/* * Driver for Zarlink DVB-T MT352 demodulator * * Written by Holger Waechtler * and Daniel Mack * * AVerMedia AVerTV DVB-T 771 support by * Wolfram Joost * * Support for Samsung TDTC9251DH01C(M) tuner * Copyright (C) 2004 Antonio Mancuso * Amauri Celani * * DVICO FusionHDTV DVB-T1 and DVICO FusionHDTV DVB-T Lite support by * Christopher Pascoe * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.= */ #include #include #include #include #include #include "dvb_frontend.h" #include "mt352_priv.h" #include "mt352.h" struct mt352_state { struct i2c_adapter* i2c; struct dvb_frontend_ops ops; /* configuration settings */ const struct mt352_config* config; int s0,s1,s3; struct dvb_frontend frontend; }; static int debug; #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG "mt352: " args); \ } while (0) static int mt352_single_write(struct dvb_frontend *fe, u8 reg, u8 val) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; u8 buf[2] = { reg, val }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; int err = i2c_transfer(state->i2c, &msg, 1); if (err != 1) { printk("mt352_write() to reg %x failed (err = %d)!\n", reg, err); return err; } return 0; } int mt352_write(struct dvb_frontend* fe, u8* ibuf, int ilen) { int err,i; for (i=0; i < ilen-1; i++) if ((err = mt352_single_write(fe,ibuf[0]+i,ibuf[i+1]))) return err; return 0; } static int mt352_read_register(struct mt352_state* state, u8 reg) { int ret; u8 b0 [] = { reg }; u8 b1 [] = { 0 }; struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { printk("%s: readreg error (reg=%d, ret==%i)\n", __FUNCTION__, reg, ret); return ret; } return b1[0]; } int mt352_read(struct dvb_frontend *fe, u8 reg) { return mt352_read_register(fe->demodulator_priv,reg); } static int mt352_sleep(struct dvb_frontend* fe) { static u8 mt352_softdown[] = { CLOCK_CTL, 0x20, 0x08 }; mt352_write(fe, mt352_softdown, sizeof(mt352_softdown)); return 0; } static void mt352_calc_nominal_rate(struct mt352_state* state, enum fe_bandwidth bandwidth, unsigned char *buf) { u32 adc_clock = 20480; /* 20.340 MHz */ u32 bw,value; switch (bandwidth) { case BANDWIDTH_6_MHZ: bw = 6; break; case BANDWIDTH_7_MHZ: bw = 7; break; case BANDWIDTH_8_MHZ: default: bw = 8; break; } if (state->config->adc_clock) adc_clock = state->config->adc_clock; value = 64 * bw * (1<<16) / (7 * 8); value = value * 1000 / adc_clock; dprintk("%s: bw %d, adc_clock %d => 0x%x\n", __FUNCTION__, bw, adc_clock, value); buf[0] = msb(value); buf[1] = lsb(value); } static void mt352_calc_input_freq(struct mt352_state* state, unsigned char *buf) { int adc_clock = 20480; /* 20.480000 MHz */ int if2 = 36167; /* 36.166667 MHz */ int ife,value; if (state->config->adc_clock) adc_clock = state->config->adc_clock; if (state->config->if2) if2 = state->config->if2; ife = (2*adc_clock - if2); value = -16374 * ife / adc_clock; dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n", __FUNCTION__, if2, ife, adc_clock, value, value & 0x3fff); buf[0] = msb(value); buf[1] = lsb(value); } static int mt352_set_parameters(struct dvb_frontend* fe, struct dvb_frontend_parameters *param) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; unsigned char buf[13]; static unsigned char tuner_go[] = { 0x5d, 0x01 }; static unsigned char fsm_go[] = { 0x5e, 0x01 }; unsigned int tps = 0; struct dvb_ofdm_parameters *op = ¶m->u.ofdm; switch (op->code_rate_HP) { case FEC_2_3: tps |= (1 << 7); break; case FEC_3_4: tps |= (2 << 7); break; case FEC_5_6: tps |= (3 << 7); break; case FEC_7_8: tps |= (4 << 7); break; case FEC_1_2: case FEC_AUTO: break; default: return -EINVAL; } switch (op->code_rate_LP) { case FEC_2_3: tps |= (1 << 4); break; case FEC_3_4: tps |= (2 << 4); break; case FEC_5_6: tps |= (3 << 4); break; case FEC_7_8: tps |= (4 << 4); break; case FEC_1_2: case FEC_AUTO: break; case FEC_NONE: if (op->hierarchy_information == HIERARCHY_AUTO || op->hierarchy_information == HIERARCHY_NONE) break; default: return -EINVAL; } switch (op->constellation) { case QPSK: break; case QAM_AUTO: case QAM_16: tps |= (1 << 13); break; case QAM_64: tps |= (2 << 13); break; default: return -EINVAL; } switch (op->transmission_mode) { case TRANSMISSION_MODE_2K: case TRANSMISSION_MODE_AUTO: break; case TRANSMISSION_MODE_8K: tps |= (1 << 0); break; default: return -EINVAL; } switch (op->guard_interval) { case GUARD_INTERVAL_1_32: case GUARD_INTERVAL_AUTO: break; case GUARD_INTERVAL_1_16: tps |= (1 << 2); break; case GUARD_INTERVAL_1_8: tps |= (2 << 2); break; case GUARD_INTERVAL_1_4: tps |= (3 << 2); break; default: return -EINVAL; } switch (op->hierarchy_information) { case HIERARCHY_AUTO: case HIERARCHY_NONE: break; case HIERARCHY_1: tps |= (1 << 10); break; case HIERARCHY_2: tps |= (2 << 10); break; case HIERARCHY_4: tps |= (3 << 10); break; default: return -EINVAL; } buf[0] = TPS_GIVEN_1; /* TPS_GIVEN_1 and following registers */ buf[1] = msb(tps); /* TPS_GIVEN_(1|0) */ buf[2] = lsb(tps); buf[3] = 0x50; // old // buf[3] = 0xf4; // pinnacle mt352_calc_nominal_rate(state, op->bandwidth, buf+4); mt352_calc_input_freq(state, buf+6); state->config->pll_set(fe, param, buf+8); #if 0 /* FIXME: should be catched elsewhere ... */ /* Only send the tuning request if the tuner doesn't have the requested * parameters already set. Enhances tuning time and prevents stream * breakup when retuning the same transponder. */ for (i = 1; i < 13; i++) if (buf[i] != mt352_read_register(state, i + 0x50)) break; if (13 == i) /* no changes */ return 0; #endif mt352_write(fe, buf, sizeof(buf)); if (state->config->no_tuner) { /* start decoding */ mt352_write(fe, fsm_go, 2); } else { /* start tuning */ mt352_write(fe, tuner_go, 2); } return 0; } static int mt352_get_parameters(struct dvb_frontend* fe, struct dvb_frontend_parameters *param) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; u16 tps; u16 div; u8 trl; struct dvb_ofdm_parameters *op = ¶m->u.ofdm; static const u8 tps_fec_to_api[8] = { FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, FEC_AUTO, FEC_AUTO, FEC_AUTO }; if ( (mt352_read_register(state,0x00) & 0xC0) != 0xC0 ) { return -EINVAL; } /* Use TPS_RECEIVED-registers, not the TPS_CURRENT-registers because * the mt352 sometimes works with the wrong parameters */ tps = (mt352_read_register(state, TPS_RECEIVED_1) << 8) | mt352_read_register(state, TPS_RECEIVED_0); div = (mt352_read_register(state, CHAN_START_1) << 8) | mt352_read_register(state, CHAN_START_0); trl = mt352_read_register(state, TRL_NOMINAL_RATE_1); op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7]; op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7]; switch ( (tps >> 13) & 3) { case 0: op->constellation = QPSK; break; case 1: op->constellation = QAM_16; break; case 2: op->constellation = QAM_64; break; default: op->constellation = QAM_AUTO; break; } op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : TRANSMISSION_MODE_2K; switch ( (tps >> 2) & 3) { case 0: op->guard_interval = GUARD_INTERVAL_1_32; break; case 1: op->guard_interval = GUARD_INTERVAL_1_16; break; case 2: op->guard_interval = GUARD_INTERVAL_1_8; break; case 3: op->guard_interval = GUARD_INTERVAL_1_4; break; default: op->guard_interval = GUARD_INTERVAL_AUTO; break; } switch ( (tps >> 10) & 7) { case 0: op->hierarchy_information = HIERARCHY_NONE; break; case 1: op->hierarchy_information = HIERARCHY_1; break; case 2: op->hierarchy_information = HIERARCHY_2; break; case 3: op->hierarchy_information = HIERARCHY_4; break; default: op->hierarchy_information = HIERARCHY_AUTO; break; } param->frequency = ( 500 * (div - IF_FREQUENCYx6) ) / 3 * 1000; if (trl == 0x72) { op->bandwidth = BANDWIDTH_8_MHZ; } else if (trl == 0x64) { op->bandwidth = BANDWIDTH_7_MHZ; } else { op->bandwidth = BANDWIDTH_6_MHZ; } if (mt352_read_register(state, STATUS_2) & 0x02) param->inversion = INVERSION_OFF; else param->inversion = INVERSION_ON; return 0; } static int mt352_read_status(struct dvb_frontend* fe, fe_status_t* status) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; #if 1 int val; if (0 != mt352_read_register(state, INTERRUPT_0)) { val = mt352_read_register(state, STATUS_0); if (-1 != val) state->s0 = val; val = mt352_read_register(state, STATUS_1); if (-1 != val) state->s1 = val; val = mt352_read_register(state, STATUS_3); if (-1 != val) state->s3 = val; } #else state->s0 = mt352_read_register(state, STATUS_0); state->s1 = mt352_read_register(state, STATUS_1); state->s3 = mt352_read_register(state, STATUS_3); if (-1 == state->s0 || -1 == state->s1 || -1 == state->s3) return -EIO; #endif *status = 0; if (state->s0 & (1 << 4)) *status |= FE_HAS_CARRIER; if (state->s0 & (1 << 1)) *status |= FE_HAS_VITERBI; if (state->s0 & (1 << 5)) *status |= FE_HAS_LOCK; if (state->s1 & (1 << 1)) *status |= FE_HAS_SYNC; if (state->s3 & (1 << 6)) *status |= FE_HAS_SIGNAL; if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) != (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) *status &= ~FE_HAS_LOCK; return 0; } static int mt352_read_ber(struct dvb_frontend* fe, u32* ber) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; *ber = (mt352_read_register (state, RS_ERR_CNT_2) << 16) | (mt352_read_register (state, RS_ERR_CNT_1) << 8) | (mt352_read_register (state, RS_ERR_CNT_0)); return 0; } static int mt352_read_signal_strength(struct dvb_frontend* fe, u16* strength) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; u16 signal = (mt352_read_register (state, AGC_GAIN_3) << 8) | (mt352_read_register (state, AGC_GAIN_2)); *strength = ~signal; return 0; } static int mt352_read_snr(struct dvb_frontend* fe, u16* snr) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; u8 _snr = mt352_read_register (state, SNR); *snr = (_snr << 8) | _snr; return 0; } static int mt352_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; *ucblocks = (mt352_read_register (state, RS_UBC_1) << 8) | (mt352_read_register (state, RS_UBC_0)); return 0; } static int mt352_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fe_tune_settings) { fe_tune_settings->min_delay_ms = 800; fe_tune_settings->step_size = 0; fe_tune_settings->max_drift = 0; return 0; } static int mt352_init(struct dvb_frontend* fe) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; static u8 mt352_reset_attach [] = { RESET, 0xC0 }; dprintk("%s: hello\n",__FUNCTION__); if ((mt352_read_register(state, CLOCK_CTL) & 0x10) == 0 || (mt352_read_register(state, CONFIG) & 0x20) == 0) { /* Do a "hard" reset */ mt352_write(fe, mt352_reset_attach, sizeof(mt352_reset_attach)); return state->config->demod_init(fe); } return 0; } static void mt352_release(struct dvb_frontend* fe) { struct mt352_state* state = (struct mt352_state*) fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops mt352_ops; struct dvb_frontend* mt352_attach(const struct mt352_config* config, struct i2c_adapter* i2c) { struct mt352_state* state = NULL; /* allocate memory for the internal state */ state = (struct mt352_state*) kmalloc(sizeof(struct mt352_state), GFP_KERNEL); if (state == NULL) goto error; memset(state,0,sizeof(*state)); /* setup the state */ state->config = config; state->i2c = i2c; memcpy(&state->ops, &mt352_ops, sizeof(struct dvb_frontend_ops)); /* check if the demod is there */ if (mt352_read_register(state, CHIP_ID) != ID_MT352) goto error; /* create dvb_frontend */ state->frontend.ops = &state->ops; state->frontend.demodulator_priv = state; return &state->frontend; error: if (state) kfree(state); return NULL; } static struct dvb_frontend_ops mt352_ops = { .info = { .name = "Zarlink MT352 DVB-T", .type = FE_OFDM, .frequency_min = 174000000, .frequency_max = 862000000, .frequency_stepsize = 166667, .frequency_tolerance = 0, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS }, .release = mt352_release, .init = mt352_init, .sleep = mt352_sleep, .set_frontend = mt352_set_parameters, .get_frontend = mt352_get_parameters, .get_tune_settings = mt352_get_tune_settings, .read_status = mt352_read_status, .read_ber = mt352_read_ber, .read_signal_strength = mt352_read_signal_strength, .read_snr = mt352_read_snr, .read_ucblocks = mt352_read_ucblocks, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("Zarlink MT352 DVB-T Demodulator driver"); MODULE_AUTHOR("Holger Waechtler, Daniel Mack, Antonio Mancuso"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(mt352_attach); EXPORT_SYMBOL(mt352_write); EXPORT_SYMBOL(mt352_read); /* * Local variables: * c-basic-offset: 8 * compile-command: "make DVB=1" * End: */