/* * * $Id$ * * Copyright (C) 2005 Mike Isely * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "compat.h" #include #include #include #include #include #include #include "pvrusb2.h" #include "pvrusb2-util.h" #include "pvrusb2-hdw.h" #include "pvrusb2-i2c-core.h" #include "pvrusb2-tuner.h" #include "pvrusb2-eeprom.h" #include "pvrusb2-hdw-internal.h" #include "pvrusb2-encoder.h" #include "pvrusb2-debug.h" struct usb_device_id pvr2_device_table[] = { [PVR2_HDW_TYPE_29XXX] = { USB_DEVICE(0x2040, 0x2900) }, #ifdef CONFIG_VIDEO_PVRUSB2_24XXX [PVR2_HDW_TYPE_24XXX] = { USB_DEVICE(0x2040, 0x2400) }, #endif { } }; MODULE_DEVICE_TABLE(usb, pvr2_device_table); static const char *pvr2_device_names[] = { [PVR2_HDW_TYPE_29XXX] = "WinTV PVR USB2 Model Category 29xxxx", #ifdef CONFIG_VIDEO_PVRUSB2_24XXX [PVR2_HDW_TYPE_24XXX] = "WinTV PVR USB2 Model Category 24xxxx", #endif }; static struct pvr2_hdw *unit_pointers[PVR_NUM] = {[ 0 ... PVR_NUM-1 ] = 0}; DECLARE_MUTEX(pvr2_unit_sem); static int ctlchg = 0; static int initusbreset = 1; static int procreload = 0; static int tuner[PVR_NUM] = { [0 ... PVR_NUM-1] = -1 }; static int tolerance[PVR_NUM] = { [0 ... PVR_NUM-1] = 0 }; static int init_pause_msec = 0; module_param(ctlchg, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(ctlchg, "0=optimize ctl change 1=always accept new ctl value"); module_param(init_pause_msec, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(init_pause_msec, "hardware initialization settling delay"); module_param(initusbreset, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(initusbreset, "Do USB reset device on probe"); module_param(procreload, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(procreload, "Attempt init failure recovery with firmware reload"); module_param_array(tuner, int, NULL, 0444); MODULE_PARM_DESC(tuner,"specify installed tuner type"); module_param_array(tolerance, int, NULL, 0444); MODULE_PARM_DESC(tolerance,"specify stream error tolerance"); #define PVR2_CTL_WRITE_ENDPOINT 0x01 #define PVR2_CTL_READ_ENDPOINT 0x81 #define PVR2_GPIO_IN 0x9008 #define PVR2_GPIO_OUT 0x900c #define PVR2_GPIO_DIR 0x9020 #define trace_firmware(...) pvr2_trace(PVR2_TRACE_FIRMWARE,__VA_ARGS__) #define PVR2_FIRMWARE_ENDPOINT 0x02 /* size of a firmware chunk */ #define FIRMWARE_CHUNK_SIZE 0x2000 static const char *control_values_srate[] = { [PVR2_CVAL_SRATE_48] = "48KHz", [PVR2_CVAL_SRATE_44_1] = "44.1KHz", }; static const char *control_values_audiobitrate[] = { [PVR2_CVAL_AUDIOBITRATE_384] = "384kb/s", [PVR2_CVAL_AUDIOBITRATE_320] = "320kb/s", [PVR2_CVAL_AUDIOBITRATE_256] = "256kb/s", [PVR2_CVAL_AUDIOBITRATE_224] = "224kb/s", [PVR2_CVAL_AUDIOBITRATE_192] = "192kb/s", [PVR2_CVAL_AUDIOBITRATE_160] = "160kb/s", [PVR2_CVAL_AUDIOBITRATE_128] = "128kb/s", [PVR2_CVAL_AUDIOBITRATE_112] = "112kb/s", [PVR2_CVAL_AUDIOBITRATE_96] = "96kb/s", [PVR2_CVAL_AUDIOBITRATE_80] = "80kb/s", [PVR2_CVAL_AUDIOBITRATE_64] = "64kb/s", [PVR2_CVAL_AUDIOBITRATE_56] = "56kb/s", [PVR2_CVAL_AUDIOBITRATE_48] = "48kb/s", [PVR2_CVAL_AUDIOBITRATE_32] = "32kb/s", [PVR2_CVAL_AUDIOBITRATE_VBR] = "VBR", }; static const char *control_values_audioemphasis[] = { [PVR2_CVAL_AUDIOEMPHASIS_NONE] = "None", [PVR2_CVAL_AUDIOEMPHASIS_50_15] = "50/15us", [PVR2_CVAL_AUDIOEMPHASIS_CCITT] = "CCITT J.17", }; static const char *control_values_videostandard[] = { "PAL-B", "PAL-B1", "PAL-G", "PAL-H", "PAL-I", "PAL-D", "PAL-D1", "PAL-K", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60", "NTSC-M", "NTSC-M-JP", "NTSC-443", 0, "SECAM-B", "SECAM-D", "SECAM-G", "SECAM-H", "SECAM-K", "SECAM-K1", "SECAM-L", "SECAM-LC", }; static const char *control_values_input[] = { [PVR2_CVAL_INPUT_TV] = "television", /*xawtv needs this name*/ [PVR2_CVAL_INPUT_RADIO] = "radio", [PVR2_CVAL_INPUT_SVIDEO] = "s-video", [PVR2_CVAL_INPUT_COMPOSITE] = "composite", }; static const char *control_values_audiomode[] = { [V4L2_TUNER_MODE_MONO] = "Mono", [V4L2_TUNER_MODE_STEREO] = "Stereo", [V4L2_TUNER_MODE_LANG1] = "Lang1", [V4L2_TUNER_MODE_LANG2] = "Lang2", [V4L2_TUNER_MODE_LANG1_LANG2] = "Lang1+Lang2", }; static const char *control_values_hsm[] = { [PVR2_CVAL_HSM_FAIL] = "Fail", [PVR2_CVAL_HSM_HIGH] = "High", [PVR2_CVAL_HSM_FULL] = "Full", }; #define VDEF(x) \ .value_defs_ptr = x, \ .value_defs_count = (sizeof(x)/sizeof(x[0])) static int pvr2_ctl_set_chanprog_id(struct pvr2_ctrl *cptr,int value); static int pvr2_ctl_get_chanprog_id(struct pvr2_ctrl *cptr); static int pvr2_ctl_get_signal(struct pvr2_ctrl *cptr); static int pvr2_ctl_get_streaming(struct pvr2_ctrl *cptr); static int pvr2_ctl_get_hsm(struct pvr2_ctrl *cptr); static int pvr2_ctl_get_subsys_mask(struct pvr2_ctrl *cptr); static int pvr2_ctl_set_subsys_mask(struct pvr2_ctrl *cptr,int val); static int pvr2_ctl_get_subsys_stream_mask(struct pvr2_ctrl *cptr); static int pvr2_ctl_set_subsys_stream_mask(struct pvr2_ctrl *cptr,int val); static int pvr2_ctl_set_stdcur(struct pvr2_ctrl *cptr,int val); static int pvr2_ctl_get_stdcur(struct pvr2_ctrl *cptr); static int pvr2_ctl_get_stdavail(struct pvr2_ctrl *cptr); static int pvr2_ctl_set_stdenumcur(struct pvr2_ctrl *cptr,int val); static int pvr2_ctl_get_stdenumcur(struct pvr2_ctrl *cptr); static struct pvr2_ctl_def control_defs[] = { [PVR2_CID_BRIGHTNESS] = { .id = V4L2_CID_BRIGHTNESS, .is_valid = !0, .desc = "Brightness", .name = "brightness", .min_value = 0, .max_value = 255, .default_value = 128, }, [PVR2_CID_CONTRAST] = { .id = V4L2_CID_CONTRAST, .is_valid = !0, .desc = "Contrast", .name = "contrast", .min_value = 0, .max_value = 127, .default_value = 68, }, [PVR2_CID_SATURATION] = { .id = V4L2_CID_SATURATION, .is_valid = !0, .desc = "Saturation", .name = "saturation", .min_value = 0, .max_value = 127, .default_value = 64, }, [PVR2_CID_HUE] = { .id = V4L2_CID_HUE, .is_valid = !0, .desc = "Hue", .name = "hue", .min_value = -128, .max_value = 127, .default_value = 0, }, [PVR2_CID_VOLUME] = { .id = V4L2_CID_AUDIO_VOLUME, .is_valid = !0, .desc = "Volume", .name = "volume", .min_value = 0, .max_value = 65535, .default_value = 65535, }, [PVR2_CID_BALANCE] = { .id = V4L2_CID_AUDIO_BALANCE, .is_valid = !0, .desc = "Balance", .name = "balance", .min_value = -32768, .max_value = 32767, .default_value = 0, }, [PVR2_CID_BASS] = { .id = V4L2_CID_AUDIO_BASS, .is_valid = !0, .desc = "Bass", .name = "bass", .min_value = -32768, .max_value = 32767, .default_value = 0, }, [PVR2_CID_TREBLE] = { .id = V4L2_CID_AUDIO_TREBLE, .is_valid = !0, .desc = "Treble", .name = "treble", .min_value = -32768, .max_value = 32767, .default_value = 0, }, [PVR2_CID_MUTE] = { .id = V4L2_CID_AUDIO_MUTE, .is_valid = !0, .desc = "Mute", .name = "mute", .min_value = 0, .max_value = 1, .default_value = 0, }, [PVR2_CID_SRATE] = { .id = V4L2_CID_PVR_SRATE, .is_valid = !0, .desc = "Sample rate", .name = "srate", .min_value = PVR2_CVAL_SRATE_MIN, .max_value = PVR2_CVAL_SRATE_MAX, .default_value = PVR2_CVAL_SRATE_48, VDEF(control_values_srate), }, [PVR2_CID_AUDIOBITRATE] = { .id = V4L2_CID_PVR_AUDIOBITRATE, .is_valid = !0, .desc = "Audio Bitrate", .name = "audio_bitrate", .min_value = PVR2_CVAL_AUDIOBITRATE_MIN, .max_value = PVR2_CVAL_AUDIOBITRATE_MAX, .default_value = PVR2_CVAL_AUDIOBITRATE_224, VDEF(control_values_audiobitrate), }, [PVR2_CID_AUDIOCRC] = { .id = V4L2_CID_PVR_AUDIOCRC, .is_valid = !0, .desc = "Audio CRC", .name = "audio_crc", .min_value = 0, .max_value = 1, .default_value = 1, }, [PVR2_CID_AUDIOEMPHASIS] = { .id = V4L2_CID_PVR_AUDIOEMPHASIS, .is_valid = !0, .desc = "Audio Emphasis", .name = "audio_emphasis", .min_value = PVR2_CVAL_AUDIOEMPHASIS_MIN, .max_value = PVR2_CVAL_AUDIOEMPHASIS_MAX, .default_value = PVR2_CVAL_AUDIOEMPHASIS_NONE, VDEF(control_values_audioemphasis), }, [PVR2_CID_VBR] = { .id = V4L2_CID_PVR_VBR, .is_valid = !0, .desc = "Variable video bitrate", .name = "vbr", .min_value = 0, .max_value = 1, .default_value = 0, }, [PVR2_CID_AVERAGEVIDEOBITRATE] = { .id = V4L2_CID_PVR_VIDEOBITRATE, .is_valid = !0, .desc = "Average video bitrate", .name = "video_average_bitrate", .min_value = 1, .max_value = 20000000, .default_value = 6000000, }, [PVR2_CID_PEAKVIDEOBITRATE] = { .id = V4L2_CID_PVR_VIDEOPEAK, .is_valid = !0, .desc = "Peak video bitrate", .name = "video_peak_bitrate", .min_value = 1, .max_value = 20000000, .default_value = 6000000, }, [PVR2_CID_STDAVAIL] = { .is_valid = !0, .desc = "Video Standards Available Mask", .name = "video_standard_mask_available", .min_value = 0, .max_value = 0, .default_value = (int)V4L2_STD_UNKNOWN, .mask_value = (int)V4L2_STD_ALL, .get_func = pvr2_ctl_get_stdavail, VDEF(control_values_videostandard), }, [PVR2_CID_INPUT] = { .id = V4L2_CID_PVR_INPUT, .is_valid = !0, .desc = "Video Source", .name = "input", .min_value = PVR2_CVAL_INPUT_MIN, .max_value = PVR2_CVAL_INPUT_MAX, .default_value = PVR2_CVAL_INPUT_TV, VDEF(control_values_input), }, [PVR2_CID_AUDIOMODE] = { .id = V4L2_CID_PVR_AUDIOMODE, .is_valid = !0, .desc = "Audio Mode", .name = "audio_mode", .min_value = V4L2_TUNER_MODE_MONO, .max_value = V4L2_TUNER_MODE_LANG1_LANG2, .default_value = V4L2_TUNER_MODE_STEREO, VDEF(control_values_audiomode), }, [PVR2_CID_FREQUENCY] = { .id = V4L2_CID_PVR_FREQUENCY, .is_valid = !0, .desc = "Tuner Frequency (Hz)", .name = "frequency", .min_value = 55250000L, .max_value = 850000000L, .default_value = 175250000L, }, [PVR2_CID_HRES] = { .id = V4L2_CID_PVR_HRES, .is_valid = !0, .desc = "Horizontal capture resolution", .name = "resolution_hor", .min_value = 320, .max_value = 720, .default_value = 720, }, [PVR2_CID_VRES] = { .id = V4L2_CID_PVR_VRES, .is_valid = !0, .desc = "Vertical capture resolution", .name = "resolution_ver", .min_value = 200, .max_value = 625, .default_value = 480, }, [PVR2_CID_INTERLACE] = { .id = V4L2_CID_PVR_INTERLACE, .is_valid = !0, .desc = "Interlace mode", .name = "interlace", .min_value = 0, .max_value = 1, .default_value = 0, }, [PVR2_CID_AUDIOLAYER] = { .is_valid = !0, .desc = "Audio Layer", .name = "audio_layer", .min_value = 0, /* This is all a wild guess */ .max_value = 3, .default_value = 2, /* Appears to be all that is supported */ }, [PVR2_CID_CHANNEL] = { .is_valid = !0, .desc = "Channel", .name = "channel", .min_value = 0, .max_value = FREQTABLE_SIZE, .default_value = 0, }, [PVR2_CID_CHANPROG_ID] = { .is_valid = !0, .desc = "Channel Program ID", .name = "freq_table_channel", .min_value = 0, .max_value = FREQTABLE_SIZE, .default_value = 0, }, [PVR2_CID_CHANPROG_FREQ] = { .is_valid = !0, .desc = "Channel Program Frequency", .name = "freq_table_value", .min_value = 55250000L, .max_value = 850000000L, .skip_init = !0, .set_func = pvr2_ctl_set_chanprog_id, .get_func = pvr2_ctl_get_chanprog_id, }, [PVR2_CID_SIGNAL_PRESENT] = { .is_valid = !0, .desc = "Signal Present", .name = "signal_present", .min_value = 0, .max_value = 1, .get_func = pvr2_ctl_get_signal, }, [PVR2_CID_STREAMING_ENABLED] = { .is_valid = !0, .desc = "Streaming Enabled", .name = "streaming_enabled", .min_value = 0, .max_value = 1, .get_func = pvr2_ctl_get_streaming, }, [PVR2_CID_HSM] = { .is_valid = !0, .desc = "USB Speed", .name = "usb_speed", .min_value = PVR2_CVAL_HSM_MIN, .max_value = PVR2_CVAL_HSM_MAX, .get_func = pvr2_ctl_get_hsm, VDEF(control_values_hsm), }, [PVR2_CID_SUBSYS_MASK] = { .is_valid = !0, .desc = "Subsystem enabled mask", .name = "debug_subsys_mask", .min_value = 0, .max_value = 0x7fffffff, .skip_init = !0, .get_func = pvr2_ctl_get_subsys_mask, .set_func = pvr2_ctl_set_subsys_mask, }, [PVR2_CID_SUBSYS_STREAM_MASK] = { .is_valid = !0, .desc = "Subsystem stream mask", .name = "debug_subsys_stream_mask", .min_value = 0, .max_value = 0x7fffffff, .skip_init = !0, .get_func = pvr2_ctl_get_subsys_stream_mask, .set_func = pvr2_ctl_set_subsys_stream_mask, }, [PVR2_CID_STDCUR] = { .id = V4L2_CID_PVR_STDCUR, .is_valid = !0, .desc = "Video Standard In Use Mask", .name = "video_standard_mask_active", .min_value = 0, .max_value = 0, .default_value = (int)V4L2_STD_UNKNOWN, .mask_value = (int)V4L2_STD_ALL, .set_func = pvr2_ctl_set_stdcur, .get_func = pvr2_ctl_get_stdcur, VDEF(control_values_videostandard), }, }; #undef VDEF #define CTRL_DEF_COUNT (sizeof(control_defs)/sizeof(control_defs[0])) #define CTRL_COUNT CTRL_DEF_COUNT+1 const char *pvr2_config_get_name(enum pvr2_config cfg) { switch (cfg) { case pvr2_config_empty: return "empty"; case pvr2_config_mpeg: return "mpeg"; case pvr2_config_vbi: return "vbi"; case pvr2_config_radio: return "radio"; } return ""; } struct usb_device *pvr2_hdw_get_dev(struct pvr2_hdw *hdw) { return hdw->usb_dev; } unsigned long pvr2_hdw_get_sn(struct pvr2_hdw *hdw) { return hdw->serial_number; } struct pvr2_hdw *pvr2_hdw_find(int unit_number) { if (unit_number < 0) return 0; if (unit_number >= PVR_NUM) return 0; return unit_pointers[unit_number]; } int pvr2_hdw_get_unit_number(struct pvr2_hdw *hdw) { return hdw->unit_number; } /* Attempt to locate one of the given set of files. Messages are logged appropriate to what has been found. The return value will be 0 or greater on success (it will be the index of the file name found) and fw_entry will be filled in. Otherwise a negative error is returned on failure. If the return value is -ENOENT then no viable firmware file could be located. */ static int pvr2_locate_firmware(struct pvr2_hdw *hdw, const struct firmware **fw_entry, const char *fwtypename, unsigned int fwcount, const char *fwnames[]) { unsigned int idx; int ret = -EINVAL; for (idx = 0; idx < fwcount; idx++) { ret = request_firmware(fw_entry, fwnames[idx], &hdw->usb_dev->dev); if (!ret) { trace_firmware("Located %s firmware: %s;" " uploading...", fwtypename, fwnames[idx]); return idx; } if (ret == -ENOENT) continue; pvr2_trace(PVR2_TRACE_ERROR_LEGS, "request_firmware fatal error with code=%d",ret); return ret; } pvr2_trace(PVR2_TRACE_ERROR_LEGS, "***WARNING***" " Device %s firmware" " seems to be missing.", fwtypename); pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Did you install the pvrusb2 firmware files" " in their proper location?"); if (fwcount == 1) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "request_firmware unable to locate %s file %s", fwtypename,fwnames[0]); } else { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "request_firmware unable to locate" " one of the following %s files:", fwtypename); for (idx = 0; idx < fwcount; idx++) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "request_firmware: Failed to find %s", fwnames[idx]); } } return ret; } /* * pvr2_upload_firmware1(). * * Send the 8051 firmware to the device. After the upload, arrange for * device to re-enumerate. * * NOTE : the pointer to the firmware data given by request_firmware() * is not suitable for an usb transaction. * */ int pvr2_upload_firmware1(struct pvr2_hdw *hdw) { const struct firmware *fw_entry = 0; void *fw_ptr; unsigned int pipe; int ret; u16 address; static const char *fw_files_29xxx[] = { "v4l-pvrusb2-29xxx-01.fw", }; #ifdef CONFIG_VIDEO_PVRUSB2_24XXX static const char *fw_files_24xxx[] = { "v4l-pvrusb2-24xxx-01.fw", }; #endif static const struct { const char **lst; unsigned int cnt; } fw_file_defs[] = { [PVR2_HDW_TYPE_29XXX] = { fw_files_29xxx, sizeof(fw_files_29xxx)/sizeof(fw_files_29xxx[0]), }, #ifdef CONFIG_VIDEO_PVRUSB2_24XXX [PVR2_HDW_TYPE_24XXX] = { fw_files_24xxx, sizeof(fw_files_24xxx)/sizeof(fw_files_24xxx[0]), }, #endif }; hdw->fw1_state = FW1_STATE_FAILED; // default result trace_firmware("pvr2_upload_firmware1"); ret = pvr2_locate_firmware(hdw,&fw_entry,"fx2 controller", fw_file_defs[hdw->hdw_type].cnt, fw_file_defs[hdw->hdw_type].lst); if (ret < 0) { if (ret == -ENOENT) hdw->fw1_state = FW1_STATE_MISSING; return ret; } usb_settoggle(hdw->usb_dev, 0 & 0xf, !(0 & USB_DIR_IN), 0); usb_clear_halt(hdw->usb_dev, usb_sndbulkpipe(hdw->usb_dev, 0 & 0x7f)); pipe = usb_sndctrlpipe(hdw->usb_dev, 0); if (fw_entry->size != 0x2000){ pvr2_trace(PVR2_TRACE_ERROR_LEGS,"wrong fx2 firmware size"); release_firmware(fw_entry); return -ENOMEM; } fw_ptr = kmalloc(0x800, GFP_KERNEL); if (fw_ptr == NULL){ release_firmware(fw_entry); return -ENOMEM; } /* We have to hold the CPU during firmware upload. */ pvr2_hdw_cpureset_assert(hdw,1); /* upload the firmware to address 0000-1fff in 2048 (=0x800) bytes chunk. */ ret = 0; for(address = 0; address < fw_entry->size; address += 0x800) { memcpy(fw_ptr, fw_entry->data + address, 0x800); ret += usb_control_msg(hdw->usb_dev, pipe, 0xa0, 0x40, address, 0, fw_ptr, 0x800, HZ); } trace_firmware("Upload done, releasing device's CPU"); /* Now release the CPU. It will disconnect and reconnect later. */ pvr2_hdw_cpureset_assert(hdw,0); kfree(fw_ptr); release_firmware(fw_entry); trace_firmware("Upload done (%d bytes sent)",ret); /* We should have written 8192 bytes */ if (ret == 8192) { hdw->fw1_state = FW1_STATE_RELOAD; return 0; } return -EIO; } /* * pvr2_upload_firmware2() * * This uploads encoder firmware on endpoint 2. * */ int pvr2_upload_firmware2(struct pvr2_hdw *hdw) { const struct firmware *fw_entry = 0; void *fw_ptr; unsigned int pipe, fw_len, fw_done; int actual_length; int ret = 0; int fwidx; static const char *fw_files[] = { "v4l-cx2341x-enc.fw", }; trace_firmware("pvr2_upload_firmware2"); ret = pvr2_locate_firmware(hdw,&fw_entry,"encoder", sizeof(fw_files)/sizeof(fw_files[0]), fw_files); if (ret < 0) return ret; fwidx = ret; ret = 0; /* First prepare firmware loading */ ret |= pvr2_write_register(hdw, 0x0048, 0xffffffff); /*interrupt mask*/ ret |= pvr2_hdw_gpio_chg_dir(hdw,0xffffffff,0x00000088); /*gpio dir*/ ret |= pvr2_hdw_gpio_chg_out(hdw,0xffffffff,0x00000008); /*gpio output state*/ ret |= pvr2_hdw_cmd_deep_reset(hdw); ret |= pvr2_write_register(hdw, 0xa064, 0x00000000); /*APU command*/ ret |= pvr2_hdw_gpio_chg_dir(hdw,0xffffffff,0x00000408); /*gpio dir*/ ret |= pvr2_hdw_gpio_chg_out(hdw,0xffffffff,0x00000008); /*gpio output state*/ ret |= pvr2_write_register(hdw, 0x9058, 0xffffffed); /*VPU ctrl*/ ret |= pvr2_write_register(hdw, 0x9054, 0xfffffffd); /*reset hw blocks*/ ret |= pvr2_write_register(hdw, 0x07f8, 0x80000800); /*encoder SDRAM refresh*/ ret |= pvr2_write_register(hdw, 0x07fc, 0x0000001a); /*encoder SDRAM pre-charge*/ ret |= pvr2_write_register(hdw, 0x0700, 0x00000000); /*I2C clock*/ ret |= pvr2_write_register(hdw, 0xaa00, 0x00000000); /*unknown*/ ret |= pvr2_write_register(hdw, 0xaa04, 0x00057810); /*unknown*/ ret |= pvr2_write_register(hdw, 0xaa10, 0x00148500); /*unknown*/ ret |= pvr2_write_register(hdw, 0xaa18, 0x00840000); /*unknown*/ ret |= pvr2_write_u8(hdw, 0x52, 0); ret |= pvr2_write_u16(hdw, 0x0600, 0); if (ret) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "firmware2 upload prep failed, ret=%d",ret); release_firmware(fw_entry); return ret; } /* Now send firmware */ fw_len = fw_entry->size; if (fw_len % FIRMWARE_CHUNK_SIZE) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "size of %s firmware" " must be a multiple of 8192B", fw_files[fwidx]); release_firmware(fw_entry); return -1; } fw_ptr = kmalloc(FIRMWARE_CHUNK_SIZE, GFP_KERNEL); if (fw_ptr == NULL){ release_firmware(fw_entry); pvr2_trace(PVR2_TRACE_ERROR_LEGS, "failed to allocate memory for firmware2 upload"); return -ENOMEM; } pipe = usb_sndbulkpipe(hdw->usb_dev, PVR2_FIRMWARE_ENDPOINT); for (fw_done = 0 ; (fw_done < fw_len) && !ret ; fw_done += FIRMWARE_CHUNK_SIZE ) { int i; memcpy(fw_ptr, fw_entry->data + fw_done, FIRMWARE_CHUNK_SIZE); /* Usbsnoop log shows that we must swap bytes... */ for (i = 0; i < FIRMWARE_CHUNK_SIZE/4 ; i++) ((u32 *)fw_ptr)[i] = ___swab32(((u32 *)fw_ptr)[i]); ret |= usb_bulk_msg(hdw->usb_dev, pipe, fw_ptr, FIRMWARE_CHUNK_SIZE, &actual_length, HZ); ret |= (actual_length != FIRMWARE_CHUNK_SIZE); } trace_firmware("upload of %s : %i / %i ", fw_files[fwidx],fw_done,fw_len); kfree(fw_ptr); release_firmware(fw_entry); if (ret) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "firmware2 upload transfer failure"); return ret; } /* Finish upload */ ret |= pvr2_write_register(hdw, 0x9054, 0xffffffff); /*reset hw blocks*/ ret |= pvr2_write_register(hdw, 0x9058, 0xffffffe8); /*VPU ctrl*/ ret |= pvr2_write_u16(hdw, 0x0600, 0); if (ret) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "firmware2 upload post-proc failure"); } else { hdw->subsys_enabled_mask |= PVR2_SUBSYS_ENC_FIRMWARE; } return ret; } #define FIRMWARE_RECOVERY_BITS \ (PVR2_SUBSYS_ENC_CFG | \ PVR2_SUBSYS_ENC_RUN | \ PVR2_SUBSYS_ENC_FIRMWARE | \ PVR2_SUBSYS_USBSTREAM_RUN) /* This single function is key to pretty much everything. The pvrusb2 device can logically be viewed as a series of subsystems which can be stopped / started or unconfigured / configured. To get things streaming, one must configure everything and start everything, but there may be various reasons over time to deconfigure something or stop something. This function handles all of this activity. Everything EVERYWHERE that must affect a subsystem eventually comes here to do the work. The current state of all subsystems is represented by a single bit mask, known as subsys_enabled_mask. The bit positions are defined by the PVR2_SUBSYS_xxxx macros, with one subsystem per bit position. At any time the set of configured or active subsystems can be queried just by looking at that mask. To change bits in that mask, this function here must be called. The "msk" argument indicates which bit positions to change, and the "val" argument defines the new values for the positions defined by "msk". There is a priority ordering of starting / stopping things, and for multiple requested changes, this function implements that ordering. (Thus we will act on a request to load encoder firmware before we configure the encoder.) In addition to priority ordering, there is a recovery strategy implemented here. If a particular step fails and we detect that failure, this function will clear the affected subsystem bits and restart. Thus we have a means for recovering from a dead encoder: Clear all bits that correspond to subsystems that we need to restart / reconfigure and start over. */ void pvr2_hdw_subsys_bit_chg_no_lock(struct pvr2_hdw *hdw, unsigned long msk,unsigned long val) { unsigned long nmsk; unsigned long vmsk; int ret; unsigned int tryCount = 0; if (!hdw->flag_ok) return; msk &= PVR2_SUBSYS_ALL; for (;;) { tryCount++; vmsk = hdw->subsys_enabled_mask & PVR2_SUBSYS_ALL; nmsk = (vmsk & ~msk) | (val & msk); if (!(nmsk ^ vmsk)) break; if (tryCount > 4) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Too many retries when configuring device;" " giving up"); pvr2_hdw_render_useless(hdw); break; } if (tryCount > 1) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Retrying device reconfiguration"); } pvr2_trace(PVR2_TRACE_INIT, "subsys mask changing 0x%lx:0x%lx" " from 0x%lx to 0x%lx", msk,val,hdw->subsys_enabled_mask,nmsk); vmsk = (nmsk ^ hdw->subsys_enabled_mask) & hdw->subsys_enabled_mask; if (vmsk) { if (vmsk & PVR2_SUBSYS_ENC_RUN) { pvr2_trace(PVR2_TRACE_CTL, "/*---TRACE_CTL----*/" " pvr2_encoder_stop"); ret = pvr2_encoder_stop(hdw); if (ret) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Error recovery initiated"); hdw->subsys_enabled_mask &= ~FIRMWARE_RECOVERY_BITS; continue; } } if (vmsk & PVR2_SUBSYS_USBSTREAM_RUN) { pvr2_trace(PVR2_TRACE_CTL, "/*---TRACE_CTL----*/" " pvr2_hdw_cmd_usbstream(0)"); pvr2_hdw_cmd_usbstream(hdw,0); } if (vmsk & PVR2_SUBSYS_DIGITIZER_RUN) { pvr2_trace(PVR2_TRACE_CTL, "/*---TRACE_CTL----*/" " decoder disable"); if (hdw->decoder_ctrl) { hdw->decoder_ctrl->enable( hdw->decoder_ctrl->ctxt,0); } else { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "WARNING:" " No decoder present"); } hdw->subsys_enabled_mask &= ~PVR2_SUBSYS_DIGITIZER_RUN; } if (vmsk & PVR2_SUBSYS_CFG_ALL) { hdw->subsys_enabled_mask &= ~(vmsk & PVR2_SUBSYS_CFG_ALL); } } vmsk = (nmsk ^ hdw->subsys_enabled_mask) & nmsk; if (vmsk) { if (vmsk & PVR2_SUBSYS_ENC_FIRMWARE) { pvr2_trace(PVR2_TRACE_CTL, "/*---TRACE_CTL----*/" " pvr2_upload_firmware2"); ret = pvr2_upload_firmware2(hdw); if (ret) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Failure uploading encoder" " firmware"); pvr2_hdw_render_useless(hdw); break; } } if (vmsk & PVR2_SUBSYS_ENC_CFG) { pvr2_trace(PVR2_TRACE_CTL, "/*---TRACE_CTL----*/" " pvr2_encoder_configure"); ret = pvr2_encoder_configure(hdw); if (ret) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Error recovery initiated"); hdw->subsys_enabled_mask &= ~FIRMWARE_RECOVERY_BITS; continue; } } if (vmsk & PVR2_SUBSYS_DIGITIZER_RUN) { pvr2_trace(PVR2_TRACE_CTL, "/*---TRACE_CTL----*/" " decoder enable"); if (hdw->decoder_ctrl) { hdw->decoder_ctrl->enable( hdw->decoder_ctrl->ctxt,!0); } else { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "WARNING:" " No decoder present"); } hdw->subsys_enabled_mask |= PVR2_SUBSYS_DIGITIZER_RUN; } if (vmsk & PVR2_SUBSYS_USBSTREAM_RUN) { pvr2_trace(PVR2_TRACE_CTL, "/*---TRACE_CTL----*/" " pvr2_hdw_cmd_usbstream(1)"); pvr2_hdw_cmd_usbstream(hdw,!0); } if (vmsk & PVR2_SUBSYS_ENC_RUN) { pvr2_trace(PVR2_TRACE_CTL, "/*---TRACE_CTL----*/" " pvr2_encoder_start"); ret = pvr2_encoder_start(hdw); if (ret) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Error recovery initiated"); hdw->subsys_enabled_mask &= ~FIRMWARE_RECOVERY_BITS; continue; } } } } } void pvr2_hdw_subsys_bit_chg(struct pvr2_hdw *hdw, unsigned long msk,unsigned long val) { LOCK_TAKE(hdw->big_lock); do { pvr2_hdw_subsys_bit_chg_no_lock(hdw,msk,val); } while (0); LOCK_GIVE(hdw->big_lock); } void pvr2_hdw_subsys_bit_set(struct pvr2_hdw *hdw,unsigned long msk) { pvr2_hdw_subsys_bit_chg(hdw,msk,msk); } void pvr2_hdw_subsys_bit_clr(struct pvr2_hdw *hdw,unsigned long msk) { pvr2_hdw_subsys_bit_chg(hdw,msk,0); } unsigned long pvr2_hdw_subsys_get(struct pvr2_hdw *hdw) { return hdw->subsys_enabled_mask; } unsigned long pvr2_hdw_subsys_stream_get(struct pvr2_hdw *hdw) { return hdw->subsys_stream_mask; } void pvr2_hdw_subsys_stream_bit_chg_no_lock(struct pvr2_hdw *hdw, unsigned long msk, unsigned long val) { unsigned long val2; msk &= PVR2_SUBSYS_ALL; val2 = ((hdw->subsys_stream_mask & ~msk) | (val & msk)); pvr2_trace(PVR2_TRACE_INIT, "stream mask changing 0x%lx:0x%lx from 0x%lx to 0x%lx", msk,val,hdw->subsys_stream_mask,val2); hdw->subsys_stream_mask = val2; } void pvr2_hdw_subsys_stream_bit_chg(struct pvr2_hdw *hdw, unsigned long msk, unsigned long val) { LOCK_TAKE(hdw->big_lock); do { pvr2_hdw_subsys_stream_bit_chg_no_lock(hdw,msk,val); } while (0); LOCK_GIVE(hdw->big_lock); } static int pvr2_ctl_get_streaming(struct pvr2_ctrl *cptr) { return cptr->hdw->flag_streaming_enabled != 0; } int pvr2_hdw_set_streaming_no_lock(struct pvr2_hdw *hdw,int enableFl) { if ((!enableFl) == !(hdw->flag_streaming_enabled)) return 0; if (enableFl) { pvr2_trace(PVR2_TRACE_START_STOP, "/*--TRACE_STREAM--*/ enable"); pvr2_hdw_subsys_bit_chg_no_lock(hdw,~0,~0); } else { pvr2_trace(PVR2_TRACE_START_STOP, "/*--TRACE_STREAM--*/ disable"); pvr2_hdw_subsys_bit_chg_no_lock(hdw,hdw->subsys_stream_mask,0); } if (!hdw->flag_ok) return -EIO; hdw->flag_streaming_enabled = enableFl != 0; return 0; } int pvr2_hdw_get_streaming(struct pvr2_hdw *hdw) { return hdw->flag_streaming_enabled != 0; } int pvr2_hdw_set_streaming(struct pvr2_hdw *hdw,int enable_flag) { int ret; LOCK_TAKE(hdw->big_lock); do { ret = pvr2_hdw_set_streaming_no_lock(hdw,enable_flag); } while (0); LOCK_GIVE(hdw->big_lock); return ret; } int pvr2_hdw_set_stream_type_no_lock(struct pvr2_hdw *hdw, enum pvr2_config config) { unsigned long sm = hdw->subsys_enabled_mask; if (!hdw->flag_ok) return -EIO; pvr2_hdw_subsys_bit_chg_no_lock(hdw,hdw->subsys_stream_mask,0); hdw->config = config; pvr2_hdw_subsys_bit_chg_no_lock(hdw,~0,sm); return 0; } int pvr2_hdw_set_stream_type(struct pvr2_hdw *hdw,enum pvr2_config config) { int ret; if (!hdw->flag_ok) return -EIO; LOCK_TAKE(hdw->big_lock); ret = pvr2_hdw_set_stream_type_no_lock(hdw,config); LOCK_GIVE(hdw->big_lock); return ret; } static int get_default_tuner_type(struct pvr2_hdw *hdw) { int unit_number = hdw->unit_number; int tp = -1; if ((unit_number >= 0) && (unit_number < PVR_NUM)) { tp = tuner[unit_number]; } if (tp < 0) return -EINVAL; hdw->tuner_type = tp; return 0; } static unsigned int get_default_error_tolerance(struct pvr2_hdw *hdw) { int unit_number = hdw->unit_number; int tp = 0; if ((unit_number >= 0) && (unit_number < PVR_NUM)) { tp = tolerance[unit_number]; } return tp; } static int pvr2_hdw_check_firmware(struct pvr2_hdw *hdw) { /* Try a harmless request to fetch the eeprom's address over endpoint 1. See what happens. Only the full FX2 image can respond to this. If this probe fails then likely the FX2 firmware needs be loaded. */ int result; LOCK_TAKE(hdw->ctl_lock); do { hdw->cmd_buffer[0] = 0xeb; result = pvr2_send_request_ex(hdw,HZ*1,!0, hdw->cmd_buffer,1, hdw->cmd_buffer,1); if (result < 0) break; } while(0); LOCK_GIVE(hdw->ctl_lock); if (result) { pvr2_trace(PVR2_TRACE_INIT, "Probe of device endpoint 1 result status %d", result); } else { pvr2_trace(PVR2_TRACE_INIT, "Probe of device endpoint 1 succeeded"); } return result == 0; } static void pvr2_hdw_setup_low(struct pvr2_hdw *hdw) { int ret; unsigned int idx; struct pvr2_ctrl *cptr; int reloadFl = 0; if (!reloadFl) { reloadFl = (hdw->usb_intf->cur_altsetting->desc.bNumEndpoints == 0); if (reloadFl) { pvr2_trace(PVR2_TRACE_INIT, "USB endpoint config looks strange" "; possibly firmware needs to be loaded"); } } if (!reloadFl) { reloadFl = !pvr2_hdw_check_firmware(hdw); if (reloadFl) { pvr2_trace(PVR2_TRACE_INIT, "Check for FX2 firmware failed" "; possibly firmware needs to be loaded"); } } if (reloadFl) { if (pvr2_upload_firmware1(hdw) != 0) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Failure uploading firmware1"); } return; } hdw->fw1_state = FW1_STATE_OK; if (initusbreset) { pvr2_hdw_device_reset(hdw); } if (!pvr2_hdw_dev_ok(hdw)) return; pvr2_hdw_cmd_powerup(hdw); if (!pvr2_hdw_dev_ok(hdw)) return; if (pvr2_upload_firmware2(hdw)){ pvr2_trace(PVR2_TRACE_ERROR_LEGS,"device unstable!!"); pvr2_hdw_render_useless(hdw); return; } // This step MUST happen after the earlier powerup step. pvr2_i2c_core_init(hdw); if (!pvr2_hdw_dev_ok(hdw)) return; for (idx = 0; idx < CTRL_COUNT; idx++) { cptr = hdw->controls + idx; if (!pvr2_ctrl_is_valid(cptr)) continue; if (cptr->ctl_def->skip_init) continue; pvr2_ctrl_internal_set_value(cptr, cptr->ctl_def->default_value); } // Do not use pvr2_reset_ctl_endpoints() here. It is not // thread-safe against the normal pvr2_send_request() mechanism. // (We should make it thread safe). ret = pvr2_hdw_get_eeprom_addr(hdw); if (!pvr2_hdw_dev_ok(hdw)) return; if (ret < 0) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Unable to determine location of eeprom, skipping"); } else { hdw->eeprom_addr = ret; pvr2_eeprom_analyze(hdw); if (!pvr2_hdw_dev_ok(hdw)) return; } if (!get_default_tuner_type(hdw)) { pvr2_trace(PVR2_TRACE_INIT, "pvr2_hdw_setup: Tuner type overridden to %d", hdw->tuner_type); } hdw->tuner_updated = !0; pvr2_i2c_core_check_stale(hdw); hdw->tuner_updated = 0; if (!pvr2_hdw_dev_ok(hdw)) return; for (idx = 0; idx < hdw->std_cnt; idx++) { pvr2_trace(PVR2_TRACE_EEPROM, "Detected video standard %s (from eeprom)", hdw->std_defs[idx].name); } if (hdw->std_cnt) { pvr2_trace(PVR2_TRACE_EEPROM, "Initial video standard set to %s" " (detected from eeprom)", hdw->std_defs[hdw->std_id].name); } else { pvr2_trace(PVR2_TRACE_EEPROM, "Unable to select a viable video standard"); } if (!pvr2_hdw_dev_ok(hdw)) return; pvr2_hdw_commit_ctl_internal(hdw); if (!pvr2_hdw_dev_ok(hdw)) return; hdw->vid_stream = pvr2_stream_create(); if (!pvr2_hdw_dev_ok(hdw)) return; pvr2_trace(PVR2_TRACE_INIT, "pvr2_hdw_setup: video stream is %p",hdw->vid_stream); if (hdw->vid_stream) { idx = get_default_error_tolerance(hdw); if (idx) { pvr2_trace(PVR2_TRACE_INIT, "pvr2_hdw_setup: video stream %p" " setting tolerance %u", hdw->vid_stream,idx); } pvr2_stream_setup(hdw->vid_stream,hdw->usb_dev, PVR2_VID_ENDPOINT,idx); } if (!pvr2_hdw_dev_ok(hdw)) return; /* Make sure everything is up to date */ pvr2_i2c_core_sync(hdw); if (!pvr2_hdw_dev_ok(hdw)) return; hdw->flag_init_ok = !0; } int pvr2_hdw_setup(struct pvr2_hdw *hdw) { pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_setup(hdw=%p) begin",hdw); LOCK_TAKE(hdw->big_lock); do { pvr2_hdw_setup_low(hdw); pvr2_trace(PVR2_TRACE_INIT, "pvr2_hdw_setup(hdw=%p) done, ok=%d init_ok=%d", hdw,hdw->flag_ok,hdw->flag_init_ok); if (pvr2_hdw_dev_ok(hdw)) { if (pvr2_hdw_init_ok(hdw)) { pvr2_trace( PVR2_TRACE_INFO, "Device initialization" " completed successfully."); break; } if (hdw->fw1_state == FW1_STATE_RELOAD) { pvr2_trace( PVR2_TRACE_INFO, "Device microcontroller firmware" " (re)loaded; it should now reset" " and reconnect."); break; } pvr2_trace( PVR2_TRACE_ERROR_LEGS, "Device initialization was not successful."); if (hdw->fw1_state == FW1_STATE_MISSING) { pvr2_trace( PVR2_TRACE_ERROR_LEGS, "Giving up since device" " microcontroller firmware" " appears to be missing."); break; } } if (procreload) { pvr2_trace( PVR2_TRACE_ERROR_LEGS, "Attempting pvrusb2 recovery by reloading" " primary firmware."); pvr2_trace( PVR2_TRACE_ERROR_LEGS, "If this works, device should disconnect" " and reconnect in a sane state."); hdw->fw1_state = FW1_STATE_UNKNOWN; pvr2_upload_firmware1(hdw); } else { pvr2_trace( PVR2_TRACE_ERROR_LEGS, "***WARNING*** pvrusb2 device hardware" " appears to be jammed" " and I can't clear it."); pvr2_trace( PVR2_TRACE_ERROR_LEGS, "You might need to power cycle" " the pvrusb2 device" " in order to recover."); } } while (0); LOCK_GIVE(hdw->big_lock); pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_setup(hdw=%p) end",hdw); return hdw->flag_init_ok; } /* Create and return a structure for interacting with the underlying hardware */ struct pvr2_hdw *pvr2_hdw_create(struct usb_interface *intf, const struct usb_device_id *devid) { unsigned int idx,cnt1,cnt2; struct pvr2_hdw *hdw; unsigned int hdw_type; __u8 ifnum; hdw_type = devid - pvr2_device_table; if (hdw_type >= sizeof(pvr2_device_names)/sizeof(pvr2_device_names[0])) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Bogus device type of %u reported",hdw_type); return 0; } hdw = kmalloc(sizeof(*hdw),GFP_KERNEL); pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_create: hdw=%p, type \"%s\"", hdw,pvr2_device_names[hdw_type]); if (!hdw) goto fail; memset(hdw,0,sizeof(*hdw)); // Initialize video standard enum dynamic control hdw->video_std_enum.name = "video_standard"; hdw->video_std_enum.desc = "Video Standard Name"; hdw->video_std_enum.id = 0; // ????? hdw->video_std_enum.set_func = pvr2_ctl_set_stdenumcur; hdw->video_std_enum.get_func = pvr2_ctl_get_stdenumcur; hdw->video_std_enum.mask_value = 0; hdw->video_std_enum.max_value = 0; hdw->video_std_enum.min_value = 0; hdw->video_std_enum.default_value = 0; hdw->video_std_enum.is_valid = !0; hdw->controls = kmalloc(sizeof(struct pvr2_ctrl) * CTRL_COUNT, GFP_KERNEL); if (!hdw->controls) goto fail; memset(hdw->controls,0,sizeof(struct pvr2_ctrl) * CTRL_COUNT); hdw->hdw_type = hdw_type; for (idx = 0; idx < CTRL_DEF_COUNT; idx++) { hdw->controls[idx].hdw = hdw; hdw->controls[idx].ctl_def = control_defs + idx; hdw->controls[idx].is_valid = hdw->controls[idx].ctl_def->is_valid; } hdw->controls[PVR2_CID_STDNAME].hdw = hdw; hdw->controls[PVR2_CID_STDNAME].ctl_def = &hdw->video_std_enum; hdw->controls[PVR2_CID_STDNAME].is_valid = !0; hdw->eeprom_addr = -1; hdw->unit_number = -1; hdw->v4l_minor_number = -1; hdw->ctl_write_buffer = kmalloc(PVR2_CTL_BUFFSIZE,GFP_KERNEL); if (!hdw->ctl_write_buffer) goto fail; hdw->ctl_read_buffer = kmalloc(PVR2_CTL_BUFFSIZE,GFP_KERNEL); if (!hdw->ctl_read_buffer) goto fail; hdw->ctl_write_urb = usb_alloc_urb(0,GFP_KERNEL); if (!hdw->ctl_write_urb) goto fail; hdw->ctl_read_urb = usb_alloc_urb(0,GFP_KERNEL); if (!hdw->ctl_read_urb) goto fail; down(&pvr2_unit_sem); do { for (idx = 0; idx < PVR_NUM; idx++) { if (unit_pointers[idx]) continue; hdw->unit_number = idx; unit_pointers[idx] = hdw; break; } } while (0); up(&pvr2_unit_sem); cnt1 = 0; cnt2 = scnprintf(hdw->name+cnt1,sizeof(hdw->name)-cnt1,"pvrusb2"); cnt1 += cnt2; if (hdw->unit_number >= 0) { cnt2 = scnprintf(hdw->name+cnt1,sizeof(hdw->name)-cnt1,"_%c", ('a' + hdw->unit_number)); cnt1 += cnt2; } if (cnt1 >= sizeof(hdw->name)) cnt1 = sizeof(hdw->name)-1; hdw->name[cnt1] = 0; pvr2_trace(PVR2_TRACE_INIT,"Driver unit number is %d, name is %s", hdw->unit_number,hdw->name); hdw->tuner_type = -1; hdw->flag_ok = !0; /* Initialize the mask of subsystems that we will shut down when we stop streaming. */ hdw->subsys_stream_mask = PVR2_SUBSYS_RUN_ALL; hdw->subsys_stream_mask |= PVR2_SUBSYS_ENC_CFG; pvr2_trace(PVR2_TRACE_INIT,"subsys_stream_mask: 0x%lx", hdw->subsys_stream_mask); hdw->usb_intf = intf; hdw->usb_dev = interface_to_usbdev(intf); ifnum = hdw->usb_intf->cur_altsetting->desc.bInterfaceNumber; usb_set_interface(hdw->usb_dev,ifnum,0); mutex_init(&hdw->ctl_lock_mutex); mutex_init(&hdw->big_lock_mutex); return hdw; fail: if (hdw) { if (hdw->ctl_read_urb) usb_free_urb(hdw->ctl_read_urb); if (hdw->ctl_write_urb) usb_free_urb(hdw->ctl_write_urb); if (hdw->ctl_read_buffer) kfree(hdw->ctl_read_buffer); if (hdw->ctl_write_buffer) kfree(hdw->ctl_write_buffer); if (hdw->controls) kfree(hdw->controls); kfree(hdw); } return 0; } /* Remove _all_ associations between this driver and the underlying USB layer. */ void pvr2_hdw_remove_usb_stuff(struct pvr2_hdw *hdw) { if (hdw->flag_disconnected) return; pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_remove_usb_stuff: hdw=%p",hdw); if (hdw->ctl_read_urb) { usb_kill_urb(hdw->ctl_read_urb); usb_free_urb(hdw->ctl_read_urb); hdw->ctl_read_urb = 0; } if (hdw->ctl_write_urb) { usb_kill_urb(hdw->ctl_write_urb); usb_free_urb(hdw->ctl_write_urb); hdw->ctl_write_urb = 0; } if (hdw->ctl_read_buffer) { kfree(hdw->ctl_read_buffer); hdw->ctl_read_buffer = 0; } if (hdw->ctl_write_buffer) { kfree(hdw->ctl_write_buffer); hdw->ctl_write_buffer = 0; } pvr2_hdw_render_useless_unlocked(hdw); hdw->flag_disconnected = !0; hdw->usb_dev = 0; hdw->usb_intf = 0; } /* Destroy hardware interaction structure */ void pvr2_hdw_destroy(struct pvr2_hdw *hdw) { pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_destroy: hdw=%p",hdw); if (hdw->fw_buffer) { kfree(hdw->fw_buffer); hdw->fw_buffer = 0; } if (hdw->vid_stream) { pvr2_stream_destroy(hdw->vid_stream); hdw->vid_stream = 0; } if (hdw->audio_stat) { hdw->audio_stat->detach(hdw->audio_stat->ctxt); } if (hdw->decoder_ctrl) { hdw->decoder_ctrl->detach(hdw->decoder_ctrl->ctxt); } pvr2_i2c_core_done(hdw); pvr2_hdw_remove_usb_stuff(hdw); down(&pvr2_unit_sem); do { if ((hdw->unit_number >= 0) && (hdw->unit_number < PVR_NUM) && (unit_pointers[hdw->unit_number] == hdw)) { unit_pointers[hdw->unit_number] = 0; } } while (0); up(&pvr2_unit_sem); kfree(hdw->controls); if (hdw->std_defs) kfree(hdw->std_defs); if (hdw->video_std_names) kfree(hdw->video_std_names); kfree(hdw); } int pvr2_hdw_init_ok(struct pvr2_hdw *hdw) { return hdw->flag_init_ok; } int pvr2_hdw_dev_ok(struct pvr2_hdw *hdw) { return (hdw && hdw->flag_ok); } /* Called when hardware has been unplugged */ void pvr2_hdw_disconnect(struct pvr2_hdw *hdw) { pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_disconnect(hdw=%p)",hdw); LOCK_TAKE(hdw->big_lock); LOCK_TAKE(hdw->ctl_lock); pvr2_hdw_remove_usb_stuff(hdw); LOCK_GIVE(hdw->ctl_lock); LOCK_GIVE(hdw->big_lock); } static int pvr2_ctl_set_chanprog_id(struct pvr2_ctrl *cptr,int value) { /* This is a special case; the value to store is to an array, and the element to select is determined by PVR_CID_CHANPROG_ID. */ struct pvr2_hdw *hdw = cptr->hdw; int id = hdw->controls[PVR2_CID_CHANPROG_ID].value; if ((id < 1) || (id > FREQTABLE_SIZE)) return 0; hdw->freqTable[id-1] = value; if (hdw->controls[PVR2_CID_CHANNEL].value == id) { /* If the current channel happens to be the slot we just set, then act like the current channel just got changed so we'll update that too. */ hdw->controls[PVR2_CID_CHANNEL].dirty = !0; } return 0; } static int pvr2_ctl_get_chanprog_id(struct pvr2_ctrl *cptr) { /* This is a special case; the value to return is from an array, and the element to select is determined by PVR_CID_CHANPROG_ID. */ struct pvr2_hdw *hdw = cptr->hdw; int id = hdw->controls[PVR2_CID_CHANPROG_ID].value; if ((id < 1) || (id > FREQTABLE_SIZE)) return 0; return hdw->freqTable[id-1]; } // Template data for possible enumerated video standards static struct v4l2_standard pvr_standards[] = { { .id = V4L2_STD_PAL_BG, .frameperiod = { .numerator = 1, .denominator= 25 }, .framelines = 625, .reserved = {0,0,0,0} }, { .id = V4L2_STD_PAL_I, .frameperiod = { .numerator = 1, .denominator= 25 }, .framelines = 625, .reserved = {0,0,0,0} }, { .id = V4L2_STD_PAL_DK, .frameperiod = { .numerator = 1, .denominator= 25 }, .framelines = 625, .reserved = {0,0,0,0} }, { .id = V4L2_STD_SECAM, .frameperiod = { .numerator = 1, .denominator= 25 }, .framelines = 625, .reserved = {0,0,0,0} }, { .id = V4L2_STD_NTSC_M, .frameperiod = { .numerator = 1001, .denominator= 30000 }, .framelines = 525, .reserved = {0,0,0,0} }, { .id = V4L2_STD_PAL_M, .frameperiod = { .numerator = 1001, .denominator= 30000 }, .framelines = 525, .reserved = {0,0,0,0} } }; #define pvr_standards_cnt (sizeof(pvr_standards)/sizeof(pvr_standards[0])) struct name_data { struct v4l2_standard *std; unsigned int bcnt; unsigned int scnt; }; static void name_build(struct name_data *dp,const char *str) { if (!dp->bcnt) { dp->bcnt = scnprintf(dp->std->name, sizeof(dp->std->name)-1,"%s",str); dp->scnt = 0; return; } dp->bcnt += scnprintf(dp->std->name+dp->bcnt, sizeof(dp->std->name)-(1+dp->bcnt), "%s%s", (dp->scnt ? "/" : "-"),str); (dp->scnt)++; } // Generate a descriptive name for a given standard static void name_bucket(struct v4l2_standard *std) { struct name_data nd; nd.std = std; nd.bcnt = 0; if (std->id & (V4L2_STD_PAL_B| V4L2_STD_PAL_B1| V4L2_STD_PAL_G| V4L2_STD_PAL_H| V4L2_STD_PAL_I| V4L2_STD_PAL_D| V4L2_STD_PAL_D1| V4L2_STD_PAL_K)) { name_build(&nd,"PAL"); if (std->id & V4L2_STD_PAL_B) name_build(&nd,"B"); if (std->id & V4L2_STD_PAL_B1) name_build(&nd,"B1"); if (std->id & V4L2_STD_PAL_D) name_build(&nd,"D"); if (std->id & V4L2_STD_PAL_D1) name_build(&nd,"D1"); if (std->id & V4L2_STD_PAL_G) name_build(&nd,"G"); if (std->id & V4L2_STD_PAL_H) name_build(&nd,"H"); if (std->id & V4L2_STD_PAL_I) name_build(&nd,"I"); if (std->id & V4L2_STD_PAL_K) name_build(&nd,"K"); if (std->id & V4L2_STD_PAL_M) name_build(&nd,"M"); if (std->id & V4L2_STD_PAL_N) name_build(&nd,"N"); if (std->id & V4L2_STD_PAL_Nc) name_build(&nd,"Nc"); if (std->id & V4L2_STD_PAL_60) name_build(&nd,"60"); std->name[nd.bcnt] = 0; return; } if (std->id & (V4L2_STD_NTSC_M| V4L2_STD_NTSC_M_JP| V4L2_STD_NTSC_443)) { name_build(&nd,"NTSC"); if (std->id & V4L2_STD_NTSC_M) name_build(&nd,"M"); if (std->id & V4L2_STD_NTSC_M_JP) name_build(&nd,"Mjp"); if (std->id & V4L2_STD_NTSC_443) name_build(&nd,"443"); std->name[nd.bcnt] = 0; return; } if (std->id & (V4L2_STD_SECAM_B| V4L2_STD_SECAM_D| V4L2_STD_SECAM_G| V4L2_STD_SECAM_H| V4L2_STD_SECAM_K| V4L2_STD_SECAM_K1| V4L2_STD_SECAM_L| V4L2_STD_SECAM_LC)) { name_build(&nd,"SECAM"); if (std->id & V4L2_STD_SECAM_B) name_build(&nd,"B"); if (std->id & V4L2_STD_SECAM_D) name_build(&nd,"D"); if (std->id & V4L2_STD_SECAM_G) name_build(&nd,"G"); if (std->id & V4L2_STD_SECAM_H) name_build(&nd,"H"); if (std->id & V4L2_STD_SECAM_K) name_build(&nd,"K"); if (std->id & V4L2_STD_SECAM_K1) name_build(&nd,"K1"); if (std->id & V4L2_STD_SECAM_L) name_build(&nd,"L"); if (std->id & V4L2_STD_SECAM_LC) name_build(&nd,"LC"); std->name[nd.bcnt] = 0; return; } std->name[0] = 0; } // Given a mask of viable video standards to choose from, generate an // appropriate array of v4l2_standard data that corresponds to it and set // up related state in the driver to match. void pvr2_hdw_internal_set_std_avail(struct pvr2_hdw *hdw,int arg) { v4l2_std_id buckets[pvr_standards_cnt]; unsigned int idx1,idx2,std_cnt; v4l2_std_id mmsk,amsk; amsk = (v4l2_std_id)arg; // Figure out which standard groups we can work with std_cnt = 0; mmsk = 0; for (idx1 = 0; idx1 < pvr_standards_cnt; idx1++) { buckets[idx1] = pvr_standards[idx1].id & amsk; if (!buckets[idx1]) continue; mmsk |= buckets[idx1]; amsk &= ~buckets[idx1]; std_cnt++; } if (amsk) { pvr2_trace( PVR2_TRACE_ERROR_LEGS, "Failed to bucketize the following standards: 0x%llx", amsk); } if (hdw->std_defs) { kfree(hdw->std_defs); hdw->std_defs = 0; } if (hdw->video_std_names) { kfree(hdw->video_std_names); hdw->video_std_names = 0; } hdw->std_cnt = 0; if (!std_cnt) { pvr2_trace( PVR2_TRACE_ERROR_LEGS, "Failed to identify any viable standard groups"); hdw->video_std_avail = 0; pvr2_hdw_internal_set_std_cur(hdw,0); return; } if (std_cnt) { // Allocate new video standard array hdw->std_defs = kmalloc(sizeof(struct v4l2_standard) * std_cnt, GFP_KERNEL); hdw->std_cnt = std_cnt; memset(hdw->std_defs,0,sizeof(struct v4l2_standard) * std_cnt); hdw->video_std_names = kmalloc(sizeof(char *) * std_cnt, GFP_KERNEL); memset(hdw->video_std_names,0,sizeof(char *) * std_cnt); idx2 = 0; // Initialize video standard array for (idx1 = 0; idx1 < pvr_standards_cnt; idx1++) { if (!buckets[idx1]) continue; memcpy(hdw->std_defs + idx2, pvr_standards + idx1, sizeof(struct v4l2_standard)); hdw->std_defs[idx2].id = buckets[idx1]; idx2++; } // Generate a name for each known video standard for (idx1 = 0; idx1 < std_cnt; idx1++) { name_bucket(hdw->std_defs + idx1); hdw->video_std_names[idx1] = hdw->std_defs[idx1].name; } // Set up the dynamic control for this standard hdw->video_std_enum.value_defs_ptr = hdw->video_std_names; hdw->video_std_enum.value_defs_count = std_cnt; } hdw->video_std_avail = mmsk; if (!(hdw->video_std_avail & hdw->video_std_cur)) { // Reselect standard if there isn't one that matches... pvr2_hdw_internal_set_stdenum_cur(hdw,0); } } unsigned int pvr2_hdw_get_stdenum_count(struct pvr2_hdw *hdw) { return hdw->std_cnt; } const struct v4l2_standard *pvr2_hdw_get_stdenum_value(struct pvr2_hdw *hdw, unsigned int idx) { if (idx >= hdw->std_cnt) return 0; return hdw->std_defs + idx; } int pvr2_hdw_internal_set_stdenum_cur(struct pvr2_hdw *hdw,int val) { if (val < 0) return -EINVAL; if (val >= hdw->std_cnt) return -EINVAL; pvr2_hdw_internal_set_std_cur(hdw,hdw->std_defs[val].id); return 0; } void pvr2_hdw_internal_set_std_cur(struct pvr2_hdw *hdw,int val) { unsigned int idx; v4l2_std_id msk,id; id = (v4l2_std_id)val; // Only select from available standards id &= hdw->video_std_avail; // Only select a single bit for (idx = 0, msk = 1; msk; idx++, msk <<= 1) { if (!(id & msk)) continue; id = msk; break; } // Get out if nothing found if (!msk) return; // Fix up standard group now hdw->video_std_cur = id; hdw->controls[PVR2_CID_STDCUR].value = id; hdw->controls[PVR2_CID_STDCUR].dirty = !0; for (idx = 0; idx < hdw->std_cnt; idx++) { if (hdw->std_defs[idx].id & id) { hdw->std_id = idx; return; } } // Should never really get here, but just in case... hdw->std_id = 0; } static int pvr2_ctl_set_stdcur(struct pvr2_ctrl *cptr,int val) { pvr2_hdw_internal_set_std_cur(cptr->hdw,val); return 0; } static int pvr2_ctl_get_stdcur(struct pvr2_ctrl *cptr) { return (int)(cptr->hdw->video_std_cur); } static int pvr2_ctl_set_stdenumcur(struct pvr2_ctrl *cptr,int val) { if (val < 0) return -EINVAL; if (val >= cptr->hdw->std_cnt) return -EINVAL; cptr->hdw->std_id = val; pvr2_hdw_internal_set_std_cur(cptr->hdw, cptr->hdw->std_id); return 0; } static int pvr2_ctl_get_stdenumcur(struct pvr2_ctrl *cptr) { return cptr->hdw->std_id; } static int pvr2_ctl_get_stdavail(struct pvr2_ctrl *cptr) { return (int)(cptr->hdw->video_std_avail); } /* Get the number of defined controls */ unsigned int pvr2_hdw_get_ctrl_count(struct pvr2_hdw *hdw) { return CTRL_COUNT; } /* Retrieve a control handle given its index (0..count-1) */ struct pvr2_ctrl *pvr2_hdw_get_ctrl_by_index(struct pvr2_hdw *hdw, unsigned int idx) { if (idx < 0) return 0; if (idx >= CTRL_COUNT) return 0; return hdw->controls + idx; } /* Given an ID, retrieve the control structure associated with it. */ struct pvr2_ctrl *pvr2_hdw_get_ctrl(struct pvr2_hdw *hdw,unsigned int ctl_id) { struct pvr2_ctrl *cptr; unsigned int idx; int i; /* This could be made a lot more efficient, but for now... */ for (idx = 0; idx < CTRL_COUNT; idx++) { cptr = hdw->controls + idx; i = cptr->ctl_def->id; if (i && (i == ctl_id)) return cptr; } return 0; } /* Set the current value of a given control. This assumes we are already inside our critical region. */ int pvr2_ctrl_internal_set_value(struct pvr2_ctrl *cptr,int value) { const struct pvr2_ctl_def *dptr; int ret; if (!cptr) return -EINVAL; if (!cptr->is_valid) return -EINVAL; dptr = cptr->ctl_def; if (!dptr->is_valid) return -EINVAL; if (value < dptr->min_value) return -EINVAL; if (value > dptr->max_value) return -EINVAL; if (dptr->set_func) { ret = dptr->set_func(cptr,value); pvr2_i2c_core_check_stale(cptr->hdw); pvr2_i2c_core_sync(cptr->hdw); return ret; } else if (dptr->get_func) { /* If there's no "set" function yet there is still a "get" function, then treat this as a read-only value. */ return -EINVAL; } if ((cptr->value != value) || (ctlchg != 0)) { cptr->value = value; cptr->dirty = !0; } return 0; } /* Get the current value of a given control. This assumes that we are already inside our critical region. */ int pvr2_ctrl_internal_get_value(struct pvr2_ctrl *cptr) { const struct pvr2_ctl_def *dptr; if (!cptr) return 0; if (!cptr->is_valid) return 0; dptr = cptr->ctl_def; if (!dptr->is_valid) return 0; if (dptr->get_func) { return dptr->get_func(cptr); } return cptr->value; } /* Set the current value of the given control. */ int pvr2_ctrl_set_value(struct pvr2_ctrl *cptr,int val) { int ret; if (!cptr) return -EINVAL; LOCK_TAKE(cptr->hdw->big_lock); do { ret = pvr2_ctrl_internal_set_value(cptr,val); } while(0); LOCK_GIVE(cptr->hdw->big_lock); return ret; } /* Get the current value of the given control. */ int pvr2_ctrl_get_value(struct pvr2_ctrl *cptr) { int ret; if (!cptr) return -EINVAL; LOCK_TAKE(cptr->hdw->big_lock); do { ret = pvr2_ctrl_internal_get_value(cptr); } while(0); LOCK_GIVE(cptr->hdw->big_lock); return ret; } /* Return the type of the given control (int, enum, or bit mask). */ int pvr2_ctrl_get_type(struct pvr2_ctrl *cptr) { const struct pvr2_ctl_def *dptr; if (!cptr) return PVR2_CTRL_TYPE_INVALID; dptr = cptr->ctl_def; if (dptr->mask_value) { return PVR2_CTRL_TYPE_BITMASK; } if (dptr->value_defs_ptr) { return PVR2_CTRL_TYPE_ENUM; } return PVR2_CTRL_TYPE_INT; } /* Return the minimum legal value for a given control. This command is only relevant for int or enum types. */ int pvr2_ctrl_get_min_value(struct pvr2_ctrl *cptr) { const struct pvr2_ctl_def *dptr; if (!cptr) return 0; dptr = cptr->ctl_def; return dptr->min_value; } /* Return the maximum legal value for a given control. This command is only relevant for int or enum types. */ int pvr2_ctrl_get_max_value(struct pvr2_ctrl *cptr) { const struct pvr2_ctl_def *dptr; if (!cptr) return 0; dptr = cptr->ctl_def; return dptr->max_value; } /* Return the default value for a given control. */ int pvr2_ctrl_get_default_value(struct pvr2_ctrl *cptr) { const struct pvr2_ctl_def *dptr; if (!cptr) return 0; dptr = cptr->ctl_def; return dptr->default_value; } /* Return a mask of which bits are used within the bit mask of a given control. This command is only relevant for bit mask types. */ int pvr2_ctrl_get_mask_value(struct pvr2_ctrl *cptr) { const struct pvr2_ctl_def *dptr; if (!cptr) return 0; dptr = cptr->ctl_def; return dptr->mask_value; } /* Return true if this is a valid control. */ int pvr2_ctrl_is_valid(struct pvr2_ctrl *cptr) { if (!cptr) return 0; return cptr->is_valid; } /* Return true if the control can be set (otherwise it may only be read, assuming that it is valid). */ int pvr2_ctrl_is_writeable(struct pvr2_ctrl *cptr) { const struct pvr2_ctl_def *dptr; if (!cptr) return 0; dptr = cptr->ctl_def; if (!dptr->is_valid) return 0; if (dptr->set_func) return !0; if (dptr->get_func) return 0; return !0; } /* Return the control's name, or null if there isn't a name or the control isn't otherwise valid. */ const char *pvr2_ctrl_get_name(struct pvr2_ctrl *cptr) { const struct pvr2_ctl_def *dptr; if (!cptr) return 0; dptr = cptr->ctl_def; return dptr->name; } /* Return the control's description, or null if there isn't a name or the control isn't otherwise valid. */ const char *pvr2_ctrl_get_desc(struct pvr2_ctrl *cptr) { const struct pvr2_ctl_def *dptr; if (!cptr) return 0; dptr = cptr->ctl_def; return dptr->desc; } /* Return the name for an enumeration value or bit mask position for the given control. If the control is not an enumeration or bit mask type, then return null. */ const char *pvr2_ctrl_get_value_name(struct pvr2_ctrl *cptr,int val) { int msk,idx; const struct pvr2_ctl_def *dptr; if (!cptr) return 0; dptr = cptr->ctl_def; if (dptr->mask_value) { for (idx = 0, msk = 1; (idx < dptr->value_defs_count) && msk; idx++, msk <<= 1) { if (val & msk) { return dptr->value_defs_ptr[idx]; } } } else { val -= dptr->min_value; if (val < 0) return 0; if (val >= dptr->value_defs_count) return 0; return dptr->value_defs_ptr[val]; } return 0; } /* Commit all control changes made up to this point. Subsystems can be indirectly affected by these changes. For a given set of things being committed, we'll clear the affected subsystem bits and then once we're done committing everything we'll make a request to restore the subsystem state(s) back to their previous value before this function was called. Thus we can automatically reconfigure affected pieces of the driver as controls are changed. */ int pvr2_hdw_commit_ctl_internal(struct pvr2_hdw *hdw) { unsigned long saved_subsys_mask = hdw->subsys_enabled_mask; unsigned long stale_subsys_mask = 0; unsigned int idx; const struct pvr2_ctl_def *dptr; struct pvr2_ctrl *cptr; int value; const char *ctl_name; const char *ctl_value; int commit_flag = 0; /* Let's see if the channel changed and we have to update the frequency because of it. This setup means one can tune the receiver either by just setting the channel (using the frequency table), or by directly programming the frequency. How do we resolve the obvious conflict here? The direct frequency takes priority; if directly set then we commit that value and force the channel to zero which is interpreted to mean "none". If on the other hand we see that the channel has been set and it's a legal value, then we copy that into the frequency. The metaphor here is similar to when you tune your digital radio: You an either set a frequency directly or punch up a pre-programmed station. Either way a frequency is set, and if you do use a preset, then the radio also shows you which preset it is - until you override that by directly entering a new frequency. */ if (hdw->controls[PVR2_CID_FREQUENCY].dirty) { /* Frequency has been directly set, so clear out the channel. */ hdw->controls[PVR2_CID_CHANNEL].value = 0; } else if (hdw->controls[PVR2_CID_CHANNEL].dirty) { int id = hdw->controls[PVR2_CID_CHANNEL].value; if ((id > 0) && (id <= FREQTABLE_SIZE)) { if (hdw->controls[PVR2_CID_FREQUENCY].value != hdw->freqTable[id-1]) { hdw->controls[PVR2_CID_FREQUENCY].value = hdw->freqTable[id-1]; hdw->controls[PVR2_CID_FREQUENCY].dirty = !0; } } } for (idx = 0; idx < CTRL_COUNT; idx++) { cptr = hdw->controls + idx; if (!cptr->dirty) continue; if (!commit_flag) { commit_flag = !0; } value = cptr->value; dptr = cptr->ctl_def; ctl_name = dptr->name; if (dptr->value_defs_ptr) { if (value < dptr->value_defs_count) { ctl_value = dptr->value_defs_ptr[value]; } else { ctl_value = ""; } } else { ctl_value = ""; } pvr2_trace(PVR2_TRACE_CTL, "/*--TRACE_COMMIT--*/ \"%s\" <-- %d (%s)", ctl_name,value,ctl_value); } if (!commit_flag) { /* Nothing has changed */ return 0; } /* When video standard changes, reset the hres and vres values - but if the user has pending changes there, then let the changes take priority. */ if (hdw->controls[PVR2_CID_STDCUR].dirty) { /* Rewrite the vertical resolution to be appropriate to the video standard that has been selected. */ int nvres; if (hdw->video_std_cur & V4L2_STD_525_60) { nvres = 480; } else { nvres = 576; } if (nvres != hdw->controls[PVR2_CID_VRES].value) { hdw->controls[PVR2_CID_VRES].value = nvres; hdw->controls[PVR2_CID_VRES].dirty = !0; } if (!hdw->controls[PVR2_CID_INTERLACE].value) { hdw->controls[PVR2_CID_INTERLACE].value = 0; hdw->controls[PVR2_CID_INTERLACE].dirty = !0; } } if (hdw->controls[PVR2_CID_STDCUR].dirty || hdw->controls[PVR2_CID_VRES].dirty || hdw->controls[PVR2_CID_HRES].dirty || hdw->controls[PVR2_CID_INTERLACE].dirty || hdw->controls[PVR2_CID_VBR].dirty || hdw->controls[PVR2_CID_AVERAGEVIDEOBITRATE].dirty || hdw->controls[PVR2_CID_PEAKVIDEOBITRATE].dirty || hdw->controls[PVR2_CID_AUDIOBITRATE].dirty || hdw->controls[PVR2_CID_SRATE].dirty || hdw->controls[PVR2_CID_AUDIOLAYER].dirty || hdw->controls[PVR2_CID_AUDIOCRC].dirty || hdw->controls[PVR2_CID_AUDIOEMPHASIS].dirty) { /* If any of this changes, then the encoder needs to be reconfigured, and we need to reset the stream. */ stale_subsys_mask |= PVR2_SUBSYS_ENC_CFG; stale_subsys_mask |= hdw->subsys_stream_mask; } /* Scan i2c core at this point - before we clear all the dirty bits. Various parts of the i2c core will notice dirty bits as appropriate and arrange to broadcast or directly send updates to the client drivers in order to keep everything in sync */ pvr2_i2c_core_check_stale(hdw); for (idx = 0; idx < CTRL_COUNT; idx++) { cptr = hdw->controls + idx; cptr->dirty = 0; } /* Now execute i2c core update */ pvr2_i2c_core_sync(hdw); pvr2_hdw_subsys_bit_chg_no_lock(hdw,stale_subsys_mask,0); pvr2_hdw_subsys_bit_chg_no_lock(hdw,~0,saved_subsys_mask); return 0; } int pvr2_hdw_commit_ctl(struct pvr2_hdw *hdw) { LOCK_TAKE(hdw->big_lock); do { pvr2_hdw_commit_ctl_internal(hdw); } while (0); LOCK_GIVE(hdw->big_lock); return 0; } void pvr2_hdw_poll(struct pvr2_hdw *hdw) { LOCK_TAKE(hdw->big_lock); do { pvr2_i2c_core_sync(hdw); } while (0); LOCK_GIVE(hdw->big_lock); } void pvr2_hdw_setup_poll_trigger(struct pvr2_hdw *hdw, void (*func)(void *), void *data) { LOCK_TAKE(hdw->big_lock); do { hdw->poll_trigger_func = func; hdw->poll_trigger_data = data; } while (0); LOCK_GIVE(hdw->big_lock); } void pvr2_hdw_poll_trigger_unlocked(struct pvr2_hdw *hdw) { if (hdw->poll_trigger_func) { hdw->poll_trigger_func(hdw->poll_trigger_data); } } void pvr2_hdw_poll_trigger(struct pvr2_hdw *hdw) { LOCK_TAKE(hdw->big_lock); do { pvr2_hdw_poll_trigger_unlocked(hdw); } while (0); LOCK_GIVE(hdw->big_lock); } /* Return name for this driver instance */ const char *pvr2_hdw_get_driver_name(struct pvr2_hdw *hdw) { return hdw->name; } /* Return bit mask indicating signal status */ unsigned int pvr2_hdw_get_signal_status_internal(struct pvr2_hdw *hdw) { unsigned int msk = 0; switch (hdw->controls[PVR2_CID_INPUT].value) { case PVR2_CVAL_INPUT_TV: case PVR2_CVAL_INPUT_RADIO: if (hdw->decoder_ctrl && hdw->decoder_ctrl->tuned(hdw->decoder_ctrl->ctxt)) { msk |= PVR2_SIGNAL_OK; if (hdw->audio_stat && hdw->audio_stat->status(hdw->audio_stat->ctxt)) { if (hdw->flag_stereo) { msk |= PVR2_SIGNAL_STEREO; } if (hdw->flag_bilingual) { msk |= PVR2_SIGNAL_SAP; } } } break; default: msk |= PVR2_SIGNAL_OK | PVR2_SIGNAL_STEREO; } return msk; } static int pvr2_ctl_get_subsys_mask(struct pvr2_ctrl *cptr) { return cptr->hdw->subsys_enabled_mask; } static int pvr2_ctl_set_subsys_mask(struct pvr2_ctrl *cptr,int val) { pvr2_hdw_subsys_bit_chg_no_lock(cptr->hdw,~0,val); return 0; } static int pvr2_ctl_get_subsys_stream_mask(struct pvr2_ctrl *cptr) { return cptr->hdw->subsys_stream_mask; } static int pvr2_ctl_set_subsys_stream_mask(struct pvr2_ctrl *cptr, int val) { pvr2_hdw_subsys_stream_bit_chg_no_lock(cptr->hdw,~0,val); return 0; } static int pvr2_ctl_get_hsm(struct pvr2_ctrl *cptr) { int result = pvr2_hdw_is_hsm(cptr->hdw); if (result < 0) return PVR2_CVAL_HSM_FAIL; if (result) return PVR2_CVAL_HSM_HIGH; return PVR2_CVAL_HSM_FULL; } int pvr2_hdw_is_hsm(struct pvr2_hdw *hdw) { int result; LOCK_TAKE(hdw->ctl_lock); do { hdw->cmd_buffer[0] = 0x0b; result = pvr2_send_request(hdw, hdw->cmd_buffer,1, hdw->cmd_buffer,1); if (result < 0) break; result = (hdw->cmd_buffer[0] != 0); } while(0); LOCK_GIVE(hdw->ctl_lock); return result; } static int pvr2_ctl_get_signal(struct pvr2_ctrl *cptr) { return ((pvr2_hdw_get_signal_status_internal(cptr->hdw) & PVR2_SIGNAL_OK) ? 1 : 0); } /* Return bit mask indicating signal status */ unsigned int pvr2_hdw_get_signal_status(struct pvr2_hdw *hdw) { unsigned int msk = 0; LOCK_TAKE(hdw->big_lock); do { msk = pvr2_hdw_get_signal_status_internal(hdw); } while (0); LOCK_GIVE(hdw->big_lock); return msk; } /* Get handle to video output stream */ struct pvr2_stream *pvr2_hdw_get_video_stream(struct pvr2_hdw *hp) { return hp->vid_stream; } void pvr2_hdw_trigger_module_log(struct pvr2_hdw *hdw) { LOCK_TAKE(hdw->big_lock); do { hdw->log_requested = !0; pvr2_i2c_core_check_stale(hdw); hdw->log_requested = 0; pvr2_i2c_core_sync(hdw); } while (0); LOCK_GIVE(hdw->big_lock); } void pvr2_hdw_cpufw_set_enabled(struct pvr2_hdw *hdw, int enable_flag) { int ret; u16 address; unsigned int pipe; LOCK_TAKE(hdw->big_lock); do { if ((hdw->fw_buffer == 0) == !enable_flag) break; if (!enable_flag) { pvr2_trace(PVR2_TRACE_FIRMWARE, "Cleaning up after CPU firmware fetch"); kfree(hdw->fw_buffer); hdw->fw_buffer = 0; hdw->fw_size = 0; /* Now release the CPU. It will disconnect and reconnect later. */ pvr2_hdw_cpureset_assert(hdw,0); break; } pvr2_trace(PVR2_TRACE_FIRMWARE, "Preparing to suck out CPU firmware"); hdw->fw_size = 0x2000; hdw->fw_buffer = kmalloc(hdw->fw_size,GFP_KERNEL); if (!hdw->fw_buffer) { hdw->fw_size = 0; break; } memset(hdw->fw_buffer,0,hdw->fw_size); /* We have to hold the CPU during firmware upload. */ pvr2_hdw_cpureset_assert(hdw,1); /* download the firmware from address 0000-1fff in 2048 (=0x800) bytes chunk. */ pvr2_trace(PVR2_TRACE_FIRMWARE,"Grabbing CPU firmware"); pipe = usb_rcvctrlpipe(hdw->usb_dev, 0); for(address = 0; address < hdw->fw_size; address += 0x800) { ret = usb_control_msg(hdw->usb_dev,pipe,0xa0,0xc0, address,0, hdw->fw_buffer+address,0x800,HZ); if (ret < 0) break; } pvr2_trace(PVR2_TRACE_FIRMWARE,"Done grabbing CPU firmware"); } while (0); LOCK_GIVE(hdw->big_lock); } /* Return true if we're in a mode for retrieval CPU firmware */ int pvr2_hdw_cpufw_get_enabled(struct pvr2_hdw *hdw) { return hdw->fw_buffer != 0; } int pvr2_hdw_cpufw_get(struct pvr2_hdw *hdw,unsigned int offs, char *buf,unsigned int cnt) { int ret = -EINVAL; LOCK_TAKE(hdw->big_lock); do { if (!buf) break; if (!cnt) break; if (!hdw->fw_buffer) { ret = -EIO; break; } if (offs >= hdw->fw_size) { pvr2_trace(PVR2_TRACE_FIRMWARE, "Read firmware data offs=%d EOF", offs); ret = 0; break; } if (offs + cnt > hdw->fw_size) cnt = hdw->fw_size - offs; memcpy(buf,hdw->fw_buffer+offs,cnt); pvr2_trace(PVR2_TRACE_FIRMWARE, "Read firmware data offs=%d cnt=%d", offs,cnt); ret = cnt; } while (0); LOCK_GIVE(hdw->big_lock); return ret; } int pvr2_hdw_v4l_get_minor_number(struct pvr2_hdw *hdw) { return hdw->v4l_minor_number; } /* Store the v4l minor device number */ void pvr2_hdw_v4l_store_minor_number(struct pvr2_hdw *hdw,int v) { hdw->v4l_minor_number = v; } void pvr2_reset_ctl_endpoints(struct pvr2_hdw *hdw) { if (!hdw->usb_dev) return; usb_settoggle(hdw->usb_dev, PVR2_CTL_WRITE_ENDPOINT & 0xf, !(PVR2_CTL_WRITE_ENDPOINT & USB_DIR_IN), 0); usb_settoggle(hdw->usb_dev, PVR2_CTL_READ_ENDPOINT & 0xf, !(PVR2_CTL_READ_ENDPOINT & USB_DIR_IN), 0); usb_clear_halt(hdw->usb_dev, usb_rcvbulkpipe(hdw->usb_dev, PVR2_CTL_READ_ENDPOINT & 0x7f)); usb_clear_halt(hdw->usb_dev, usb_sndbulkpipe(hdw->usb_dev, PVR2_CTL_WRITE_ENDPOINT & 0x7f)); } static void pvr2_ctl_write_complete(struct urb *urb, struct pt_regs *regs) { struct pvr2_hdw *hdw = urb->context; hdw->ctl_write_pend_flag = 0; if (hdw->ctl_read_pend_flag) return; complete(&hdw->ctl_done); } static void pvr2_ctl_read_complete(struct urb *urb, struct pt_regs *regs) { struct pvr2_hdw *hdw = urb->context; hdw->ctl_read_pend_flag = 0; if (hdw->ctl_write_pend_flag) return; complete(&hdw->ctl_done); } static void pvr2_ctl_timeout(unsigned long data) { struct pvr2_hdw *hdw = (struct pvr2_hdw *)data; if (hdw->ctl_write_pend_flag || hdw->ctl_read_pend_flag) { hdw->ctl_timeout_flag = !0; if (hdw->ctl_write_pend_flag && hdw->ctl_write_urb) { usb_unlink_urb(hdw->ctl_write_urb); } if (hdw->ctl_read_pend_flag && hdw->ctl_read_urb) { usb_unlink_urb(hdw->ctl_read_urb); } } } int pvr2_send_request_ex(struct pvr2_hdw *hdw, unsigned int timeout,int probe_fl, void *write_data,unsigned int write_len, void *read_data,unsigned int read_len) { unsigned int idx; int status = 0; struct timer_list timer; if (!hdw->ctl_lock_held) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Attempted to execute control transfer" " without lock!!"); return -EDEADLK; } if ((!hdw->flag_ok) && !probe_fl) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Attempted to execute control transfer" " when device not ok"); return -EIO; } if (!(hdw->ctl_read_urb && hdw->ctl_write_urb)) { if (!probe_fl) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Attempted to execute control transfer" " when USB is disconnected"); } return -ENOTTY; } /* Ensure that we have sane parameters */ if (!write_data) write_len = 0; if (!read_data) read_len = 0; if (write_len > PVR2_CTL_BUFFSIZE) { pvr2_trace( PVR2_TRACE_ERROR_LEGS, "Attempted to execute %d byte" " control-write transfer (limit=%d)", write_len,PVR2_CTL_BUFFSIZE); return -EINVAL; } if (read_len > PVR2_CTL_BUFFSIZE) { pvr2_trace( PVR2_TRACE_ERROR_LEGS, "Attempted to execute %d byte" " control-read transfer (limit=%d)", write_len,PVR2_CTL_BUFFSIZE); return -EINVAL; } if ((!write_len) && (!read_len)) { pvr2_trace( PVR2_TRACE_ERROR_LEGS, "Attempted to execute null control transfer?"); return -EINVAL; } #if 0 printk(KERN_INFO "pvrusb2: REQUEST BEGIN writeCnt=%u readCnt=%u", write_len,read_len); if (probe_fl) { printk(" "); } for (idx = 0; idx < write_len; idx++) { if (idx > 5) { printk(" ..."); break; } if (idx) { printk(" "); } else { printk(" ["); } printk("%02x",((unsigned char *)write_data)[idx]); } if (write_len) printk("]"); printk("\n"); #endif hdw->cmd_debug_state = 1; if (write_len) { hdw->cmd_debug_code = ((unsigned char *)write_data)[0]; } else { hdw->cmd_debug_code = 0; } hdw->cmd_debug_write_len = write_len; hdw->cmd_debug_read_len = read_len; /* Initialize common stuff */ init_completion(&hdw->ctl_done); hdw->ctl_timeout_flag = 0; hdw->ctl_write_pend_flag = 0; hdw->ctl_read_pend_flag = 0; init_timer(&timer); timer.expires = jiffies + timeout; timer.data = (unsigned long)hdw; timer.function = pvr2_ctl_timeout; if (write_len) { hdw->cmd_debug_state = 2; /* Transfer write data to internal buffer */ for (idx = 0; idx < write_len; idx++) { hdw->ctl_write_buffer[idx] = ((unsigned char *)write_data)[idx]; } /* Initiate a write request */ usb_fill_bulk_urb(hdw->ctl_write_urb, hdw->usb_dev, usb_sndbulkpipe(hdw->usb_dev, PVR2_CTL_WRITE_ENDPOINT), hdw->ctl_write_buffer, write_len, pvr2_ctl_write_complete, hdw); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,14) hdw->ctl_write_urb->transfer_flags |= URB_ASYNC_UNLINK; #endif hdw->ctl_write_urb->actual_length = 0; hdw->ctl_write_pend_flag = !0; status = usb_submit_urb(hdw->ctl_write_urb,GFP_KERNEL); if (status < 0) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Failed to submit write-control" " URB status=%d",status); hdw->ctl_write_pend_flag = 0; goto done; } } if (read_len) { hdw->cmd_debug_state = 3; memset(hdw->ctl_read_buffer,0x43,read_len); /* Initiate a read request */ usb_fill_bulk_urb(hdw->ctl_read_urb, hdw->usb_dev, usb_rcvbulkpipe(hdw->usb_dev, PVR2_CTL_READ_ENDPOINT), hdw->ctl_read_buffer, read_len, pvr2_ctl_read_complete, hdw); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,14) hdw->ctl_read_urb->transfer_flags |= URB_ASYNC_UNLINK; #endif hdw->ctl_read_urb->actual_length = 0; hdw->ctl_read_pend_flag = !0; status = usb_submit_urb(hdw->ctl_read_urb,GFP_KERNEL); if (status < 0) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Failed to submit read-control" " URB status=%d",status); hdw->ctl_read_pend_flag = 0; goto done; } } /* Start timer */ add_timer(&timer); /* Now wait for all I/O to complete */ hdw->cmd_debug_state = 4; while (hdw->ctl_write_pend_flag || hdw->ctl_read_pend_flag) { wait_for_completion(&hdw->ctl_done); } hdw->cmd_debug_state = 5; /* Stop timer */ del_timer_sync(&timer); hdw->cmd_debug_state = 6; status = 0; if (hdw->ctl_timeout_flag) { status = -ETIMEDOUT; if (!probe_fl) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Timed out control-write"); } goto done; } if (write_len) { /* Validate results of write request */ if ((hdw->ctl_write_urb->status != 0) && (hdw->ctl_write_urb->status != -ENOENT) && (hdw->ctl_write_urb->status != -ESHUTDOWN) && (hdw->ctl_write_urb->status != -ECONNRESET)) { /* USB subsystem is reporting some kind of failure on the write */ status = hdw->ctl_write_urb->status; if (!probe_fl) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "control-write URB failure," " status=%d", status); } goto done; } if (hdw->ctl_write_urb->actual_length < write_len) { /* Failed to write enough data */ status = -EIO; if (!probe_fl) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "control-write URB short," " expected=%d got=%d", write_len, hdw->ctl_write_urb->actual_length); } goto done; } } if (read_len) { /* Validate results of read request */ if ((hdw->ctl_read_urb->status != 0) && (hdw->ctl_read_urb->status != -ENOENT) && (hdw->ctl_read_urb->status != -ESHUTDOWN) && (hdw->ctl_read_urb->status != -ECONNRESET)) { /* USB subsystem is reporting some kind of failure on the read */ status = hdw->ctl_read_urb->status; if (!probe_fl) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "control-read URB failure," " status=%d", status); } goto done; } if (hdw->ctl_read_urb->actual_length < read_len) { /* Failed to read enough data */ status = -EIO; if (!probe_fl) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "control-read URB short," " expected=%d got=%d", read_len, hdw->ctl_read_urb->actual_length); } goto done; } /* Transfer retrieved data out from internal buffer */ for (idx = 0; idx < read_len; idx++) { ((unsigned char *)read_data)[idx] = hdw->ctl_read_buffer[idx]; } } done: #if 0 printk(KERN_INFO "pvrusb2: REQUEST END status=%d",status); if (status >= 0) { for (idx = 0; idx < read_len; idx++) { if (idx > 5) { printk(" ..."); break; } if (idx) { printk(" "); } else { printk(" ["); } printk("%02x",((unsigned char *)read_data)[idx]); } if (read_len) printk("]"); } printk("\n"); #endif hdw->cmd_debug_state = 0; if ((status < 0) && (!probe_fl)) { pvr2_hdw_render_useless_unlocked(hdw); } return status; } int pvr2_send_request(struct pvr2_hdw *hdw, void *write_data,unsigned int write_len, void *read_data,unsigned int read_len) { return pvr2_send_request_ex(hdw,HZ*4,0, write_data,write_len, read_data,read_len); } int pvr2_write_register(struct pvr2_hdw *hdw, u16 reg, u32 data) { int ret; LOCK_TAKE(hdw->ctl_lock); hdw->cmd_buffer[0] = 0x04; /* write register prefix */ PVR2_DECOMPOSE_LE(hdw->cmd_buffer,1,data); hdw->cmd_buffer[5] = 0; hdw->cmd_buffer[6] = (reg >> 8) & 0xff; hdw->cmd_buffer[7] = reg & 0xff; ret = pvr2_send_request(hdw, hdw->cmd_buffer, 8, hdw->cmd_buffer, 0); LOCK_GIVE(hdw->ctl_lock); return ret; } int pvr2_read_register(struct pvr2_hdw *hdw, u16 reg, u32 *data) { int ret = 0; LOCK_TAKE(hdw->ctl_lock); hdw->cmd_buffer[0] = 0x05; /* read register prefix */ hdw->cmd_buffer[1] = 0; hdw->cmd_buffer[2] = 0; hdw->cmd_buffer[3] = 0; hdw->cmd_buffer[4] = 0; hdw->cmd_buffer[5] = 0; hdw->cmd_buffer[6] = (reg >> 8) & 0xff; hdw->cmd_buffer[7] = reg & 0xff; ret |= pvr2_send_request(hdw, hdw->cmd_buffer, 8, hdw->cmd_buffer, 4); *data = PVR2_COMPOSE_LE(hdw->cmd_buffer,0); LOCK_GIVE(hdw->ctl_lock); return ret; } int pvr2_write_u16(struct pvr2_hdw *hdw, u16 data, int res) { int ret; LOCK_TAKE(hdw->ctl_lock); hdw->cmd_buffer[0] = (data >> 8) & 0xff; hdw->cmd_buffer[1] = data & 0xff; ret = pvr2_send_request(hdw, hdw->cmd_buffer, 2, hdw->cmd_buffer, res); LOCK_GIVE(hdw->ctl_lock); return ret; } int pvr2_write_u8(struct pvr2_hdw *hdw, u8 data, int res) { int ret; LOCK_TAKE(hdw->ctl_lock); hdw->cmd_buffer[0] = data; ret = pvr2_send_request(hdw, hdw->cmd_buffer, 1, hdw->cmd_buffer, res); LOCK_GIVE(hdw->ctl_lock); return ret; } void pvr2_hdw_render_useless_unlocked(struct pvr2_hdw *hdw) { if (!hdw->flag_ok) return; pvr2_trace(PVR2_TRACE_INIT,"render_useless"); hdw->flag_ok = 0; if (hdw->vid_stream) { pvr2_stream_setup(hdw->vid_stream,0,0,0); } hdw->flag_streaming_enabled = 0; hdw->subsys_enabled_mask = 0; } void pvr2_hdw_render_useless(struct pvr2_hdw *hdw) { LOCK_TAKE(hdw->ctl_lock); pvr2_hdw_render_useless_unlocked(hdw); LOCK_GIVE(hdw->ctl_lock); } void pvr2_hdw_device_reset(struct pvr2_hdw *hdw) { int ret; pvr2_trace(PVR2_TRACE_INIT,"Performing a device reset..."); ret = usb_lock_device_for_reset(hdw->usb_dev,0); if (ret == 1) { ret = usb_reset_device(hdw->usb_dev); usb_unlock_device(hdw->usb_dev); } else { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "Failed to lock USB device ret=%d",ret); } if (init_pause_msec) { pvr2_trace(PVR2_TRACE_INFO, "Waiting %u msec for hardware to settle", init_pause_msec); msleep(init_pause_msec); } } void pvr2_hdw_cpureset_assert(struct pvr2_hdw *hdw,int val) { char da[1]; unsigned int pipe; int ret; if (!hdw->usb_dev) return; pvr2_trace(PVR2_TRACE_INIT,"cpureset_assert(%d)",val); da[0] = val ? 0x01 : 0x00; /* Write the CPUCS register on the 8051. The lsb of the register is the reset bit; a 1 asserts reset while a 0 clears it. */ pipe = usb_sndctrlpipe(hdw->usb_dev, 0); ret = usb_control_msg(hdw->usb_dev,pipe,0xa0,0x40,0xe600,0,da,1,HZ); if (ret < 0) { pvr2_trace(PVR2_TRACE_ERROR_LEGS, "cpureset_assert(%d) error=%d",val,ret); pvr2_hdw_render_useless(hdw); } } int pvr2_hdw_cmd_deep_reset(struct pvr2_hdw *hdw) { int status; LOCK_TAKE(hdw->ctl_lock); do { pvr2_trace(PVR2_TRACE_INIT,"Requesting uproc hard reset"); hdw->flag_ok = !0; hdw->cmd_buffer[0] = 0xdd; status = pvr2_send_request(hdw,hdw->cmd_buffer,1,0,0); } while (0); LOCK_GIVE(hdw->ctl_lock); return status; } int pvr2_hdw_cmd_powerup(struct pvr2_hdw *hdw) { int status; LOCK_TAKE(hdw->ctl_lock); do { pvr2_trace(PVR2_TRACE_INIT,"Requesting powerup"); hdw->cmd_buffer[0] = 0xde; status = pvr2_send_request(hdw,hdw->cmd_buffer,1,0,0); } while (0); LOCK_GIVE(hdw->ctl_lock); return status; } int pvr2_hdw_cmd_decoder_reset(struct pvr2_hdw *hdw) { if (!hdw->decoder_ctrl) { pvr2_trace(PVR2_TRACE_INIT, "Unable to reset decoder: nothing attached"); return -ENOTTY; } if (!hdw->decoder_ctrl->force_reset) { pvr2_trace(PVR2_TRACE_INIT, "Unable to reset decoder: not implemented"); return -ENOTTY; } pvr2_trace(PVR2_TRACE_INIT, "Requesting decoder reset"); hdw->decoder_ctrl->force_reset(hdw->decoder_ctrl->ctxt); return 0; } int pvr2_hdw_cmd_usbstream(struct pvr2_hdw *hdw,int runFl) { int status; LOCK_TAKE(hdw->ctl_lock); do { hdw->cmd_buffer[0] = (runFl ? 0x36 : 0x37); status = pvr2_send_request(hdw,hdw->cmd_buffer,1,0,0); } while (0); LOCK_GIVE(hdw->ctl_lock); if (!status) { hdw->subsys_enabled_mask = ((hdw->subsys_enabled_mask & ~PVR2_SUBSYS_USBSTREAM_RUN) | (runFl ? PVR2_SUBSYS_USBSTREAM_RUN : 0)); } return status; } void pvr2_hdw_get_debug_info(const struct pvr2_hdw *hdw, struct pvr2_hdw_debug_info *ptr) { ptr->big_lock_held = hdw->big_lock_held; ptr->ctl_lock_held = hdw->ctl_lock_held; ptr->flag_ok = hdw->flag_ok; ptr->flag_disconnected = hdw->flag_disconnected; ptr->flag_init_ok = hdw->flag_init_ok; ptr->flag_streaming_enabled = hdw->flag_streaming_enabled; ptr->subsys_flags = hdw->subsys_enabled_mask; ptr->cmd_debug_state = hdw->cmd_debug_state; ptr->cmd_code = hdw->cmd_debug_code; ptr->cmd_debug_write_len = hdw->cmd_debug_write_len; ptr->cmd_debug_read_len = hdw->cmd_debug_read_len; ptr->cmd_debug_timeout = hdw->ctl_timeout_flag; ptr->cmd_debug_write_pend = hdw->ctl_write_pend_flag; ptr->cmd_debug_read_pend = hdw->ctl_read_pend_flag; ptr->cmd_debug_rstatus = hdw->ctl_read_urb->status; ptr->cmd_debug_wstatus = hdw->ctl_read_urb->status; } int pvr2_hdw_gpio_get_dir(struct pvr2_hdw *hdw,u32 *dp) { return pvr2_read_register(hdw,PVR2_GPIO_DIR,dp); } int pvr2_hdw_gpio_get_out(struct pvr2_hdw *hdw,u32 *dp) { return pvr2_read_register(hdw,PVR2_GPIO_OUT,dp); } int pvr2_hdw_gpio_get_in(struct pvr2_hdw *hdw,u32 *dp) { return pvr2_read_register(hdw,PVR2_GPIO_IN,dp); } int pvr2_hdw_gpio_chg_dir(struct pvr2_hdw *hdw,u32 msk,u32 val) { u32 cval,nval; int ret; if (~msk) { ret = pvr2_read_register(hdw,PVR2_GPIO_DIR,&cval); if (ret) return ret; nval = (cval & ~msk) | (val & msk); pvr2_trace(PVR2_TRACE_GPIO, "GPIO direction changing 0x%x:0x%x" " from 0x%x to 0x%x", msk,val,cval,nval); } else { nval = val; pvr2_trace(PVR2_TRACE_GPIO, "GPIO direction changing to 0x%x",nval); } return pvr2_write_register(hdw,PVR2_GPIO_DIR,nval); } int pvr2_hdw_gpio_chg_out(struct pvr2_hdw *hdw,u32 msk,u32 val) { u32 cval,nval; int ret; if (~msk) { ret = pvr2_read_register(hdw,PVR2_GPIO_OUT,&cval); if (ret) return ret; nval = (cval & ~msk) | (val & msk); pvr2_trace(PVR2_TRACE_GPIO, "GPIO output changing 0x%x:0x%x from 0x%x to 0x%x", msk,val,cval,nval); } else { nval = val; pvr2_trace(PVR2_TRACE_GPIO, "GPIO output changing to 0x%x",nval); } return pvr2_write_register(hdw,PVR2_GPIO_OUT,nval); } int pvr2_hdw_get_eeprom_addr(struct pvr2_hdw *hdw) { int result; LOCK_TAKE(hdw->ctl_lock); do { hdw->cmd_buffer[0] = 0xeb; result = pvr2_send_request(hdw, hdw->cmd_buffer,1, hdw->cmd_buffer,1); if (result < 0) break; result = hdw->cmd_buffer[0]; } while(0); LOCK_GIVE(hdw->ctl_lock); return result; } /* Stuff for Emacs to see, in order to encourage consistent editing style: *** Local Variables: *** *** mode: c *** *** fill-column: 75 *** *** tab-width: 8 *** *** c-basic-offset: 8 *** *** End: *** */