/* * bt87x.c - Brooktree Bt878/Bt879 driver for ALSA * * Copyright (c) Clemens Ladisch * * based on btaudio.c by Gerd Knorr * * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "compat.h" #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,16) /* structs that used to be typedefs */ #define snd_card _snd_card #define snd_pcm _snd_pcm #define snd_pcm_substream _snd_pcm_substream #define snd_pcm_hardware _snd_pcm_hardware #define snd_pcm_runtime _snd_pcm_runtime #define snd_pcm_hw_params sndrv_pcm_hw_params #define snd_pcm_ops _snd_pcm_ops #define snd_ctl_elem_info sndrv_ctl_elem_info #define snd_ctl_elem_value sndrv_ctl_elem_value #undef snd_kcontrol #define snd_kcontrol _snd_kcontrol #define snd_kcontrol_new _snd_kcontrol_new #undef snd_device #define snd_device _snd_device #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,14) /* From linux/pch_ids.h, appeared in 2.6.14 */ #define PCI_DEVICE_ID_BROOKTREE_879 0x0879 #endif MODULE_AUTHOR("Clemens Ladisch "); MODULE_DESCRIPTION("Brooktree Bt87x audio driver"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Brooktree,Bt878}," "{Brooktree,Bt879}}"); static int index[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -2}; /* Exclude the first card */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ static int digital_rate[SNDRV_CARDS]; /* digital input rate */ static int load_all; /* allow to load the non-whitelisted cards */ module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for Bt87x soundcard"); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for Bt87x soundcard"); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable Bt87x soundcard"); module_param_array(digital_rate, int, NULL, 0444); MODULE_PARM_DESC(digital_rate, "Digital input rate for Bt87x soundcard"); module_param(load_all, bool, 0444); MODULE_PARM_DESC(load_all, "Allow to load the non-whitelisted cards"); /* register offsets */ #define REG_INT_STAT 0x100 /* interrupt status */ #define REG_INT_MASK 0x104 /* interrupt mask */ #define REG_GPIO_DMA_CTL 0x10c /* audio control */ #define REG_PACKET_LEN 0x110 /* audio packet lengths */ #define REG_RISC_STRT_ADD 0x114 /* RISC program start address */ #define REG_RISC_COUNT 0x120 /* RISC program counter */ /* interrupt bits */ #define INT_OFLOW (1 << 3) /* audio A/D overflow */ #define INT_RISCI (1 << 11) /* RISC instruction IRQ bit set */ #define INT_FBUS (1 << 12) /* FIFO overrun due to bus access latency */ #define INT_FTRGT (1 << 13) /* FIFO overrun due to target latency */ #define INT_FDSR (1 << 14) /* FIFO data stream resynchronization */ #define INT_PPERR (1 << 15) /* PCI parity error */ #define INT_RIPERR (1 << 16) /* RISC instruction parity error */ #define INT_PABORT (1 << 17) /* PCI master or target abort */ #define INT_OCERR (1 << 18) /* invalid opcode */ #define INT_SCERR (1 << 19) /* sync counter overflow */ #define INT_RISC_EN (1 << 27) /* DMA controller running */ #define INT_RISCS_SHIFT 28 /* RISC status bits */ /* audio control bits */ #define CTL_FIFO_ENABLE (1 << 0) /* enable audio data FIFO */ #define CTL_RISC_ENABLE (1 << 1) /* enable audio DMA controller */ #define CTL_PKTP_4 (0 << 2) /* packet mode FIFO trigger point - 4 DWORDs */ #define CTL_PKTP_8 (1 << 2) /* 8 DWORDs */ #define CTL_PKTP_16 (2 << 2) /* 16 DWORDs */ #define CTL_ACAP_EN (1 << 4) /* enable audio capture */ #define CTL_DA_APP (1 << 5) /* GPIO input */ #define CTL_DA_IOM_AFE (0 << 6) /* audio A/D input */ #define CTL_DA_IOM_DA (1 << 6) /* digital audio input */ #define CTL_DA_SDR_SHIFT 8 /* DDF first stage decimation rate */ #define CTL_DA_SDR_MASK (0xf<< 8) #define CTL_DA_LMT (1 << 12) /* limit audio data values */ #define CTL_DA_ES2 (1 << 13) /* enable DDF stage 2 */ #define CTL_DA_SBR (1 << 14) /* samples rounded to 8 bits */ #define CTL_DA_DPM (1 << 15) /* data packet mode */ #define CTL_DA_LRD_SHIFT 16 /* ALRCK delay */ #define CTL_DA_MLB (1 << 21) /* MSB/LSB format */ #define CTL_DA_LRI (1 << 22) /* left/right indication */ #define CTL_DA_SCE (1 << 23) /* sample clock edge */ #define CTL_A_SEL_STV (0 << 24) /* TV tuner audio input */ #define CTL_A_SEL_SFM (1 << 24) /* FM audio input */ #define CTL_A_SEL_SML (2 << 24) /* mic/line audio input */ #define CTL_A_SEL_SMXC (3 << 24) /* MUX bypass */ #define CTL_A_SEL_SHIFT 24 #define CTL_A_SEL_MASK (3 << 24) #define CTL_A_PWRDN (1 << 26) /* analog audio power-down */ #define CTL_A_G2X (1 << 27) /* audio gain boost */ #define CTL_A_GAIN_SHIFT 28 /* audio input gain */ #define CTL_A_GAIN_MASK (0xf<<28) /* RISC instruction opcodes */ #define RISC_WRITE (0x1 << 28) /* write FIFO data to memory at address */ #define RISC_WRITEC (0x5 << 28) /* write FIFO data to memory at current address */ #define RISC_SKIP (0x2 << 28) /* skip FIFO data */ #define RISC_JUMP (0x7 << 28) /* jump to address */ #define RISC_SYNC (0x8 << 28) /* synchronize with FIFO */ /* RISC instruction bits */ #define RISC_BYTES_ENABLE (0xf << 12) /* byte enable bits */ #define RISC_RESYNC ( 1 << 15) /* disable FDSR errors */ #define RISC_SET_STATUS_SHIFT 16 /* set status bits */ #define RISC_RESET_STATUS_SHIFT 20 /* clear status bits */ #define RISC_IRQ ( 1 << 24) /* interrupt */ #define RISC_EOL ( 1 << 26) /* end of line */ #define RISC_SOL ( 1 << 27) /* start of line */ /* SYNC status bits values */ #define RISC_SYNC_FM1 0x6 #define RISC_SYNC_VRO 0xc #define ANALOG_CLOCK 1792000 #ifdef CONFIG_SND_BT87X_OVERCLOCK #define CLOCK_DIV_MIN 1 #else #define CLOCK_DIV_MIN 4 #endif #define CLOCK_DIV_MAX 15 #define ERROR_INTERRUPTS (INT_FBUS | INT_FTRGT | INT_PPERR | \ INT_RIPERR | INT_PABORT | INT_OCERR) #define MY_INTERRUPTS (INT_RISCI | ERROR_INTERRUPTS) /* SYNC, one WRITE per line, one extra WRITE per page boundary, SYNC, JUMP */ #define MAX_RISC_SIZE ((1 + 255 + (PAGE_ALIGN(255 * 4092) / PAGE_SIZE - 1) + 1 + 1) * 8) struct snd_bt87x { struct snd_card *card; struct pci_dev *pci; void __iomem *mmio; int irq; int dig_rate; spinlock_t reg_lock; long opened; struct snd_pcm_substream *substream; struct snd_dma_buffer dma_risc; unsigned int line_bytes; unsigned int lines; u32 reg_control; u32 interrupt_mask; int current_line; int pci_parity_errors; }; enum { DEVICE_DIGITAL, DEVICE_ANALOG }; static inline u32 snd_bt87x_readl(struct snd_bt87x *chip, u32 reg) { return readl(chip->mmio + reg); } static inline void snd_bt87x_writel(struct snd_bt87x *chip, u32 reg, u32 value) { writel(value, chip->mmio + reg); } static int snd_bt87x_create_risc(struct snd_bt87x *chip, struct snd_pcm_substream *substream, unsigned int periods, unsigned int period_bytes) { struct snd_sg_buf *sgbuf = snd_pcm_substream_sgbuf(substream); unsigned int i, offset; u32 *risc; if (chip->dma_risc.area == NULL) { if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), PAGE_ALIGN(MAX_RISC_SIZE), &chip->dma_risc) < 0) return -ENOMEM; } risc = (u32 *)chip->dma_risc.area; offset = 0; *risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_FM1); *risc++ = cpu_to_le32(0); for (i = 0; i < periods; ++i) { u32 rest; rest = period_bytes; do { u32 cmd, len; len = PAGE_SIZE - (offset % PAGE_SIZE); if (len > rest) len = rest; cmd = RISC_WRITE | len; if (rest == period_bytes) { u32 block = i * 16 / periods; cmd |= RISC_SOL; cmd |= block << RISC_SET_STATUS_SHIFT; cmd |= (~block & 0xf) << RISC_RESET_STATUS_SHIFT; } if (len == rest) cmd |= RISC_EOL | RISC_IRQ; *risc++ = cpu_to_le32(cmd); *risc++ = cpu_to_le32((u32)snd_pcm_sgbuf_get_addr(sgbuf, offset)); offset += len; rest -= len; } while (rest > 0); } *risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_VRO); *risc++ = cpu_to_le32(0); *risc++ = cpu_to_le32(RISC_JUMP); *risc++ = cpu_to_le32(chip->dma_risc.addr); chip->line_bytes = period_bytes; chip->lines = periods; return 0; } static void snd_bt87x_free_risc(struct snd_bt87x *chip) { if (chip->dma_risc.area) { snd_dma_free_pages(&chip->dma_risc); chip->dma_risc.area = NULL; } } static void snd_bt87x_pci_error(struct snd_bt87x *chip, unsigned int status) { u16 pci_status; pci_read_config_word(chip->pci, PCI_STATUS, &pci_status); pci_status &= PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY; pci_write_config_word(chip->pci, PCI_STATUS, pci_status); if (pci_status != PCI_STATUS_DETECTED_PARITY) snd_printk(KERN_ERR "Aieee - PCI error! status %#08x, PCI status %#04x\n", status & ERROR_INTERRUPTS, pci_status); else { snd_printk(KERN_ERR "Aieee - PCI parity error detected!\n"); /* error 'handling' similar to aic7xxx_pci.c: */ chip->pci_parity_errors++; if (chip->pci_parity_errors > 20) { snd_printk(KERN_ERR "Too many PCI parity errors observed.\n"); snd_printk(KERN_ERR "Some device on this bus is generating bad parity.\n"); snd_printk(KERN_ERR "This is an error *observed by*, not *generated by*, this card.\n"); snd_printk(KERN_ERR "PCI parity error checking has been disabled.\n"); chip->interrupt_mask &= ~(INT_PPERR | INT_RIPERR); snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask); } } } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) static irqreturn_t snd_bt87x_interrupt(int irq, void *dev_id, struct pt_regs *regs) #else static irqreturn_t snd_bt87x_interrupt(int irq, void *dev_id) #endif { struct snd_bt87x *chip = dev_id; unsigned int status, irq_status; status = snd_bt87x_readl(chip, REG_INT_STAT); irq_status = status & chip->interrupt_mask; if (!irq_status) return IRQ_NONE; snd_bt87x_writel(chip, REG_INT_STAT, irq_status); if (irq_status & ERROR_INTERRUPTS) { if (irq_status & (INT_FBUS | INT_FTRGT)) snd_printk(KERN_WARNING "FIFO overrun, status %#08x\n", status); if (irq_status & INT_OCERR) snd_printk(KERN_ERR "internal RISC error, status %#08x\n", status); if (irq_status & (INT_PPERR | INT_RIPERR | INT_PABORT)) snd_bt87x_pci_error(chip, irq_status); } if ((irq_status & INT_RISCI) && (chip->reg_control & CTL_ACAP_EN)) { int current_block, irq_block; /* assume that exactly one line has been recorded */ chip->current_line = (chip->current_line + 1) % chip->lines; /* but check if some interrupts have been skipped */ current_block = chip->current_line * 16 / chip->lines; irq_block = status >> INT_RISCS_SHIFT; if (current_block != irq_block) chip->current_line = (irq_block * chip->lines + 15) / 16; snd_pcm_period_elapsed(chip->substream); } return IRQ_HANDLED; } static struct snd_pcm_hardware snd_bt87x_digital_hw = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID, .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = 0, /* set at runtime */ .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 255 * 4092, .period_bytes_min = 32, .period_bytes_max = 4092, .periods_min = 2, .periods_max = 255, }; static struct snd_pcm_hardware snd_bt87x_analog_hw = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8, .rates = SNDRV_PCM_RATE_KNOT, .rate_min = ANALOG_CLOCK / CLOCK_DIV_MAX, .rate_max = ANALOG_CLOCK / CLOCK_DIV_MIN, .channels_min = 1, .channels_max = 1, .buffer_bytes_max = 255 * 4092, .period_bytes_min = 32, .period_bytes_max = 4092, .periods_min = 2, .periods_max = 255, }; static int snd_bt87x_set_digital_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime) { static struct { int rate; unsigned int bit; } ratebits[] = { {8000, SNDRV_PCM_RATE_8000}, {11025, SNDRV_PCM_RATE_11025}, {16000, SNDRV_PCM_RATE_16000}, {22050, SNDRV_PCM_RATE_22050}, {32000, SNDRV_PCM_RATE_32000}, {44100, SNDRV_PCM_RATE_44100}, {48000, SNDRV_PCM_RATE_48000} }; int i; chip->reg_control |= CTL_DA_IOM_DA; runtime->hw = snd_bt87x_digital_hw; runtime->hw.rates = SNDRV_PCM_RATE_KNOT; for (i = 0; i < ARRAY_SIZE(ratebits); ++i) if (chip->dig_rate == ratebits[i].rate) { runtime->hw.rates = ratebits[i].bit; break; } runtime->hw.rate_min = chip->dig_rate; runtime->hw.rate_max = chip->dig_rate; return 0; } static int snd_bt87x_set_analog_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,16) static struct snd_ratnum analog_clock = { #else static ratnum_t analog_clock = { #endif .num = ANALOG_CLOCK, .den_min = CLOCK_DIV_MIN, .den_max = CLOCK_DIV_MAX, .den_step = 1 }; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,16) static struct snd_pcm_hw_constraint_ratnums constraint_rates = { #else static snd_pcm_hw_constraint_ratnums_t constraint_rates = { #endif .nrats = 1, .rats = &analog_clock }; chip->reg_control &= ~CTL_DA_IOM_DA; runtime->hw = snd_bt87x_analog_hw; return snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraint_rates); } static int snd_bt87x_pcm_open(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if (test_and_set_bit(0, &chip->opened)) return -EBUSY; if (substream->pcm->device == DEVICE_DIGITAL) err = snd_bt87x_set_digital_hw(chip, runtime); else err = snd_bt87x_set_analog_hw(chip, runtime); if (err < 0) goto _error; err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) goto _error; chip->substream = substream; return 0; _error: clear_bit(0, &chip->opened); smp_mb__after_clear_bit(); return err; } static int snd_bt87x_close(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); chip->substream = NULL; clear_bit(0, &chip->opened); smp_mb__after_clear_bit(); return 0; } static int snd_bt87x_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); int err; err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); if (err < 0) return err; return snd_bt87x_create_risc(chip, substream, params_periods(hw_params), params_period_bytes(hw_params)); } static int snd_bt87x_hw_free(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); snd_bt87x_free_risc(chip); snd_pcm_lib_free_pages(substream); return 0; } static int snd_bt87x_prepare(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int decimation; spin_lock_irq(&chip->reg_lock); chip->reg_control &= ~(CTL_DA_SDR_MASK | CTL_DA_SBR); decimation = (ANALOG_CLOCK + runtime->rate / 4) / runtime->rate; chip->reg_control |= decimation << CTL_DA_SDR_SHIFT; if (runtime->format == SNDRV_PCM_FORMAT_S8) chip->reg_control |= CTL_DA_SBR; snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_bt87x_start(struct snd_bt87x *chip) { spin_lock(&chip->reg_lock); chip->current_line = 0; chip->reg_control |= CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN; snd_bt87x_writel(chip, REG_RISC_STRT_ADD, chip->dma_risc.addr); snd_bt87x_writel(chip, REG_PACKET_LEN, chip->line_bytes | (chip->lines << 16)); snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); spin_unlock(&chip->reg_lock); return 0; } static int snd_bt87x_stop(struct snd_bt87x *chip) { spin_lock(&chip->reg_lock); chip->reg_control &= ~(CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); snd_bt87x_writel(chip, REG_INT_MASK, 0); snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS); spin_unlock(&chip->reg_lock); return 0; } static int snd_bt87x_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); switch (cmd) { case SNDRV_PCM_TRIGGER_START: return snd_bt87x_start(chip); case SNDRV_PCM_TRIGGER_STOP: return snd_bt87x_stop(chip); default: return -EINVAL; } } static snd_pcm_uframes_t snd_bt87x_pointer(struct snd_pcm_substream *substream) { struct snd_bt87x *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; return (snd_pcm_uframes_t)bytes_to_frames(runtime, chip->current_line * chip->line_bytes); } static struct snd_pcm_ops snd_bt87x_pcm_ops = { .open = snd_bt87x_pcm_open, .close = snd_bt87x_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_bt87x_hw_params, .hw_free = snd_bt87x_hw_free, .prepare = snd_bt87x_prepare, .trigger = snd_bt87x_trigger, .pointer = snd_bt87x_pointer, .page = snd_pcm_sgbuf_ops_page, }; static int snd_bt87x_capture_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) { info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; info->count = 1; info->value.integer.min = 0; info->value.integer.max = 15; return 0; } static int snd_bt87x_capture_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); value->value.integer.value[0] = (chip->reg_control & CTL_A_GAIN_MASK) >> CTL_A_GAIN_SHIFT; return 0; } static int snd_bt87x_capture_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); u32 old_control; int changed; spin_lock_irq(&chip->reg_lock); old_control = chip->reg_control; chip->reg_control = (chip->reg_control & ~CTL_A_GAIN_MASK) | (value->value.integer.value[0] << CTL_A_GAIN_SHIFT); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); changed = old_control != chip->reg_control; spin_unlock_irq(&chip->reg_lock); return changed; } static struct snd_kcontrol_new snd_bt87x_capture_volume = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Volume", .info = snd_bt87x_capture_volume_info, .get = snd_bt87x_capture_volume_get, .put = snd_bt87x_capture_volume_put, }; static int snd_bt87x_capture_boost_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) { info->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; info->count = 1; info->value.integer.min = 0; info->value.integer.max = 1; return 0; } static int snd_bt87x_capture_boost_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); value->value.integer.value[0] = !! (chip->reg_control & CTL_A_G2X); return 0; } static int snd_bt87x_capture_boost_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); u32 old_control; int changed; spin_lock_irq(&chip->reg_lock); old_control = chip->reg_control; chip->reg_control = (chip->reg_control & ~CTL_A_G2X) | (value->value.integer.value[0] ? CTL_A_G2X : 0); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); changed = chip->reg_control != old_control; spin_unlock_irq(&chip->reg_lock); return changed; } static struct snd_kcontrol_new snd_bt87x_capture_boost = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Boost", .info = snd_bt87x_capture_boost_info, .get = snd_bt87x_capture_boost_get, .put = snd_bt87x_capture_boost_put, }; static int snd_bt87x_capture_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) { static char *texts[3] = {"TV Tuner", "FM", "Mic/Line"}; info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; info->count = 1; info->value.enumerated.items = 3; if (info->value.enumerated.item > 2) info->value.enumerated.item = 2; strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]); return 0; } static int snd_bt87x_capture_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); value->value.enumerated.item[0] = (chip->reg_control & CTL_A_SEL_MASK) >> CTL_A_SEL_SHIFT; return 0; } static int snd_bt87x_capture_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol); u32 old_control; int changed; spin_lock_irq(&chip->reg_lock); old_control = chip->reg_control; chip->reg_control = (chip->reg_control & ~CTL_A_SEL_MASK) | (value->value.enumerated.item[0] << CTL_A_SEL_SHIFT); snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); changed = chip->reg_control != old_control; spin_unlock_irq(&chip->reg_lock); return changed; } static struct snd_kcontrol_new snd_bt87x_capture_source = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Source", .info = snd_bt87x_capture_source_info, .get = snd_bt87x_capture_source_get, .put = snd_bt87x_capture_source_put, }; static int snd_bt87x_free(struct snd_bt87x *chip) { if (chip->mmio) { snd_bt87x_stop(chip); if (chip->irq >= 0) synchronize_irq(chip->irq); iounmap(chip->mmio); } if (chip->irq >= 0) free_irq(chip->irq, chip); pci_release_regions(chip->pci); pci_disable_device(chip->pci); kfree(chip); return 0; } static int snd_bt87x_dev_free(struct snd_device *device) { struct snd_bt87x *chip = device->device_data; return snd_bt87x_free(chip); } static int __devinit snd_bt87x_pcm(struct snd_bt87x *chip, int device, char *name) { int err; struct snd_pcm *pcm; err = snd_pcm_new(chip->card, name, device, 0, 1, &pcm); if (err < 0) return err; pcm->private_data = chip; strcpy(pcm->name, name); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_bt87x_pcm_ops); return snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG, snd_dma_pci_data(chip->pci), 128 * 1024, ALIGN(255 * 4092, 1024)); } static int __devinit snd_bt87x_create(struct snd_card *card, struct pci_dev *pci, struct snd_bt87x **rchip) { struct snd_bt87x *chip; int err; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,16) static struct snd_device_ops ops = { #else static snd_device_ops_t ops = { #endif .dev_free = snd_bt87x_dev_free }; *rchip = NULL; err = pci_enable_device(pci); if (err < 0) return err; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (!chip) { pci_disable_device(pci); return -ENOMEM; } chip->card = card; chip->pci = pci; chip->irq = -1; spin_lock_init(&chip->reg_lock); if ((err = pci_request_regions(pci, "Bt87x audio")) < 0) { kfree(chip); pci_disable_device(pci); return err; } chip->mmio = ioremap_nocache(pci_resource_start(pci, 0), pci_resource_len(pci, 0)); if (!chip->mmio) { snd_bt87x_free(chip); snd_printk(KERN_ERR "cannot remap io memory\n"); return -ENOMEM; } chip->reg_control = CTL_DA_ES2 | CTL_PKTP_16 | (15 << CTL_DA_SDR_SHIFT); chip->interrupt_mask = MY_INTERRUPTS; snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control); snd_bt87x_writel(chip, REG_INT_MASK, 0); snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS); if (request_irq(pci->irq, snd_bt87x_interrupt, IRQF_SHARED, "Bt87x audio", chip)) { snd_bt87x_free(chip); snd_printk(KERN_ERR "cannot grab irq\n"); return -EBUSY; } chip->irq = pci->irq; pci_set_master(pci); synchronize_irq(chip->irq); err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); if (err < 0) { snd_bt87x_free(chip); return err; } snd_card_set_dev(card, &pci->dev); *rchip = chip; return 0; } #define BT_DEVICE(chip, subvend, subdev, rate) \ { .vendor = PCI_VENDOR_ID_BROOKTREE, \ .device = chip, \ .subvendor = subvend, .subdevice = subdev, \ .driver_data = rate } /* driver_data is the default digital_rate value for that device */ static struct pci_device_id snd_bt87x_ids[] = { /* Hauppauge WinTV series */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0x13eb, 32000), /* Hauppauge WinTV series */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, 0x0070, 0x13eb, 32000), /* Viewcast Osprey 200 */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0xff01, 44100), /* Leadtek Winfast tv 2000xp delux */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x107d, 0x6606, 32000), /* Voodoo TV 200 */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x121a, 0x3000, 32000), /* AVerMedia Studio No. 103, 203, ...? */ BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1461, 0x0003, 48000), { } }; MODULE_DEVICE_TABLE(pci, snd_bt87x_ids); /* cards known not to have audio * (DVB cards use the audio function to transfer MPEG data) */ static struct { unsigned short subvendor, subdevice; } blacklist[] __devinitdata = { {0x0071, 0x0101}, /* Nebula Electronics DigiTV */ {0x11bd, 0x001c}, /* Pinnacle PCTV Sat */ {0x11bd, 0x0026}, /* Pinnacle PCTV SAT CI */ {0x1461, 0x0761}, /* AVermedia AverTV DVB-T */ {0x1461, 0x0771}, /* AVermedia DVB-T 771 */ {0x1822, 0x0001}, /* Twinhan VisionPlus DVB-T */ {0x18ac, 0xd500}, /* DVICO FusionHDTV 5 Lite */ {0x18ac, 0xdb10}, /* DVICO FusionHDTV DVB-T Lite */ {0x270f, 0xfc00}, /* Chaintech Digitop DST-1000 DVB-S */ {0x7063, 0x2000}, /* pcHDTV HD-2000 TV */ }; static struct pci_driver driver; /* return the rate of the card, or a negative value if it's blacklisted */ static int __devinit snd_bt87x_detect_card(struct pci_dev *pci) { int i; const struct pci_device_id *supported; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,13) supported = pci_match_device(&driver, pci); #else supported = pci_match_device(driver.id_table, pci); #endif if (supported && supported->driver_data > 0) return supported->driver_data; for (i = 0; i < ARRAY_SIZE(blacklist); ++i) if (blacklist[i].subvendor == pci->subsystem_vendor && blacklist[i].subdevice == pci->subsystem_device) { snd_printdd(KERN_INFO "card %#04x-%#04x:%#04x has no audio\n", pci->device, pci->subsystem_vendor, pci->subsystem_device); return -EBUSY; } snd_printk(KERN_INFO "unknown card %#04x-%#04x:%#04x, using default rate 32000\n", pci->device, pci->subsystem_vendor, pci->subsystem_device); snd_printk(KERN_DEBUG "please mail id, board name, and, " "if it works, the correct digital_rate option to " "\n"); return 32000; /* default rate */ } static int __devinit snd_bt87x_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct snd_bt87x *chip; int err, rate; rate = pci_id->driver_data; if (! rate) if ((rate = snd_bt87x_detect_card(pci)) <= 0) return -ENODEV; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { ++dev; return -ENOENT; } card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0); if (!card) return -ENOMEM; err = snd_bt87x_create(card, pci, &chip); if (err < 0) goto _error; if (digital_rate[dev] > 0) chip->dig_rate = digital_rate[dev]; else chip->dig_rate = rate; err = snd_bt87x_pcm(chip, DEVICE_DIGITAL, "Bt87x Digital"); if (err < 0) goto _error; err = snd_bt87x_pcm(chip, DEVICE_ANALOG, "Bt87x Analog"); if (err < 0) goto _error; err = snd_ctl_add(card, snd_ctl_new1(&snd_bt87x_capture_volume, chip)); if (err < 0) goto _error; err = snd_ctl_add(card, snd_ctl_new1(&snd_bt87x_capture_boost, chip)); if (err < 0) goto _error; err = snd_ctl_add(card, snd_ctl_new1(&snd_bt87x_capture_source, chip)); if (err < 0) goto _error; strcpy(card->driver, "Bt87x"); sprintf(card->shortname, "Brooktree Bt%x", pci->device); sprintf(card->longname, "%s at %#llx, irq %i", card->shortname, (unsigned long long)pci_resource_start(pci, 0), chip->irq); strcpy(card->mixername, "Bt87x"); err = snd_card_register(card); if (err < 0) goto _error; pci_set_drvdata(pci, card); ++dev; return 0; _error: snd_card_free(card); return err; } static void __devexit snd_bt87x_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } /* default entries for all Bt87x cards - it's not exported */ /* driver_data is set to 0 to call detection */ static struct pci_device_id snd_bt87x_default_ids[] __devinitdata = { BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, PCI_ANY_ID, PCI_ANY_ID, 0), BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, PCI_ANY_ID, PCI_ANY_ID, 0), { } }; static struct pci_driver driver = { .name = "Bt87x", .id_table = snd_bt87x_ids, .probe = snd_bt87x_probe, .remove = __devexit_p(snd_bt87x_remove), }; static int __init alsa_card_bt87x_init(void) { if (load_all) driver.id_table = snd_bt87x_default_ids; return pci_register_driver(&driver); } static void __exit alsa_card_bt87x_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_bt87x_init) module_exit(alsa_card_bt87x_exit)