diff options
author | Klaus Schmidinger <vdr@tvdr.de> | 2001-08-09 11:41:39 +0200 |
---|---|---|
committer | Klaus Schmidinger <vdr@tvdr.de> | 2001-08-09 11:41:39 +0200 |
commit | c50dc5e888627bd1644f46585a44dc118c865127 (patch) | |
tree | 1dc5a28da106e3404863fc0234891142a5c29b2f /ac3dec/srfftp.h | |
parent | 85a027791063dfd7e94ccef45ea9e755df63d29a (diff) | |
download | vdr-c50dc5e888627bd1644f46585a44dc118c865127.tar.gz vdr-c50dc5e888627bd1644f46585a44dc118c865127.tar.bz2 |
Improvements from Matjaz Thaler
Diffstat (limited to 'ac3dec/srfftp.h')
-rw-r--r-- | ac3dec/srfftp.h | 305 |
1 files changed, 305 insertions, 0 deletions
diff --git a/ac3dec/srfftp.h b/ac3dec/srfftp.h new file mode 100644 index 00000000..6f447153 --- /dev/null +++ b/ac3dec/srfftp.h @@ -0,0 +1,305 @@ + +/* + * srfftp.h + * + * Copyright (C) Yuqing Deng <Yuqing_Deng@brown.edu> - April 2000 + * + * 64 and 128 point split radix fft for ac3dec + * + * The algorithm is desribed in the book: + * "Computational Frameworks of the Fast Fourier Transform". + * + * The ideas and the the organization of code borrowed from djbfft written by + * D. J. Bernstein <djb@cr.py.to>. djbff can be found at + * http://cr.yp.to/djbfft.html. + * + * srfftp.h is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * srfftp.h is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Make; see the file COPYING. If not, write to + * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. + * + */ + +#ifndef SRFFTP_H__ +#define SRFFTP_H__ + +#include "cmplx.h" + +static complex_t delta16[4] = + { {1.00000000000000, 0.00000000000000}, + {0.92387953251129, -0.38268343236509}, + {0.70710678118655, -0.70710678118655}, + {0.38268343236509, -0.92387953251129}}; + +static complex_t delta16_3[4] = + { {1.00000000000000, 0.00000000000000}, + {0.38268343236509, -0.92387953251129}, + {-0.70710678118655, -0.70710678118655}, + {-0.92387953251129, 0.38268343236509}}; + +static complex_t delta32[8] = + { {1.00000000000000, 0.00000000000000}, + {0.98078528040323, -0.19509032201613}, + {0.92387953251129, -0.38268343236509}, + {0.83146961230255, -0.55557023301960}, + {0.70710678118655, -0.70710678118655}, + {0.55557023301960, -0.83146961230255}, + {0.38268343236509, -0.92387953251129}, + {0.19509032201613, -0.98078528040323}}; + +static complex_t delta32_3[8] = + { {1.00000000000000, 0.00000000000000}, + {0.83146961230255, -0.55557023301960}, + {0.38268343236509, -0.92387953251129}, + {-0.19509032201613, -0.98078528040323}, + {-0.70710678118655, -0.70710678118655}, + {-0.98078528040323, -0.19509032201613}, + {-0.92387953251129, 0.38268343236509}, + {-0.55557023301960, 0.83146961230255}}; + +static complex_t delta64[16] = + { {1.00000000000000, 0.00000000000000}, + {0.99518472667220, -0.09801714032956}, + {0.98078528040323, -0.19509032201613}, + {0.95694033573221, -0.29028467725446}, + {0.92387953251129, -0.38268343236509}, + {0.88192126434836, -0.47139673682600}, + {0.83146961230255, -0.55557023301960}, + {0.77301045336274, -0.63439328416365}, + {0.70710678118655, -0.70710678118655}, + {0.63439328416365, -0.77301045336274}, + {0.55557023301960, -0.83146961230255}, + {0.47139673682600, -0.88192126434835}, + {0.38268343236509, -0.92387953251129}, + {0.29028467725446, -0.95694033573221}, + {0.19509032201613, -0.98078528040323}, + {0.09801714032956, -0.99518472667220}}; + +static complex_t delta64_3[16] = + { {1.00000000000000, 0.00000000000000}, + {0.95694033573221, -0.29028467725446}, + {0.83146961230255, -0.55557023301960}, + {0.63439328416365, -0.77301045336274}, + {0.38268343236509, -0.92387953251129}, + {0.09801714032956, -0.99518472667220}, + {-0.19509032201613, -0.98078528040323}, + {-0.47139673682600, -0.88192126434836}, + {-0.70710678118655, -0.70710678118655}, + {-0.88192126434835, -0.47139673682600}, + {-0.98078528040323, -0.19509032201613}, + {-0.99518472667220, 0.09801714032956}, + {-0.92387953251129, 0.38268343236509}, + {-0.77301045336274, 0.63439328416365}, + {-0.55557023301960, 0.83146961230255}, + {-0.29028467725446, 0.95694033573221}}; + +static complex_t delta128[32] = + { {1.00000000000000, 0.00000000000000}, + {0.99879545620517, -0.04906767432742}, + {0.99518472667220, -0.09801714032956}, + {0.98917650996478, -0.14673047445536}, + {0.98078528040323, -0.19509032201613}, + {0.97003125319454, -0.24298017990326}, + {0.95694033573221, -0.29028467725446}, + {0.94154406518302, -0.33688985339222}, + {0.92387953251129, -0.38268343236509}, + {0.90398929312344, -0.42755509343028}, + {0.88192126434836, -0.47139673682600}, + {0.85772861000027, -0.51410274419322}, + {0.83146961230255, -0.55557023301960}, + {0.80320753148064, -0.59569930449243}, + {0.77301045336274, -0.63439328416365}, + {0.74095112535496, -0.67155895484702}, + {0.70710678118655, -0.70710678118655}, + {0.67155895484702, -0.74095112535496}, + {0.63439328416365, -0.77301045336274}, + {0.59569930449243, -0.80320753148064}, + {0.55557023301960, -0.83146961230255}, + {0.51410274419322, -0.85772861000027}, + {0.47139673682600, -0.88192126434835}, + {0.42755509343028, -0.90398929312344}, + {0.38268343236509, -0.92387953251129}, + {0.33688985339222, -0.94154406518302}, + {0.29028467725446, -0.95694033573221}, + {0.24298017990326, -0.97003125319454}, + {0.19509032201613, -0.98078528040323}, + {0.14673047445536, -0.98917650996478}, + {0.09801714032956, -0.99518472667220}, + {0.04906767432742, -0.99879545620517}}; + +static complex_t delta128_3[32] = + { {1.00000000000000, 0.00000000000000}, + {0.98917650996478, -0.14673047445536}, + {0.95694033573221, -0.29028467725446}, + {0.90398929312344, -0.42755509343028}, + {0.83146961230255, -0.55557023301960}, + {0.74095112535496, -0.67155895484702}, + {0.63439328416365, -0.77301045336274}, + {0.51410274419322, -0.85772861000027}, + {0.38268343236509, -0.92387953251129}, + {0.24298017990326, -0.97003125319454}, + {0.09801714032956, -0.99518472667220}, + {-0.04906767432742, -0.99879545620517}, + {-0.19509032201613, -0.98078528040323}, + {-0.33688985339222, -0.94154406518302}, + {-0.47139673682600, -0.88192126434836}, + {-0.59569930449243, -0.80320753148065}, + {-0.70710678118655, -0.70710678118655}, + {-0.80320753148065, -0.59569930449243}, + {-0.88192126434835, -0.47139673682600}, + {-0.94154406518302, -0.33688985339222}, + {-0.98078528040323, -0.19509032201613}, + {-0.99879545620517, -0.04906767432742}, + {-0.99518472667220, 0.09801714032956}, + {-0.97003125319454, 0.24298017990326}, + {-0.92387953251129, 0.38268343236509}, + {-0.85772861000027, 0.51410274419322}, + {-0.77301045336274, 0.63439328416365}, + {-0.67155895484702, 0.74095112535496}, + {-0.55557023301960, 0.83146961230255}, + {-0.42755509343028, 0.90398929312344}, + {-0.29028467725446, 0.95694033573221}, + {-0.14673047445536, 0.98917650996478}}; + +#define HSQRT2 0.707106781188; + +#define TRANSZERO(A0,A4,A8,A12) { \ + u_r = wTB[0].re; \ + v_i = u_r - wTB[k*2].re; \ + u_r += wTB[k*2].re; \ + u_i = wTB[0].im; \ + v_r = wTB[k*2].im - u_i; \ + u_i += wTB[k*2].im; \ + a_r = A0.re; \ + a_i = A0.im; \ + a1_r = a_r; \ + a1_r += u_r; \ + A0.re = a1_r; \ + a_r -= u_r; \ + A8.re = a_r; \ + a1_i = a_i; \ + a1_i += u_i; \ + A0.im = a1_i; \ + a_i -= u_i; \ + A8.im = a_i; \ + a1_r = A4.re; \ + a1_i = A4.im; \ + a_r = a1_r; \ + a_r -= v_r; \ + A4.re = a_r; \ + a1_r += v_r; \ + A12.re = a1_r; \ + a_i = a1_i; \ + a_i -= v_i; \ + A4.im = a_i; \ + a1_i += v_i; \ + A12.im = a1_i; \ + } + +#define TRANSHALF_16(A2,A6,A10,A14) {\ + u_r = wTB[2].re; \ + a_r = u_r; \ + u_i = wTB[2].im; \ + u_r += u_i; \ + u_i -= a_r; \ + a_r = wTB[6].re; \ + a1_r = a_r; \ + a_i = wTB[6].im; \ + a_r = a_i - a_r; \ + a_i += a1_r; \ + v_i = u_r - a_r; \ + u_r += a_r; \ + v_r = u_i + a_i; \ + u_i -= a_i; \ + v_i *= HSQRT2; \ + v_r *= HSQRT2; \ + u_r *= HSQRT2; \ + u_i *= HSQRT2; \ + a_r = A2.re; \ + a_i = A2.im; \ + a1_r = a_r; \ + a1_r += u_r; \ + A2.re = a1_r; \ + a_r -= u_r; \ + A10.re = a_r; \ + a1_i = a_i; \ + a1_i += u_i; \ + A2.im = a1_i; \ + a_i -= u_i; \ + A10.im = a_i; \ + a1_r = A6.re; \ + a1_i = A6.im; \ + a_r = a1_r; \ + a1_r += v_r; \ + A6.re = a1_r; \ + a_r -= v_r; \ + A14.re = a_r; \ + a_i = a1_i; \ + a1_i -= v_i; \ + A6.im = a1_i; \ + a_i += v_i; \ + A14.im = a_i; \ + } + +#define TRANS(A1,A5,A9,A13,WT,WB,D,D3) { \ + u_r = WT.re; \ + a_r = u_r; \ + a_r *= D.im; \ + u_r *= D.re; \ + a_i = WT.im; \ + a1_i = a_i; \ + a1_i *= D.re; \ + a_i *= D.im; \ + u_r -= a_i; \ + u_i = a_r; \ + u_i += a1_i; \ + a_r = WB.re; \ + a1_r = a_r; \ + a1_r *= D3.re; \ + a_r *= D3.im; \ + a_i = WB.im; \ + a1_i = a_i; \ + a_i *= D3.re; \ + a1_i *= D3.im; \ + a1_r -= a1_i; \ + a_r += a_i; \ + v_i = u_r - a1_r; \ + u_r += a1_r; \ + v_r = a_r - u_i; \ + u_i += a_r; \ + a_r = A1.re; \ + a_i = A1.im; \ + a1_r = a_r; \ + a1_r += u_r; \ + A1.re = a1_r; \ + a_r -= u_r; \ + A9.re = a_r; \ + a1_i = a_i; \ + a1_i += u_i; \ + A1.im = a1_i; \ + a_i -= u_i; \ + A9.im = a_i; \ + a1_r = A5.re; \ + a1_i = A5.im; \ + a_r = a1_r; \ + a1_r -= v_r; \ + A5.re = a1_r; \ + a_r += v_r; \ + A13.re = a_r; \ + a_i = a1_i; \ + a1_i -= v_i; \ + A5.im = a1_i; \ + a_i += v_i; \ + A13.im = a_i; \ + } + +#endif |