbq->bufs[i]); vbq->bufs[i] = NULL; } mutex_unlock(&vbq->vb_lock); videobuf_mmap_free(vbq); } /* * Allocate physically as contiguous as possible buffer for video * frame and allocate and build DMA scatter-gather list for it. */ static int omap24xxcam_vbq_alloc_mmap_buffer(struct videobuf_buffer *vb) { unsigned int order; size_t alloc_size, size = vb->bsize; /* vb->bsize is page aligned */ struct page *page; int max_pages, err = 0, i = 0; struct videobuf_dmabuf *dma = videobuf_to_dma(vb); /* * allocate maximum size scatter-gather list. Note this is * overhead. We may not use as many entries as we allocate */ max_pages = vb->bsize >> PAGE_SHIFT; dma->sglist = kcalloc(max_pages, sizeof(*dma->sglist), GFP_KERNEL); if (dma->sglist == NULL) { err = -ENOMEM; goto out; } while (size) { order = get_order(size); /* * do not over-allocate even if we would get larger * contiguous chunk that way */ if ((PAGE_SIZE << order) > size) order--; /* try to allocate as many contiguous pages as possible */ page = alloc_pages(GFP_KERNEL | GFP_DMA, order); /* if allocation fails, try to allocate smaller amount */ while (page == NULL) { order--; page = alloc_pages(GFP_KERNEL | GFP_DMA, order); if (page == NULL && !order) { err = -ENOMEM; goto out; } } size -= (PAGE_SIZE << order); /* append allocated chunk of pages into scatter-gather list */ sg_set_page(&dma->sglist[i], page, PAGE_SIZE << order, 0); dma->sglen++; i++; alloc_size = (PAGE_SIZE << order); /* clear pages before giving them to user space */ memset(page_address(page), 0, alloc_size); /* mark allocated pages reserved */ do { SetPageReserved(page++); } while (alloc_size -= PAGE_SIZE); } /* * REVISIT: not fully correct to assign nr_pages == sglen but * video-buf is passing nr_pages for e.g. unmap_sg calls */ dma->nr_pages = dma->sglen; dma->direction = PCI_DMA_FROMDEVICE; return 0; out: omap24xxcam_vbq_free_mmap_buffer(vb); return err; } static int omap24xxcam_vbq_alloc_mmap_buffers(struct videobuf_queue *vbq, unsigned int count) { int i, err = 0; struct omap24xxcam_fh *fh = container_of(vbq, struct omap24xxcam_fh, vbq); mutex_lock(&vbq->vb_lock); for (i = 0; i < count; i++) { err = omap24xxcam_vbq_alloc_mmap_buffer(vbq->bufs[i]); if (err) goto out; dev_dbg(fh->cam->dev, "sglen is %d for buffer %d\n", videobuf_to_dma(vbq->bufs[i])->sglen, i); } mutex_unlock(&vbq->vb_lock); return 0; out: while (i) { i--; omap24xxcam_vbq_free_mmap_buffer(vbq->bufs[i]); } mutex_unlock(&vbq->vb_lock); return err; } /* * This routine is called from interrupt context when a scatter-gather DMA * transfer of a videobuf_buffer completes. */ static void omap24xxcam_vbq_complete(struct omap24xxcam_sgdma *sgdma, u32 csr, void *arg) { struct omap24xxcam_device *cam = container_of(sgdma, struct omap24xxcam_device, sgdma); struct omap24xxcam_fh *fh = cam->streaming->private_data; struct videobuf_buffer *vb = (struct videobuf_buffer *)arg; const u32 csr_error = CAMDMA_CSR_MISALIGNED_ERR | CAMDMA_CSR_SUPERVISOR_ERR | CAMDMA_CSR_SECURE_ERR | CAMDMA_CSR_TRANS_ERR | CAMDMA_CSR_DROP; unsigned long flags; spin_lock_irqsave(&cam->core_enable_disable_lock, flags); if (--cam->sgdma_in_queue == 0) omap24xxcam_core_disable(cam); spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags); do_gettimeofday(&vb->ts); vb->field_count = atomic_add_return(2, &fh->field_count); if (csr & csr_error) { vb->state = VIDEOBUF_ERROR; if (!atomic_read(&fh->cam->in_reset)) { dev_dbg(cam->dev, "resetting camera, csr 0x%x\n", csr); omap24xxcam_reset(cam); } } else vb->state = VIDEOBUF_DONE; wake_up(&vb->done); } static void omap24xxcam_vbq_release(struct videobuf_queue *vbq, struct videobuf_buffer *vb) { struct videobuf_dmabuf *dma = videobuf_to_dma(vb); /* wait for buffer, especially to get out of the sgdma queue */ videobuf_waiton(vb, 0, 0); if (vb->memory == V4L2_MEMORY_MMAP) { dma_unmap_sg(vbq->dev, dma->sglist, dma->sglen, dma->direction); dma->direction = DMA_NONE; } else { videobuf_dma_unmap(vbq, videobuf_to_dma(vb)); videobuf_dma_free(videobuf_to_dma(vb)); } vb->state = VIDEOBUF_NEEDS_INIT; } /* * Limit the number of available kernel image capture buffers based on the * number requested, the currently selected image size, and the maximum * amount of memory permitted for kernel capture buffers. */ static int omap24xxcam_vbq_setup(struct videobuf_queue *vbq, unsigned int *cnt, unsigned int *size) { struct omap24xxcam_fh *fh = vbq->priv_data; if (*cnt <= 0) *cnt = VIDEO_MAX_FRAME; /* supply a default number of buffers */ if (*cnt > VIDEO_MAX_FRAME) *cnt = VIDEO_MAX_FRAME; *size = fh->pix.sizeimage; /* accessing fh->cam->capture_mem is ok, it's constant */ while (*size * *cnt > fh->cam->capture_mem) (*cnt)--; return 0; } static int omap24xxcam_dma_iolock(struct videobuf_queue *vbq, struct videobuf_dmabuf *dma) { int err = 0; dma->direction = PCI_DMA_FROMDEVICE; if (!dma_map_sg(vbq->dev, dma->sglist, dma->sglen, dma->direction)) { kfree(dma->sglist); dma->sglist = NULL; dma->sglen = 0; err = -EIO; } return err; } static int omap24xxcam_vbq_prepare(struct videobuf_queue *vbq, struct videobuf_buffer *vb, enum v4l2_field field) { struct omap24xxcam_fh *fh = vbq->priv_data; int err = 0; /* * Accessing pix here is okay since it's constant while * streaming is on (and we only get called then). */ if (vb->baddr) { /* This is a userspace buffer. */ if (fh->pix.sizeimage > vb->bsize) { /* The buffer isn't big enough. */ err = -EINVAL; } else vb->size = fh->pix.sizeimage; } else { if (vb->state != VIDEOBUF_NEEDS_INIT) { /* * We have a kernel bounce buffer that has * already been allocated. */ if (fh->pix.sizeimage > vb->size) { /* * The image size has been changed to * a larger size since this buffer was * allocated, so we need to free and * reallocate it. */ omap24xxcam_vbq_release(vbq, vb); vb->size = fh->pix.sizeimage; } } else { /* We need to allocate a new kernel bounce buffer. */ vb->size = fh->pix.sizeimage; } } if (err) return err; vb->width = fh->pix.width; vb->height = fh->pix.height; vb->field = field; if (vb->state == VIDEOBUF_NEEDS_INIT) { if (vb->memory == V4L2_MEMORY_MMAP) /* * we have built the scatter-gather list by ourself so * do the scatter-gather mapping as well */ err = omap24xxcam_dma_iolock(vbq, videobuf_to_dma(vb)); else err = videobuf_iolock(vbq, vb, NULL); } if (!err) vb->state = VIDEOBUF_PREPARED; else omap24xxcam_vbq_release(vbq, vb); return err; } static void omap24xxcam_vbq_queue(struct videobuf_queue *vbq, struct videobuf_buffer *vb) { struct omap24xxcam_fh *fh = vbq->priv_data; struct omap24xxcam_device *cam = fh->cam; enum videobuf_state state = vb->state; unsigned long flags; int err; /* * FIXME: We're marking the buffer active since we have no * pretty way of marking it active exactly when the * scatter-gather transfer starts. */ vb->state = VIDEOBUF_ACTIVE; err = omap24xxcam_sgdma_queue(&fh->cam->sgdma, videobuf_to_dma(vb)->sglist, videobuf_to_dma(vb)->sglen, vb->size, omap24xxcam_vbq_complete, vb); if (!err) { spin_lock_irqsave(&cam->core_enable_disable_lock, flags); if (++cam->sgdma_in_queue == 1 && !atomic_read(&cam->in_reset)) omap24xxcam_core_enable(cam); spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags); } else { /* * Oops. We're not supposed to get any errors here. * The only way we could get an error is if we ran out * of scatter-gather DMA slots, but we are supposed to * have at least as many scatter-gather DMA slots as * video buffers so that can't happen. */ dev_err(cam->dev, "failed to queue a video buffer for dma!\n"); dev_err(cam->dev, "likely a bug in the driver!\n"); vb->state = state; } } static struct videobuf_queue_ops omap24xxcam_vbq_ops = { .buf_setup = omap24xxcam_vbq_setup, .buf_prepare = omap24xxcam_vbq_prepare, .buf_queue = omap24xxcam_vbq_queue, .buf_release = omap24xxcam_vbq_release, }; /* * * OMAP main camera system * */ /* * Reset camera block to power-on state. */ static void omap24xxcam_poweron_reset(struct omap24xxcam_device *cam) { int max_loop = RESET_TIMEOUT_NS; /* Reset whole camera subsystem */ omap24xxcam_reg_out(cam->mmio_base, CAM_SYSCONFIG, CAM_SYSCONFIG_SOFTRESET); /* Wait till it's finished */ while (!(omap24xxcam_reg_in(cam->mmio_base, CAM_SYSSTATUS) & CAM_SYSSTATUS_RESETDONE) && --max_loop) { ndelay(1); } if (!(omap24xxcam_reg_in(cam->mmio_base, CAM_SYSSTATUS) & CAM_SYSSTATUS_RESETDONE)) dev_err(cam->dev, "camera soft reset timeout\n"); } /* * (Re)initialise the camera block. */ static void omap24xxcam_hwinit(struct omap24xxcam_device *cam) { omap24xxcam_poweron_reset(cam); /* set the camera subsystem autoidle bit */ omap24xxcam_reg_out(cam->mmio_base, CAM_SYSCONFIG, CAM_SYSCONFIG_AUTOIDLE); /* set the camera MMU autoidle bit */ omap24xxcam_reg_out(cam->mmio_base, CAMMMU_REG_OFFSET + CAMMMU_SYSCONFIG, CAMMMU_SYSCONFIG_AUTOIDLE); omap24xxcam_core_hwinit(cam); omap24xxcam_dma_hwinit(&cam->sgdma.dma); } /* * Callback for dma transfer stalling. */ static void omap24xxcam_stalled_dma_reset(unsigned long data) { struct omap24xxcam_device *cam = (struct omap24xxcam_device *)data; if (!atomic_read(&cam->in_reset)) { dev_dbg(cam->dev, "dma stalled, resetting camera\n"); omap24xxcam_reset(cam); } } /* * Stop capture. Mark we're doing a reset, stop DMA transfers and * core. (No new scatter-gather transfers will be queued whilst * in_reset is non-zero.) * * If omap24xxcam_capture_stop is called from several places at * once, only the first call will have an effect. Similarly, the last * call omap24xxcam_streaming_cont will have effect. * * Serialisation is ensured by using cam->core_enable_disable_lock. */ static void omap24xxcam_capture_stop(struct omap24xxcam_device *cam) { unsigned long flags; spin_lock_irqsave(&cam->core_enable_disable_lock, flags); if (atomic_inc_return(&cam->in_reset) != 1) { spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags); return; } omap24xxcam_core_disable(cam); spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags); omap24xxcam_sgdma_sync(&cam->sgdma); } /* * Reset and continue streaming. * * Note: Resetting the camera FIFO via the CC_RST bit in the CC_CTRL * register is supposed to be sufficient to recover from a camera * interface error, but it doesn't seem to be enough. If we only do * that then subsequent image captures are out of sync by either one * or two times DMA_THRESHOLD bytes. Resetting and re-initializing the * entire camera subsystem prevents the problem with frame * synchronization. */ static void omap24xxcam_capture_cont(struct omap24xxcam_device *cam) { unsigned long flags; spin_lock_irqsave(&cam->core_enable_disable_lock, flags); if (atomic_read(&cam->in_reset) != 1) goto out; omap24xxcam_hwinit(cam); omap24xxcam_sensor_if_enable(cam); omap24xxcam_sgdma_process(&cam->sgdma); if (cam->sgdma_in_queue) omap24xxcam_core_enable(cam); out: atomic_dec(&cam->in_reset); spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags); } static ssize_t omap24xxcam_streaming_show(struct device *dev, struct device_attribute *attr, char *buf) { struct omap24xxcam_device *cam = dev_get_drvdata(dev); return sprintf(buf, "%s\n", cam->streaming ? "active" : "inactive"); } static DEVICE_ATTR(streaming, S_IRUGO, omap24xxcam_streaming_show, NULL); /* * Stop capture and restart it. I.e. reset the camera during use. */ static void omap24xxcam_reset(struct omap24xxcam_device *cam) { omap24xxcam_capture_stop(cam); omap24xxcam_capture_cont(cam); } /* * The main interrupt handler. */ static irqreturn_t omap24xxcam_isr(int irq, void *arg) { struct omap24xxcam_device *cam = (struct omap24xxcam_device *)arg; u32 irqstatus; unsigned int irqhandled = 0; irqstatus = omap24xxcam_reg_in(cam->mmio_base, CAM_IRQSTATUS); if (irqstatus & (CAM_IRQSTATUS_DMA_IRQ2 | CAM_IRQSTATUS_DMA_IRQ1 | CAM_IRQSTATUS_DMA_IRQ0)) { omap24xxcam_dma_isr(&cam->sgdma.dma); irqhandled = 1; } if (irqstatus & CAM_IRQSTATUS_CC_IRQ) { omap24xxcam_core_isr(cam); irqhandled = 1; } if (irqstatus & CAM_IRQSTATUS_MMU_IRQ) dev_err(cam->dev, "unhandled camera MMU interrupt!\n"); return IRQ_RETVAL(irqhandled); } /* * * Sensor handling. * */ /* * Enable the external sensor interface. Try to negotiate interface * parameters with the sensor and start using the new ones. The calls * to sensor_if_enable and sensor_if_disable need not to be balanced. */ static int omap24xxcam_sensor_if_enable(struct omap24xxcam_device *cam) { int rval; struct v4l2_ifparm p; rval = vidioc_int_g_ifparm(cam->sdev, &p); if (rval) { dev_err(cam->dev, "vidioc_int_g_ifparm failed with %d\n", rval); return rval; } cam->if_type = p.if_type; cam->cc_ctrl = CC_CTRL_CC_EN; switch (p.if_type) { case V4L2_IF_TYPE_BT656: if (p.u.bt656.frame_start_on_rising_vs) cam->cc_ctrl |= CC_CTRL_NOBT_SYNCHRO; if (p.u.bt656.bt_sync_correct) cam->cc_ctrl |= CC_CTRL_BT_CORRECT; if (p.u.bt656.swap) cam->cc_ctrl |= CC_CTRL_PAR_ORDERCAM; if (p.u.bt656.latch_clk_inv) cam->cc_ctrl |= CC_CTRL_PAR_CLK_POL; if (p.u.bt656.nobt_hs_inv) cam->cc_ctrl |= CC_CTRL_NOBT_HS_POL; if (p.u.bt656.nobt_vs_inv) cam->cc_ctrl |= CC_CTRL_NOBT_VS_POL; switch (p.u.bt656.mode) { case V4L2_IF_TYPE_BT656_MODE_NOBT_8BIT: cam->cc_ctrl |= CC_CTRL_PAR_MODE_NOBT8; break; case V4L2_IF_TYPE_BT656_MODE_NOBT_10BIT: cam->cc_ctrl |= CC_CTRL_PAR_MODE_NOBT10; break; case V4L2_IF_TYPE_BT656_MODE_NOBT_12BIT: cam->cc_ctrl |= CC_CTRL_PAR_MODE_NOBT12; break; case V4L2_IF_TYPE_BT656_MODE_BT_8BIT: cam->cc_ctrl |= CC_CTRL_PAR_MODE_BT8; break; case V4L2_IF_TYPE_BT656_MODE_BT_10BIT: cam->cc_ctrl |= CC_CTRL_PAR_MODE_BT10; break; default: dev_err(cam->dev, "bt656 interface mode %d not supported\n", p.u.bt656.mode); return -EINVAL; } /* * The clock rate that the sensor wants has changed. * We have to adjust the xclk from OMAP 2 side to * match the sensor's wish as closely as possible. */ if (p.u.bt656.clock_curr != cam->if_u.bt656.xclk) { u32 xclk = p.u.bt656.clock_curr; u32 divisor; if (xclk == 0) return -EINVAL; if (xclk > CAM_MCLK) xclk = CAM_MCLK; divisor = CAM_MCLK / xclk; if (divisor * xclk < CAM_MCLK) divisor++; if (CAM_MCLK / divisor < p.u.bt656.clock_min && divisor > 1) divisor--; if (divisor > 30) divisor = 30; xclk = CAM_MCLK / divisor; if (xclk < p.u.bt656.clock_min || xclk > p.u.bt656.clock_max) return -EINVAL; cam->if_u.bt656.xclk = xclk; } omap24xxcam_core_xclk_set(cam, cam->if_u.bt656.xclk); break; default: /* FIXME: how about other interfaces? */ dev_err(cam->dev, "interface type %d not supported\n", p.if_type); return -EINVAL; } return 0; } static void omap24xxcam_sensor_if_disable(const struct omap24xxcam_device *cam) { switch (cam->if_type) { case V4L2_IF_TYPE_BT656: omap24xxcam_core_xclk_set(cam, 0); break; } } /* * Initialise the sensor hardware. */ static int omap24xxcam_sensor_init(struct omap24xxcam_device *cam) { int err = 0; struct v4l2_int_device *sdev = cam->sdev; omap24xxcam_clock_on(cam); err = omap24xxcam_sensor_if_enable(cam); if (err) { dev_err(cam->dev, "sensor interface could not be enabled at " "initialisation, %d\n", err); cam->sdev = NULL; goto out; } /* power up sensor during sensor initialization */ vidioc_int_s_power(sdev, 1); err = vidioc_int_dev_init(sdev); if (err) { dev_err(cam->dev, "cannot initialize sensor, error %d\n", err); /* Sensor init failed --- it's nonexistent to us! */ cam->sdev = NULL; goto out; } dev_info(cam->dev, "sensor is %s\n", sdev->name); out: omap24xxcam_sensor_if_disable(cam); omap24xxcam_clock_off(cam); vidioc_int_s_power(sdev, 0); return err; } static void omap24xxcam_sensor_exit(struct omap24xxcam_device *cam) { if (cam->sdev) vidioc_int_dev_exit(cam->sdev); } static void omap24xxcam_sensor_disable(struct omap24xxcam_device *cam) { omap24xxcam_sensor_if_disable(cam); omap24xxcam_clock_off(cam); vidioc_int_s_power(cam->sdev, 0); } /* * Power-up and configure camera sensor. It's ready for capturing now. */ static int omap24xxcam_sensor_enable(struct omap24xxcam_device *cam) { int rval; omap24xxcam_clock_on(cam); omap24xxcam_sensor_if_enable(cam); rval = vidioc_int_s_power(cam->sdev, 1); if (rval) goto out; rval = vidioc_int_init(cam->sdev); if (rval) goto out; return 0; out: omap24xxcam_sensor_disable(cam); return rval; } static void omap24xxcam_sensor_reset_work(struct work_struct *work) { struct omap24xxcam_device *cam = container_of(work, struct omap24xxcam_device, sensor_reset_work); if (atomic_read(&cam->reset_disable)) return; omap24xxcam_capture_stop(cam); if (vidioc_int_reset(cam->sdev) == 0) { vidioc_int_init(cam->sdev); } else { /* Can't reset it by vidioc_int_reset. */ omap24xxcam_sensor_disable(cam); omap24xxcam_sensor_enable(cam); } omap24xxcam_capture_cont(cam); } /* * * IOCTL interface. * */ static int vidioc_querycap(struct file *file, void *fh, struct v4l2_capability *cap) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; strlcpy(cap->driver, CAM_NAME, sizeof(cap->driver)); strlcpy(cap->card, cam->vfd->name, sizeof(cap->card)); cap->version = OMAP24XXCAM_VERSION; cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING; return 0; } static int vidioc_enum_fmt_vid_cap(struct file *file, void *fh, struct v4l2_fmtdesc *f) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; rval = vidioc_int_enum_fmt_cap(cam->sdev, f); return rval; } static int vidioc_g_fmt_vid_cap(struct file *file, void *fh, struct v4l2_format *f) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; mutex_lock(&cam->mutex); rval = vidioc_int_g_fmt_cap(cam->sdev, f); mutex_unlock(&cam->mutex); return rval; } static int vidioc_s_fmt_vid_cap(struct file *file, void *fh, struct v4l2_format *f) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; mutex_lock(&cam->mutex); if (cam->streaming) { rval = -EBUSY; goto out; } rval = vidioc_int_s_fmt_cap(cam->sdev, f); out: mutex_unlock(&cam->mutex); if (!rval) { mutex_lock(&ofh->vbq.vb_lock); ofh->pix = f->fmt.pix; mutex_unlock(&ofh->vbq.vb_lock); } memset(f, 0, sizeof(*f)); vidioc_g_fmt_vid_cap(file, fh, f); return rval; } static int vidioc_try_fmt_vid_cap(struct file *file, void *fh, struct v4l2_format *f) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; mutex_lock(&cam->mutex); rval = vidioc_int_try_fmt_cap(cam->sdev, f); mutex_unlock(&cam->mutex); return rval; } static int vidioc_reqbufs(struct file *file, void *fh, struct v4l2_requestbuffers *b) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; mutex_lock(&cam->mutex); if (cam->streaming) { mutex_unlock(&cam->mutex); return -EBUSY; } omap24xxcam_vbq_free_mmap_buffers(&ofh->vbq); mutex_unlock(&cam->mutex); rval = videobuf_reqbufs(&ofh->vbq, b); /* * Either videobuf_reqbufs failed or the buffers are not * memory-mapped (which would need special attention). */ if (rval < 0 || b->memory != V4L2_MEMORY_MMAP) goto out; rval = omap24xxcam_vbq_alloc_mmap_buffers(&ofh->vbq, rval); if (rval) omap24xxcam_vbq_free_mmap_buffers(&ofh->vbq); out: return rval; } static int vidioc_querybuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct omap24xxcam_fh *ofh = fh; return videobuf_querybuf(&ofh->vbq, b); } static int vidioc_qbuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct omap24xxcam_fh *ofh = fh; return videobuf_qbuf(&ofh->vbq, b); } static int vidioc_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; struct videobuf_buffer *vb; int rval; videobuf_dqbuf_again: rval = videobuf_dqbuf(&ofh->vbq, b, file->f_flags & O_NONBLOCK); if (rval) goto out; vb = ofh->vbq.bufs[b->index]; mutex_lock(&cam->mutex); /* _needs_reset returns -EIO if reset is required. */ rval = vidioc_int_g_needs_reset(cam->sdev, (void *)vb->baddr); mutex_unlock(&cam->mutex); if (rval == -EIO) schedule_work(&cam->sensor_reset_work); else rval = 0; out: /* * This is a hack. We don't want to show -EIO to the user * space. Requeue the buffer and try again if we're not doing * this in non-blocking mode. */ if (rval == -EIO) { videobuf_qbuf(&ofh->vbq, b); if (!(file->f_flags & O_NONBLOCK)) goto videobuf_dqbuf_again; /* * We don't have a videobuf_buffer now --- maybe next * time... */ rval = -EAGAIN; } return rval; } static int vidioc_streamon(struct file *file, void *fh, enum v4l2_buf_type i) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; mutex_lock(&cam->mutex); if (cam->streaming) { rval = -EBUSY; goto out; } rval = omap24xxcam_sensor_if_enable(cam); if (rval) { dev_dbg(cam->dev, "vidioc_int_g_ifparm failed\n"); goto out; } rval = videobuf_streamon(&ofh->vbq); if (!rval) { cam->streaming = file; sysfs_notify(&cam->dev->kobj, NULL, "streaming"); } out: mutex_unlock(&cam->mutex); return rval; } static int vidioc_streamoff(struct file *file, void *fh, enum v4l2_buf_type i) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; struct videobuf_queue *q = &ofh->vbq; int rval; atomic_inc(&cam->reset_disable); flush_scheduled_work(); rval = videobuf_streamoff(q); if (!rval) { mutex_lock(&cam->mutex); cam->streaming = NULL; mutex_unlock(&cam->mutex); sysfs_notify(&cam->dev->kobj, NULL, "streaming"); } atomic_dec(&cam->reset_disable); return rval; } static int vidioc_enum_input(struct file *file, void *fh, struct v4l2_input *inp) { if (inp->index > 0) return -EINVAL; strlcpy(inp->name, "camera", sizeof(inp->name)); inp->type = V4L2_INPUT_TYPE_CAMERA; return 0; } static int vidioc_g_input(struct file *file, void *fh, unsigned int *i) { *i = 0; return 0; } static int vidioc_s_input(struct file *file, void *fh, unsigned int i) { if (i > 0) return -EINVAL; return 0; } static int vidioc_queryctrl(struct file *file, void *fh, struct v4l2_queryctrl *a) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; rval = vidioc_int_queryctrl(cam->sdev, a); return rval; } static int vidioc_g_ctrl(struct file *file, void *fh, struct v4l2_control *a) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; mutex_lock(&cam->mutex); rval = vidioc_int_g_ctrl(cam->sdev, a); mutex_unlock(&cam->mutex); return rval; } static int vidioc_s_ctrl(struct file *file, void *fh, struct v4l2_control *a) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; mutex_lock(&cam->mutex); rval = vidioc_int_s_ctrl(cam->sdev, a); mutex_unlock(&cam->mutex); return rval; } static int vidioc_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; int rval; mutex_lock(&cam->mutex); rval = vidioc_int_g_parm(cam->sdev, a); mutex_unlock(&cam->mutex); return rval; } static int vidioc_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct omap24xxcam_fh *ofh = fh; struct omap24xxcam_device *cam = ofh->cam; struct v4l2_streamparm old_streamparm; int rval; mutex_lock(&cam->mutex); if (cam->streaming) { rval = -EBUSY; goto out; } old_streamparm.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; rval = vidioc_int_g_parm(cam->sdev, &old_streamparm); if (rval) goto out; rval = vidioc_int_s_parm(cam->sdev, a); if (rval) goto out; rval = omap24xxcam_sensor_if_enable(cam); /* * Revert to old streaming parameters if enabling sensor * interface with the new ones failed. */ if (rval) vidioc_int_s_parm(cam->sdev, &old_streamparm); out: mutex_unlock(&cam->mutex); return rval; } /* * * File operations. * */ static unsigned int omap24xxcam_poll(struct file *file, struct poll_table_struct *wait) { struct omap24xxcam_fh *fh = file->private_data; struct omap24xxcam_device *cam = fh->cam; struct videobuf_buffer *vb; mutex_lock(&cam->mutex); if (cam->streaming != file) { mutex_unlock(&cam->mutex); return POLLERR; } mutex_unlock(&cam->mutex); mutex_lock(&fh->vbq.vb_lock); if (list_empty(&fh->vbq.stream)) { mutex_unlock(&fh->vbq.vb_lock); return POLLERR; } vb = list_entry(fh->vbq.stream.next, struct videobuf_buffer, stream); mutex_unlock(&fh->vbq.vb_lock); poll_wait(file, &vb->done, wait); if (vb->state == VIDEOBUF_DONE || vb->state == VIDEOBUF_ERROR) return POLLIN | POLLRDNORM; return 0; } static int omap24xxcam_mmap_buffers(struct file *file, struct vm_area_struct *vma) { struct omap24xxcam_fh *fh = file->private_data; struct omap24xxcam_device *cam = fh->cam; struct videobuf_queue *vbq = &fh->vbq; unsigned int first, last, size, i, j; int err = 0; mutex_lock(&cam->mutex); if (cam->streaming) { mutex_unlock(&cam->mutex); return -EBUSY; } mutex_unlock(&cam->mutex); mutex_lock(&vbq->vb_lock); /* look for first buffer to map */ for (first = 0; first < VIDEO_MAX_FRAME; first++) { if (NULL == vbq->bufs[first]) continue; if (V4L2_MEMORY_MMAP != vbq->bufs[first]->memory) continue; if (vbq->bufs[first]->boff == (vma->vm_pgoff << PAGE_SHIFT)) break; } /* look for last buffer to map */ for (size = 0, last = first; last < VIDEO_MAX_FRAME; last++) { if (NULL == vbq->bufs[last]) continue; if (V4L2_MEMORY_MMAP != vbq->bufs[last]->memory) continue; size += vbq->bufs[last]->bsize; if (size == (vma->vm_end - vma->vm_start)) break; } size = 0; for (i = first; i <= last; i++) { struct videobuf_dmabuf *dma = videobuf_to_dma(vbq->bufs[i]); for (j = 0; j < dma->sglen; j++) { err = remap_pfn_range( vma, vma->vm_start + size, page_to_pfn(sg_page(&dma->sglist[j])), sg_dma_len(&dma->sglist[j]), vma->vm_page_prot); if (err) goto out; size += sg_dma_len(&dma->sglist[j]); } } out: mutex_unlock(&vbq->vb_lock); return err; } static int omap24xxcam_mmap(struct file *file, struct vm_area_struct *vma) { struct omap24xxcam_fh *fh = file->private_data; int rval; /* let the video-buf mapper check arguments and set-up structures */ rval = videobuf_mmap_mapper(&fh->vbq, vma); if (rval) return rval; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); /* do mapping to our allocated buffers */ rval = omap24xxcam_mmap_buffers(file, vma); /* * In case of error, free vma->vm_private_data allocated by * videobuf_mmap_mapper. */ if (rval) kfree(vma->vm_private_data); return rval; } static int omap24xxcam_open(struct file *file) { int minor = video_devdata(file)->minor; struct omap24xxcam_device *cam = omap24xxcam.priv; struct omap24xxcam_fh *fh; struct v4l2_format format; if (!cam || !cam->vfd || (cam->vfd->minor != minor)) return -ENODEV; fh = kzalloc(sizeof(*fh), GFP_KERNEL); if (fh == NULL) return -ENOMEM; mutex_lock(&cam->mutex); if (cam->sdev == NULL || !try_module_get(cam->sdev->module)) { mutex_unlock(&cam->mutex); goto out_try_module_get; } if (atomic_inc_return(&cam->users) == 1) { omap24xxcam_hwinit(cam); if (omap24xxcam_sensor_enable(cam)) { mutex_unlock(&cam->mutex); goto out_omap24xxcam_sensor_enable; } } mutex_unlock(&cam->mutex); fh->cam = cam; mutex_lock(&cam->mutex); vidioc_int_g_fmt_cap(cam->sdev, &format); mutex_unlock(&cam->mutex); /* FIXME: how about fh->pix when there are more users? */ fh->pix = format.fmt.pix; file->private_data = fh; spin_lock_init(&fh->vbq_lock); videobuf_queue_sg_init(&fh->vbq, &omap24xxcam_vbq_ops, NULL, &fh->vbq_lock, V4L2_BUF_TYPE_VIDEO_CAPTURE, V4L2_FIELD_NONE, sizeof(struct videobuf_buffer), fh); return 0; out_omap24xxcam_sensor_enable: omap24xxcam_poweron_reset(cam); module_put(cam->sdev->module); out_try_module_get: kfree(fh); return -ENODEV; } static int omap24xxcam_release(struct file *file) { struct omap24xxcam_fh *fh = file->private_data; struct omap24xxcam_device *cam = fh->cam; atomic_inc(&cam->reset_disable); flush_scheduled_work(); /* stop streaming capture */ videobuf_streamoff(&fh->vbq); mutex_lock(&cam->mutex); if (cam->streaming == file) { cam->streaming = NULL; mutex_unlock(&cam->mutex); sysfs_notify(&cam->dev->kobj, NULL, "streaming"); } else { mutex_unlock(&cam->mutex); } atomic_dec(&cam->reset_disable); omap24xxcam_vbq_free_mmap_buffers(&fh->vbq); /* * Make sure the reset work we might have scheduled is not * pending! It may be run *only* if we have users. (And it may * not be scheduled anymore since streaming is already * disabled.) */ flush_scheduled_work(); mutex_lock(&cam->mutex); if (atomic_dec_return(&cam->users) == 0) { omap24xxcam_sensor_disable(cam); omap24xxcam_poweron_reset(cam); } mutex_unlock(&cam->mutex); file->private_data = NULL; module_put(cam->sdev->module); kfree(fh); return 0; } static struct v4l2_file_operations omap24xxcam_fops = { .ioctl = video_ioctl2, .poll = omap24xxcam_poll, .mmap = omap24xxcam_mmap, .open = omap24xxcam_open, .release = omap24xxcam_release, }; /* * * Power management. * */ #ifdef CONFIG_PM static int omap24xxcam_suspend(struct platform_device *pdev, pm_message_t state) { struct omap24xxcam_device *cam = platform_get_drvdata(pdev); if (atomic_read(&cam->users) == 0) return 0; if (!atomic_read(&cam->reset_disable)) omap24xxcam_capture_stop(cam); omap24xxcam_sensor_disable(cam); omap24xxcam_poweron_reset(cam); return 0; } static int omap24xxcam_resume(struct platform_device *pdev) { struct omap24xxcam_device *cam = platform_get_drvdata(pdev); if (atomic_read(&cam->users) == 0) return 0; omap24xxcam_hwinit(cam); omap24xxcam_sensor_enable(cam); if (!atomic_read(&cam->reset_disable)) omap24xxcam_capture_cont(cam); return 0; } #endif /* CONFIG_PM */ static const struct v4l2_ioctl_ops omap24xxcam_ioctl_fops = { .vidioc_querycap = vidioc_querycap, .vidioc_enum_fmt_vid_cap = vidioc_enum_fmt_vid_cap, .vidioc_g_fmt_vid_cap = vidioc_g_fmt_vid_cap, .vidioc_s_fmt_vid_cap = vidioc_s_fmt_vid_cap, .vidioc_try_fmt_vid_cap = vidioc_try_fmt_vid_cap, .vidioc_reqbufs = vidioc_reqbufs, .vidioc_querybuf = vidioc_querybuf, .vidioc_qbuf = vidioc_qbuf, .vidioc_dqbuf = vidioc_dqbuf, .vidioc_streamon = vidioc_streamon, .vidioc_streamoff = vidioc_streamoff, .vidioc_enum_input = vidioc_enum_input, .vidioc_g_input = vidioc_g_input, .vidioc_s_input = vidioc_s_input, .vidioc_queryctrl = vidioc_queryctrl, .vidioc_g_ctrl = vidioc_g_ctrl, .vidioc_s_ctrl = vidioc_s_ctrl, .vidioc_g_parm = vidioc_g_parm, .vidioc_s_parm = vidioc_s_parm, }; /* * * Camera device (i.e. /dev/video). * */ static int omap24xxcam_device_register(struct v4l2_int_device *s) { struct omap24xxcam_device *cam = s->u.slave->master->priv; struct video_device *vfd; int rval; /* We already have a slave. */ if (cam->sdev) return -EBUSY; cam->sdev = s; if (device_create_file(cam->dev, &dev_attr_streaming) != 0) { dev_err(cam->dev, "could not register sysfs entry\n"); rval = -EBUSY; goto err; } /* initialize the video_device struct */ vfd = cam->vfd = video_device_alloc(); if (!vfd) { dev_err(cam->dev, "could not allocate video device struct\n"); rval = -ENOMEM; goto err; } vfd->release = video_device_release; vfd->parent = cam->dev; strlcpy(vfd->name, CAM_NAME, sizeof(vfd->name)); vfd->fops = &omap24xxcam_fops; vfd->minor = -1; vfd->ioctl_ops = &omap24xxcam_ioctl_fops; omap24xxcam_hwinit(cam); rval = omap24xxcam_sensor_init(cam); if (rval) goto err; if (video_register_device(vfd, VFL_TYPE_GRABBER, video_nr) < 0) { dev_err(cam->dev, "could not register V4L device\n"); vfd->minor = -1; rval = -EBUSY; goto err; } omap24xxcam_poweron_reset(cam); dev_info(cam->dev, "registered device video%d\n", vfd->minor); return 0; err: omap24xxcam_device_unregister(s); return rval; } static void omap24xxcam_device_unregister(struct v4l2_int_device *s) { struct omap24xxcam_device *cam = s->u.slave->master->priv; omap24xxcam_sensor_exit(cam); if (cam->vfd) { if (cam->vfd->minor == -1) { /* * The device was never registered, so release the * video_device struct directly. */ video_device_release(cam->vfd); } else { /* * The unregister function will release the * video_device struct as well as * unregistering it. */ video_unregister_device(cam->vfd); } cam->vfd = NULL; } device_remove_file(cam->dev, &dev_attr_streaming); cam->sdev = NULL; } static struct v4l2_int_master omap24xxcam_master = { .attach = omap24xxcam_device_register, .detach = omap24xxcam_device_unregister, }; static struct v4l2_int_device omap24xxcam = { .module = THIS_MODULE, .name = CAM_NAME, .type = v4l2_int_type_master, .u = { .master = &omap24xxcam_master }, }; /* * * Driver initialisation and deinitialisation. * */ static int __init omap24xxcam_probe(struct platform_device *pdev) { struct omap24xxcam_device *cam; struct resource *mem; int irq; cam = kzalloc(sizeof(*cam), GFP_KERNEL); if (!cam) { dev_err(&pdev->dev, "could not allocate memory\n"); goto err; } platform_set_drvdata(pdev, cam); cam->dev = &pdev->dev; /* * Impose a lower limit on the amount of memory allocated for * capture. We require at least enough memory to double-buffer * QVGA (300KB). */ if (capture_mem < 320 * 240 * 2 * 2) capture_mem = 320 * 240 * 2 * 2; cam->capture_mem = capture_mem; /* request the mem region for the camera registers */ mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(cam->dev, "no mem resource?\n"); goto err; } if (!request_mem_region(mem->start, (mem->end - mem->start) + 1, pdev->name)) { dev_err(cam->dev, "cannot reserve camera register I/O region\n"); goto err; } cam->mmio_base_phys = mem->start; cam->mmio_size = (mem->end - mem->start) + 1; /* map the region */ cam->mmio_base = (unsigned long) ioremap_nocache(cam->mmio_base_phys, cam->mmio_size); if (!cam->mmio_base) { dev_err(cam->dev, "cannot map camera register I/O region\n"); goto err; } irq = platform_get_irq(pdev, 0); if (irq <= 0) { dev_err(cam->dev, "no irq for camera?\n"); goto err; } /* install the interrupt service routine */ if (request_irq(irq, omap24xxcam_isr, 0, CAM_NAME, cam)) { dev_err(cam->dev, "could not install interrupt service routine\n"); goto err; } cam->irq = irq; if (omap24xxcam_clock_get(cam)) goto err; INIT_WORK(&cam->sensor_reset_work, omap24xxcam_sensor_reset_work); mutex_init(&cam->mutex); spin_lock_init(&cam->core_enable_disable_lock); omap24xxcam_sgdma_init(&cam->sgdma, cam->mmio_base + CAMDMA_REG_OFFSET, omap24xxcam_stalled_dma_reset, (unsigned long)cam); omap24xxcam.priv = cam; if (v4l2_int_device_register(&omap24xxcam)) goto err; return 0; err: omap24xxcam_remove(pdev); return -ENODEV; } static int omap24xxcam_remove(struct platform_device *pdev) { struct omap24xxcam_device *cam = platform_get_drvdata(pdev); if (!cam) return 0; if (omap24xxcam.priv != NULL) v4l2_int_device_unregister(&omap24xxcam); omap24xxcam.priv = NULL; omap24xxcam_clock_put(cam); if (cam->irq) { free_irq(cam->irq, cam); cam->irq = 0; } if (cam->mmio_base) { iounmap((void *)cam->mmio_base); cam->mmio_base = 0; } if (cam->mmio_base_phys) { release_mem_region(cam->mmio_base_phys, cam->mmio_size); cam->mmio_base_phys = 0; } kfree(cam); return 0; } static struct platform_driver omap24xxcam_driver = { .probe = omap24xxcam_probe, .remove = omap24xxcam_remove, #ifdef CONFIG_PM .suspend = omap24xxcam_suspend, .resume = omap24xxcam_resume, #endif .driver = { .name = CAM_NAME, .owner = THIS_MODULE, }, }; /* * * Module initialisation and deinitialisation * */ static int __init omap24xxcam_init(void) { return platform_driver_register(&omap24xxcam_driver); } static void __exit omap24xxcam_cleanup(void) { platform_driver_unregister(&omap24xxcam_driver); } MODULE_AUTHOR("Sakari Ailus "); MODULE_DESCRIPTION("OMAP24xx Video for Linux camera driver"); MODULE_LICENSE("GPL"); module_param(video_nr, int, 0); MODULE_PARM_DESC(video_nr, "Minor number for video device (-1 ==> auto assign)"); module_param(capture_mem, int, 0); MODULE_PARM_DESC(capture_mem, "Maximum amount of memory for capture " "buffers (default 4800kiB)"); module_init(omap24xxcam_init); module_exit(omap24xxcam_cleanup);