/* * Driver for Logitech Quickcam Messenger usb video camera * Copyright (C) Jaya Kumar * * This work was sponsored by CIS(M) Sdn Bhd. * History: * 05/08/2006 - Jaya Kumar * I wrote this based on the konicawc by Simon Evans. * - * Full credit for reverse engineering and creating an initial * working linux driver for the VV6422 goes to the qce-ga project by * Tuukka Toivonen, Jochen Hoenicke, Peter McConnell, * Cristiano De Michele, Georg Acher, Jean-Frederic Clere as well as * others. * --- * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include "compat.h" #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18) #include #else #include #endif #include "usbvideo.h" #include "quickcam_messenger.h" /* * Version Information */ #ifdef CONFIG_USB_DEBUG static int debug; #define DEBUG(n, format, arg...) \ if (n <= debug) { \ printk(KERN_DEBUG __FILE__ ":%s(): " format "\n", __FUNCTION__ , ## arg); \ } #else #define DEBUG(n, arg...) static const int debug = 0; #endif #define DRIVER_VERSION "v0.01" #define DRIVER_DESC "Logitech Quickcam Messenger USB" #define USB_LOGITECH_VENDOR_ID 0x046D #define USB_QCM_PRODUCT_ID 0x08F0 #define MAX_CAMERAS 1 #define MAX_COLOUR 32768 #define MAX_HUE 32768 #define MAX_BRIGHTNESS 32768 #define MAX_CONTRAST 32768 #define MAX_WHITENESS 32768 static int size = SIZE_320X240; static int colour = MAX_COLOUR; static int hue = MAX_HUE; static int brightness = MAX_BRIGHTNESS; static int contrast = MAX_CONTRAST; static int whiteness = MAX_WHITENESS; static struct usbvideo *cams; static struct usb_device_id qcm_table [] = { { USB_DEVICE(USB_LOGITECH_VENDOR_ID, USB_QCM_PRODUCT_ID) }, { } }; MODULE_DEVICE_TABLE(usb, qcm_table); #ifdef CONFIG_INPUT static void qcm_register_input(struct qcm *cam, struct usb_device *dev) { struct input_dev *input_dev; int error; usb_make_path(dev, cam->input_physname, sizeof(cam->input_physname)); strncat(cam->input_physname, "/input0", sizeof(cam->input_physname)); cam->input = input_dev = input_allocate_device(); if (!input_dev) { warn("insufficient mem for cam input device"); return; } input_dev->name = "QCM button"; input_dev->phys = cam->input_physname; usb_to_input_id(dev, &input_dev->id); input_dev->cdev.dev = &dev->dev; input_dev->evbit[0] = BIT(EV_KEY); input_dev->keybit[LONG(BTN_0)] = BIT(BTN_0); input_dev->private = cam; error = input_register_device(cam->input); if (error) { warn("Failed to register camera's input device, err: %d\n", error); input_free_device(cam->input); cam->input = NULL; } } static void qcm_unregister_input(struct qcm *cam) { if (cam->input) { input_unregister_device(cam->input); cam->input = NULL; } } static void qcm_report_buttonstat(struct qcm *cam) { if (cam->input) { input_report_key(cam->input, BTN_0, cam->button_sts); input_sync(cam->input); } } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) static void qcm_int_irq(struct urb *urb, struct pt_regs *regs) #else static void qcm_int_irq(struct urb *urb) #endif { int ret; struct uvd *uvd = urb->context; struct qcm *cam; if (!CAMERA_IS_OPERATIONAL(uvd)) return; if (!uvd->streaming) return; uvd->stats.urb_count++; if (urb->status < 0) uvd->stats.iso_err_count++; else { if (urb->actual_length > 0 ) { cam = (struct qcm *) uvd->user_data; if (cam->button_sts_buf == 0x88) cam->button_sts = 0x0; else if (cam->button_sts_buf == 0x80) cam->button_sts = 0x1; qcm_report_buttonstat(cam); } } ret = usb_submit_urb(urb, GFP_ATOMIC); if (ret < 0) err("usb_submit_urb error (%d)", ret); } static int qcm_setup_input_int(struct qcm *cam, struct uvd *uvd) { int errflag; usb_fill_int_urb(cam->button_urb, uvd->dev, usb_rcvintpipe(uvd->dev, uvd->video_endp + 1), &cam->button_sts_buf, 1, qcm_int_irq, uvd, 16); errflag = usb_submit_urb(cam->button_urb, GFP_KERNEL); if (errflag) err ("usb_submit_int ret %d", errflag); return errflag; } static void qcm_stop_int_data(struct qcm *cam) { usb_kill_urb(cam->button_urb); } static int qcm_alloc_int_urb(struct qcm *cam) { cam->button_urb = usb_alloc_urb(0, GFP_KERNEL); if (!cam->button_urb) return -ENOMEM; return 0; } static void qcm_free_int(struct qcm *cam) { usb_free_urb(cam->button_urb); } #endif /* CONFIG_INPUT */ static int qcm_stv_setb(struct usb_device *dev, u16 reg, u8 val) { int ret; /* we'll wait up to 3 slices but no more */ ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x04, USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE, reg, 0, &val, 1, 3*HZ); return ret; } static int qcm_stv_setw(struct usb_device *dev, u16 reg, u16 val) { int ret; /* we'll wait up to 3 slices but no more */ ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x04, USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE, reg, 0, &val, 2, 3*HZ); return ret; } static int qcm_stv_getw(struct usb_device *dev, unsigned short reg, __le16 *val) { int ret; /* we'll wait up to 3 slices but no more */ ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 0x04, USB_TYPE_VENDOR | USB_DIR_IN | USB_RECIP_DEVICE, reg, 0, val, 2, 3*HZ); return ret; } static int qcm_camera_on(struct uvd *uvd) { int ret; CHECK_RET(ret, qcm_stv_setb(uvd->dev, STV_ISO_ENABLE, 0x01)); return 0; } static int qcm_camera_off(struct uvd *uvd) { int ret; CHECK_RET(ret, qcm_stv_setb(uvd->dev, STV_ISO_ENABLE, 0x00)); return 0; } static void qcm_hsv2rgb(u16 hue, u16 sat, u16 val, u16 *r, u16 *g, u16 *b) { unsigned int segment, valsat; signed int h = (signed int) hue; unsigned int s = (sat - 32768) * 2; /* rescale */ unsigned int v = val; unsigned int p; /* the registers controling gain are 8 bit of which we affect only the last 4 bits with our gain. we know that if saturation is 0, (unsaturated) then we're grayscale (center axis of the colour cone) so we set rgb=value. we use a formula obtained from wikipedia to map the cone to the RGB plane. it's as follows for the human value case of h=0..360, s=0..1, v=0..1 h_i = h/60 % 6 , f = h/60 - h_i , p = v(1-s) q = v(1 - f*s) , t = v(1 - (1-f)s) h_i==0 => r=v , g=t, b=p h_i==1 => r=q , g=v, b=p h_i==2 => r=p , g=v, b=t h_i==3 => r=p , g=q, b=v h_i==4 => r=t , g=p, b=v h_i==5 => r=v , g=p, b=q the bottom side (the point) and the stuff just up of that is black so we simplify those two cases. */ if (sat < 32768) { /* anything less than this is unsaturated */ *r = val; *g = val; *b = val; return; } if (val <= (0xFFFF/8)) { /* anything less than this is black */ *r = 0; *g = 0; *b = 0; return; } /* the rest of this code is copying tukkat's implementation of the hsv2rgb conversion as taken from qc-usb-messenger code. the 10923 is 0xFFFF/6 to divide the cone into 6 sectors. */ segment = (h + 10923) & 0xFFFF; segment = segment*3 >> 16; /* 0..2: 0=R, 1=G, 2=B */ hue -= segment * 21845; /* -10923..10923 */ h = hue; h *= 3; valsat = v*s >> 16; /* 0..65534 */ p = v - valsat; if (h >= 0) { unsigned int t = v - (valsat * (32769 - h) >> 15); switch (segment) { case 0: /* R-> */ *r = v; *g = t; *b = p; break; case 1: /* G-> */ *r = p; *g = v; *b = t; break; case 2: /* B-> */ *r = t; *g = p; *b = v; break; } } else { unsigned int q = v - (valsat * (32769 + h) >> 15); switch (segment) { case 0: /* ->R */ *r = v; *g = p; *b = q; break; case 1: /* ->G */ *r = q; *g = v; *b = p; break; case 2: /* ->B */ *r = p; *g = q; *b = v; break; } } } static int qcm_sensor_set_gains(struct uvd *uvd, u16 hue, u16 saturation, u16 value) { int ret; u16 r=0,g=0,b=0; /* this code is based on qc-usb-messenger */ qcm_hsv2rgb(hue, saturation, value, &r, &g, &b); r >>= 12; g >>= 12; b >>= 12; /* min val is 8 */ r = max((u16) 8, r); g = max((u16) 8, g); b = max((u16) 8, b); r |= 0x30; g |= 0x30; b |= 0x30; /* set the r,g,b gain registers */ CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x0509, r)); CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x050A, g)); CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x050B, b)); /* doing as qc-usb did */ CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x050C, 0x2A)); CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x050D, 0x01)); CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143F, 0x01)); return 0; } static int qcm_sensor_set_exposure(struct uvd *uvd, int exposure) { int ret; int formedval; /* calculation was from qc-usb-messenger driver */ formedval = ( exposure >> 12 ); /* max value for formedval is 14 */ formedval = min(formedval, 14); CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143A, 0xF0 | formedval)); CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143F, 0x01)); return 0; } static int qcm_sensor_setlevels(struct uvd *uvd, int brightness, int contrast, int hue, int colour) { int ret; /* brightness is exposure, contrast is gain, colour is saturation */ CHECK_RET(ret, qcm_sensor_set_exposure(uvd, brightness)); CHECK_RET(ret, qcm_sensor_set_gains(uvd, hue, colour, contrast)); return 0; } static int qcm_sensor_setsize(struct uvd *uvd, u8 size) { int ret; CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x1505, size)); return 0; } static int qcm_sensor_set_shutter(struct uvd *uvd, int whiteness) { int ret; /* some rescaling as done by the qc-usb-messenger code */ if (whiteness > 0xC000) whiteness = 0xC000 + (whiteness & 0x3FFF)*8; CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143D, (whiteness >> 8) & 0xFF)); CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143E, (whiteness >> 16) & 0x03)); CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x143F, 0x01)); return 0; } static int qcm_sensor_init(struct uvd *uvd) { struct qcm *cam = (struct qcm *) uvd->user_data; int ret; int i; for (i=0; i < sizeof(regval_table)/sizeof(regval_table[0]) ; i++) { CHECK_RET(ret, qcm_stv_setb(uvd->dev, regval_table[i].reg, regval_table[i].val)); } CHECK_RET(ret, qcm_stv_setw(uvd->dev, 0x15c1, cpu_to_le16(ISOC_PACKET_SIZE))); CHECK_RET(ret, qcm_stv_setb(uvd->dev, 0x15c3, 0x08)); CHECK_RET(ret, ret = qcm_stv_setb(uvd->dev, 0x143f, 0x01)); CHECK_RET(ret, qcm_stv_setb(uvd->dev, STV_ISO_ENABLE, 0x00)); CHECK_RET(ret, qcm_sensor_setsize(uvd, camera_sizes[cam->size].cmd)); CHECK_RET(ret, qcm_sensor_setlevels(uvd, uvd->vpic.brightness, uvd->vpic.contrast, uvd->vpic.hue, uvd->vpic.colour)); CHECK_RET(ret, qcm_sensor_set_shutter(uvd, uvd->vpic.whiteness)); CHECK_RET(ret, qcm_sensor_setsize(uvd, camera_sizes[cam->size].cmd)); return 0; } static int qcm_set_camera_size(struct uvd *uvd) { int ret; struct qcm *cam = (struct qcm *) uvd->user_data; CHECK_RET(ret, qcm_sensor_setsize(uvd, camera_sizes[cam->size].cmd)); cam->width = camera_sizes[cam->size].width; cam->height = camera_sizes[cam->size].height; uvd->videosize = VIDEOSIZE(cam->width, cam->height); return 0; } static int qcm_setup_on_open(struct uvd *uvd) { int ret; CHECK_RET(ret, qcm_sensor_set_gains(uvd, uvd->vpic.hue, uvd->vpic.colour, uvd->vpic.contrast)); CHECK_RET(ret, qcm_sensor_set_exposure(uvd, uvd->vpic.brightness)); CHECK_RET(ret, qcm_sensor_set_shutter(uvd, uvd->vpic.whiteness)); CHECK_RET(ret, qcm_set_camera_size(uvd)); CHECK_RET(ret, qcm_camera_on(uvd)); return 0; } static void qcm_adjust_picture(struct uvd *uvd) { int ret; struct qcm *cam = (struct qcm *) uvd->user_data; ret = qcm_camera_off(uvd); if (ret) { err("can't turn camera off. abandoning pic adjustment"); return; } /* if there's been a change in contrast, hue, or colour then we need to recalculate hsv in order to update gains */ if ((cam->contrast != uvd->vpic.contrast) || (cam->hue != uvd->vpic.hue) || (cam->colour != uvd->vpic.colour)) { cam->contrast = uvd->vpic.contrast; cam->hue = uvd->vpic.hue; cam->colour = uvd->vpic.colour; ret = qcm_sensor_set_gains(uvd, cam->hue, cam->colour, cam->contrast); if (ret) { err("can't set gains. abandoning pic adjustment"); return; } } if (cam->brightness != uvd->vpic.brightness) { cam->brightness = uvd->vpic.brightness; ret = qcm_sensor_set_exposure(uvd, cam->brightness); if (ret) { err("can't set exposure. abandoning pic adjustment"); return; } } if (cam->whiteness != uvd->vpic.whiteness) { cam->whiteness = uvd->vpic.whiteness; qcm_sensor_set_shutter(uvd, cam->whiteness); if (ret) { err("can't set shutter. abandoning pic adjustment"); return; } } ret = qcm_camera_on(uvd); if (ret) { err("can't reenable camera. pic adjustment failed"); return; } } static int qcm_process_frame(struct uvd *uvd, u8 *cdata, int framelen) { int datalen; int totaldata; struct framehdr { __be16 id; __be16 len; }; struct framehdr *fhdr; totaldata = 0; while (framelen) { fhdr = (struct framehdr *) cdata; datalen = be16_to_cpu(fhdr->len); framelen -= 4; cdata += 4; if ((fhdr->id) == cpu_to_be16(0x8001)) { RingQueue_Enqueue(&uvd->dp, marker, 4); totaldata += 4; continue; } if ((fhdr->id & cpu_to_be16(0xFF00)) == cpu_to_be16(0x0200)) { RingQueue_Enqueue(&uvd->dp, cdata, datalen); totaldata += datalen; } framelen -= datalen; cdata += datalen; } return totaldata; } static int qcm_compress_iso(struct uvd *uvd, struct urb *dataurb) { int totlen; int i; unsigned char *cdata; totlen=0; for (i = 0; i < dataurb->number_of_packets; i++) { int n = dataurb->iso_frame_desc[i].actual_length; int st = dataurb->iso_frame_desc[i].status; cdata = dataurb->transfer_buffer + dataurb->iso_frame_desc[i].offset; if (st < 0) { warn("Data error: packet=%d. len=%d. status=%d.", i, n, st); uvd->stats.iso_err_count++; continue; } if (!n) continue; totlen += qcm_process_frame(uvd, cdata, n); } return totlen; } static void resubmit_urb(struct uvd *uvd, struct urb *urb) { int ret; urb->dev = uvd->dev; ret = usb_submit_urb(urb, GFP_ATOMIC); if (ret) err("usb_submit_urb error (%d)", ret); } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) static void qcm_isoc_irq(struct urb *urb, struct pt_regs *regs) #else static void qcm_isoc_irq(struct urb *urb) #endif { int len; struct uvd *uvd = urb->context; if (!CAMERA_IS_OPERATIONAL(uvd)) return; if (!uvd->streaming) return; uvd->stats.urb_count++; if (!urb->actual_length) { resubmit_urb(uvd, urb); return; } len = qcm_compress_iso(uvd, urb); resubmit_urb(uvd, urb); uvd->stats.urb_length = len; uvd->stats.data_count += len; if (len) RingQueue_WakeUpInterruptible(&uvd->dp); } static int qcm_start_data(struct uvd *uvd) { struct qcm *cam = (struct qcm *) uvd->user_data; int i; int errflag; int pktsz; int err; pktsz = uvd->iso_packet_len; if (!CAMERA_IS_OPERATIONAL(uvd)) { err("Camera is not operational"); return -EFAULT; } err = usb_set_interface(uvd->dev, uvd->iface, uvd->ifaceAltActive); if (err < 0) { err("usb_set_interface error"); uvd->last_error = err; return -EBUSY; } for (i=0; i < USBVIDEO_NUMSBUF; i++) { int j, k; struct urb *urb = uvd->sbuf[i].urb; urb->dev = uvd->dev; urb->context = uvd; urb->pipe = usb_rcvisocpipe(uvd->dev, uvd->video_endp); urb->interval = 1; urb->transfer_flags = URB_ISO_ASAP; urb->transfer_buffer = uvd->sbuf[i].data; urb->complete = qcm_isoc_irq; urb->number_of_packets = FRAMES_PER_DESC; urb->transfer_buffer_length = pktsz * FRAMES_PER_DESC; for (j=k=0; j < FRAMES_PER_DESC; j++, k += pktsz) { urb->iso_frame_desc[j].offset = k; urb->iso_frame_desc[j].length = pktsz; } } uvd->streaming = 1; uvd->curframe = -1; for (i=0; i < USBVIDEO_NUMSBUF; i++) { errflag = usb_submit_urb(uvd->sbuf[i].urb, GFP_KERNEL); if (errflag) err ("usb_submit_isoc(%d) ret %d", i, errflag); } CHECK_RET(err, qcm_setup_input_int(cam, uvd)); CHECK_RET(err, qcm_camera_on(uvd)); return 0; } static void qcm_stop_data(struct uvd *uvd) { struct qcm *cam = (struct qcm *) uvd->user_data; int i, j; int ret; if ((uvd == NULL) || (!uvd->streaming) || (uvd->dev == NULL)) return; ret = qcm_camera_off(uvd); if (ret) warn("couldn't turn the cam off."); uvd->streaming = 0; /* Unschedule all of the iso td's */ for (i=0; i < USBVIDEO_NUMSBUF; i++) usb_kill_urb(uvd->sbuf[i].urb); qcm_stop_int_data(cam); if (!uvd->remove_pending) { /* Set packet size to 0 */ j = usb_set_interface(uvd->dev, uvd->iface, uvd->ifaceAltInactive); if (j < 0) { err("usb_set_interface() error %d.", j); uvd->last_error = j; } } } static void qcm_process_isoc(struct uvd *uvd, struct usbvideo_frame *frame) { struct qcm *cam = (struct qcm *) uvd->user_data; int x; struct rgb *rgbL0; struct rgb *rgbL1; struct bayL0 *bayL0; struct bayL1 *bayL1; int hor,ver,hordel,verdel; assert(frame != NULL); switch (cam->size) { case SIZE_160X120: hor = 162; ver = 124; hordel = 1; verdel = 2; break; case SIZE_320X240: default: hor = 324; ver = 248; hordel = 2; verdel = 4; break; } if (frame->scanstate == ScanState_Scanning) { while (RingQueue_GetLength(&uvd->dp) >= 4 + (hor*verdel + hordel)) { if ((RING_QUEUE_PEEK(&uvd->dp, 0) == 0x00) && (RING_QUEUE_PEEK(&uvd->dp, 1) == 0xff) && (RING_QUEUE_PEEK(&uvd->dp, 2) == 0x00) && (RING_QUEUE_PEEK(&uvd->dp, 3) == 0xff)) { frame->curline = 0; frame->scanstate = ScanState_Lines; frame->frameState = FrameState_Grabbing; RING_QUEUE_DEQUEUE_BYTES(&uvd->dp, 4); /* * if we're starting, we need to discard the first * 4 lines of y bayer data * and the first 2 gr elements of x bayer data */ RING_QUEUE_DEQUEUE_BYTES(&uvd->dp, (hor*verdel + hordel)); break; } RING_QUEUE_DEQUEUE_BYTES(&uvd->dp, 1); } } if (frame->scanstate == ScanState_Scanning) return; /* now we can start processing bayer data so long as we have at least * 2 lines worth of data. this is the simplest demosaicing method that * I could think of. I use each 2x2 bayer element without interpolation * to generate 4 rgb pixels. */ while ( frame->curline < cam->height && (RingQueue_GetLength(&uvd->dp) >= hor*2)) { /* get 2 lines of bayer for demosaicing * into 2 lines of RGB */ RingQueue_Dequeue(&uvd->dp, cam->scratch, hor*2); bayL0 = (struct bayL0 *) cam->scratch; bayL1 = (struct bayL1 *) (cam->scratch + hor); /* frame->curline is the rgb y line */ rgbL0 = (struct rgb *) ( frame->data + (cam->width*3*frame->curline)); /* w/2 because we're already doing 2 pixels */ rgbL1 = rgbL0 + (cam->width/2); for (x=0; x < cam->width; x+=2) { rgbL0->r = bayL0->r; rgbL0->g = bayL0->g; rgbL0->b = bayL1->b; rgbL0->r2 = bayL0->r; rgbL0->g2 = bayL1->g; rgbL0->b2 = bayL1->b; rgbL1->r = bayL0->r; rgbL1->g = bayL1->g; rgbL1->b = bayL1->b; rgbL1->r2 = bayL0->r; rgbL1->g2 = bayL1->g; rgbL1->b2 = bayL1->b; rgbL0++; rgbL1++; bayL0++; bayL1++; } frame->seqRead_Length += cam->width*3*2; frame->curline += 2; } /* See if we filled the frame */ if (frame->curline == cam->height) { frame->frameState = FrameState_Done_Hold; frame->curline = 0; uvd->curframe = -1; uvd->stats.frame_num++; } } /* taken from konicawc */ static int qcm_set_video_mode(struct uvd *uvd, struct video_window *vw) { int ret; int newsize; int oldsize; int x = vw->width; int y = vw->height; struct qcm *cam = (struct qcm *) uvd->user_data; if (x > 0 && y > 0) { DEBUG(2, "trying to find size %d,%d", x, y); for (newsize = 0; newsize <= MAX_FRAME_SIZE; newsize++) { if ((camera_sizes[newsize].width == x) && (camera_sizes[newsize].height == y)) break; } } else newsize = cam->size; if (newsize > MAX_FRAME_SIZE) { DEBUG(1, "couldn't find size %d,%d", x, y); return -EINVAL; } if (newsize == cam->size) { DEBUG(1, "Nothing to do"); return 0; } qcm_stop_data(uvd); if (cam->size != newsize) { oldsize = cam->size; cam->size = newsize; ret = qcm_set_camera_size(uvd); if (ret) { err("Couldn't set camera size, err=%d",ret); /* restore the original size */ cam->size = oldsize; return ret; } } /* Flush the input queue and clear any current frame in progress */ RingQueue_Flush(&uvd->dp); if (uvd->curframe != -1) { uvd->frame[uvd->curframe].curline = 0; uvd->frame[uvd->curframe].seqRead_Length = 0; uvd->frame[uvd->curframe].seqRead_Index = 0; } CHECK_RET(ret, qcm_start_data(uvd)); return 0; } static int qcm_configure_video(struct uvd *uvd) { int ret; memset(&uvd->vpic, 0, sizeof(uvd->vpic)); memset(&uvd->vpic_old, 0x55, sizeof(uvd->vpic_old)); uvd->vpic.colour = colour; uvd->vpic.hue = hue; uvd->vpic.brightness = brightness; uvd->vpic.contrast = contrast; uvd->vpic.whiteness = whiteness; uvd->vpic.depth = 24; uvd->vpic.palette = VIDEO_PALETTE_RGB24; memset(&uvd->vcap, 0, sizeof(uvd->vcap)); strcpy(uvd->vcap.name, "QCM USB Camera"); uvd->vcap.type = VID_TYPE_CAPTURE; uvd->vcap.channels = 1; uvd->vcap.audios = 0; uvd->vcap.minwidth = camera_sizes[SIZE_160X120].width; uvd->vcap.minheight = camera_sizes[SIZE_160X120].height; uvd->vcap.maxwidth = camera_sizes[SIZE_320X240].width; uvd->vcap.maxheight = camera_sizes[SIZE_320X240].height; memset(&uvd->vchan, 0, sizeof(uvd->vchan)); uvd->vchan.flags = 0 ; uvd->vchan.tuners = 0; uvd->vchan.channel = 0; uvd->vchan.type = VIDEO_TYPE_CAMERA; strcpy(uvd->vchan.name, "Camera"); CHECK_RET(ret, qcm_sensor_init(uvd)); return 0; } static int qcm_probe(struct usb_interface *intf, const struct usb_device_id *devid) { int err; struct uvd *uvd; struct usb_device *dev = interface_to_usbdev(intf); struct qcm *cam; size_t buffer_size; unsigned char video_ep; struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; int i,j; unsigned int ifacenum, ifacenum_inact=0; __le16 sensor_id; /* we don't support multiconfig cams */ if (dev->descriptor.bNumConfigurations != 1) return -ENODEV; /* first check for the video interface and not * the audio interface */ interface = &intf->cur_altsetting[0]; if ((interface->desc.bInterfaceClass != USB_CLASS_VENDOR_SPEC) || (interface->desc.bInterfaceSubClass != USB_CLASS_VENDOR_SPEC)) return -ENODEV; /* walk through each endpoint in each setting in the interface stop when we find the one that's an isochronous IN endpoint. */ for (i=0; i < intf->num_altsetting; i++) { interface = &intf->cur_altsetting[i]; ifacenum = interface->desc.bAlternateSetting; /* walk the end points */ for (j=0; j < interface->desc.bNumEndpoints; j++) { endpoint = &interface->endpoint[j].desc; if ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_IN) continue; /* not input then not good */ buffer_size = le16_to_cpu(endpoint->wMaxPacketSize); if (!buffer_size) { ifacenum_inact = ifacenum; continue; /* 0 pkt size is not what we want */ } if ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_ISOC) { video_ep = endpoint->bEndpointAddress; /* break out of the search */ goto good_videoep; } } } /* failed out since nothing useful was found */ err("No suitable endpoint was found\n"); return -ENODEV; good_videoep: /* disable isochronous stream before doing anything else */ err = qcm_stv_setb(dev, STV_ISO_ENABLE, 0); if (err < 0) { err("Failed to disable sensor stream"); return -EIO; } /* Check that this is the same unknown sensor that is known to work. This sensor is suspected to be the ST VV6422C001. I'll check the same value that the qc-usb driver checks. This value is probably not even the sensor ID since it matches the USB dev ID. Oh well. If it doesn't match, it's probably a diff sensor so exit and apologize. */ err = qcm_stv_getw(dev, CMOS_SENSOR_IDREV, &sensor_id); if (err < 0) { err("Couldn't read sensor values. Err %d\n",err); return err; } if (sensor_id != cpu_to_le16(0x08F0)) { err("Sensor ID %x != %x. Unsupported. Sorry\n", le16_to_cpu(sensor_id), (0x08F0)); return -ENODEV; } uvd = usbvideo_AllocateDevice(cams); if (!uvd) return -ENOMEM; cam = (struct qcm *) uvd->user_data; /* buf for doing demosaicing */ cam->scratch = kmalloc(324*2, GFP_KERNEL); if (!cam->scratch) /* uvd freed in dereg */ return -ENOMEM; /* yes, if we fail after here, cam->scratch gets freed by qcm_free_uvd */ err = qcm_alloc_int_urb(cam); if (err < 0) return err; /* yes, if we fail after here, int urb gets freed by qcm_free_uvd */ RESTRICT_TO_RANGE(size, SIZE_160X120, SIZE_320X240); cam->width = camera_sizes[size].width; cam->height = camera_sizes[size].height; cam->size = size; uvd->debug = debug; uvd->flags = 0; uvd->dev = dev; uvd->iface = intf->altsetting->desc.bInterfaceNumber; uvd->ifaceAltActive = ifacenum; uvd->ifaceAltInactive = ifacenum_inact; uvd->video_endp = video_ep; uvd->iso_packet_len = buffer_size; uvd->paletteBits = 1L << VIDEO_PALETTE_RGB24; uvd->defaultPalette = VIDEO_PALETTE_RGB24; uvd->canvas = VIDEOSIZE(320, 240); uvd->videosize = VIDEOSIZE(cam->width, cam->height); err = qcm_configure_video(uvd); if (err) { err("failed to configure video settings"); return err; } err = usbvideo_RegisterVideoDevice(uvd); if (err) { /* the uvd gets freed in Deregister */ err("usbvideo_RegisterVideoDevice() failed."); return err; } uvd->max_frame_size = (320 * 240 * 3); qcm_register_input(cam, dev); usb_set_intfdata(intf, uvd); return 0; } static void qcm_free_uvd(struct uvd *uvd) { struct qcm *cam = (struct qcm *) uvd->user_data; kfree(cam->scratch); qcm_unregister_input(cam); qcm_free_int(cam); } static struct usbvideo_cb qcm_driver = { .probe = qcm_probe, .setupOnOpen = qcm_setup_on_open, .processData = qcm_process_isoc, .setVideoMode = qcm_set_video_mode, .startDataPump = qcm_start_data, .stopDataPump = qcm_stop_data, .adjustPicture = qcm_adjust_picture, .userFree = qcm_free_uvd }; static int __init qcm_init(void) { info(DRIVER_DESC " " DRIVER_VERSION); return usbvideo_register( &cams, MAX_CAMERAS, sizeof(struct qcm), "QCM", &qcm_driver, THIS_MODULE, qcm_table); } static void __exit qcm_exit(void) { usbvideo_Deregister(&cams); } module_param(size, int, 0); MODULE_PARM_DESC(size, "Initial Size 0: 160x120 1: 320x240"); module_param(colour, int, 0); MODULE_PARM_DESC(colour, "Initial colour"); module_param(hue, int, 0); MODULE_PARM_DESC(hue, "Initial hue"); module_param(brightness, int, 0); MODULE_PARM_DESC(brightness, "Initial brightness"); module_param(contrast, int, 0); MODULE_PARM_DESC(contrast, "Initial contrast"); module_param(whiteness, int, 0); MODULE_PARM_DESC(whiteness, "Initial whiteness"); #ifdef CONFIG_USB_DEBUG module_param(debug, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Debug level: 0-9 (default=0)"); #endif module_init(qcm_init); module_exit(qcm_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jaya Kumar"); MODULE_DESCRIPTION("QCM USB Camera"); MODULE_SUPPORTED_DEVICE("QCM USB Camera");