/* * srfft_kni.c * * Copyright (C) Yuqing Deng <Yuqing_Deng@brown.edu> - April 2000 * * 64 and 128 point split radix fft for ac3dec * * The algorithm is desribed in the book: * "Computational Frameworks of the Fast Fourier Transform". * * The ideas and the the organization of code borrowed from djbfft written by * D. J. Bernstein <djb@cr.py.to>. djbff can be found at * http://cr.yp.to/djbfft.html. * * srfft.c is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * srfft.c is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * */ #ifdef __i386__ #include <stdio.h> #include "srfft_kni.h" #include "srfftp.h" void fft_64p_kni(complex_t *a) { fft_8_kni(&a[0]); fft_4_kni(&a[8]); fft_4_kni(&a[12]); fft_asmb_kni(2, &a[0], &a[8], &delta16[0], &delta16_3[0]); fft_8_kni(&a[16]), fft_8_kni(&a[24]); fft_asmb_kni(4, &a[0], &a[16],&delta32[0], &delta32_3[0]); fft_8_kni(&a[32]); fft_4_kni(&a[40]); fft_4_kni(&a[44]); fft_asmb_kni(2, &a[32], &a[40], &delta16[0], &delta16_3[0]); fft_8_kni(&a[48]); fft_4_kni(&a[56]); fft_4_kni(&a[60]); fft_asmb_kni(2, &a[48], &a[56], &delta16[0], &delta16_3[0]); fft_asmb_kni(8, &a[0], &a[32],&delta64[0], &delta64_3[0]); } void fft_128p_kni(complex_t *a) { fft_8_kni(&a[0]); fft_4_kni(&a[8]); fft_4_kni(&a[12]); fft_asmb_kni(2, &a[0], &a[8], &delta16[0], &delta16_3[0]); fft_8_kni(&a[16]), fft_8_kni(&a[24]); fft_asmb_kni(4, &a[0], &a[16],&delta32[0], &delta32_3[0]); fft_8_kni(&a[32]); fft_4_kni(&a[40]); fft_4_kni(&a[44]); fft_asmb_kni(2, &a[32], &a[40], &delta16[0], &delta16_3[0]); fft_8_kni(&a[48]); fft_4_kni(&a[56]); fft_4_kni(&a[60]); fft_asmb_kni(2, &a[48], &a[56], &delta16[0], &delta16_3[0]); fft_asmb_kni(8, &a[0], &a[32],&delta64[0], &delta64_3[0]); fft_8_kni(&a[64]); fft_4_kni(&a[72]); fft_4_kni(&a[76]); /* fft_16(&a[64]); */ fft_asmb_kni(2, &a[64], &a[72], &delta16[0], &delta16_3[0]); fft_8_kni(&a[80]); fft_8_kni(&a[88]); /* fft_32(&a[64]); */ fft_asmb_kni(4, &a[64], &a[80],&delta32[0], &delta32_3[0]); fft_8_kni(&a[96]); fft_4_kni(&a[104]), fft_4_kni(&a[108]); /* fft_16(&a[96]); */ fft_asmb_kni(2, &a[96], &a[104], &delta16[0], &delta16_3[0]); fft_8_kni(&a[112]), fft_8_kni(&a[120]); /* fft_32(&a[96]); */ fft_asmb_kni(4, &a[96], &a[112], &delta32[0], &delta32_3[0]); /* fft_128(&a[0]); */ fft_asmb_kni(16, &a[0], &a[64], &delta128[0], &delta128_3[0]); } #endif