/* * remux.c: A streaming MPEG2 remultiplexer * * See the main source file 'vdr.c' for copyright information and * how to reach the author. * * The parts of this code that implement cTS2PES have been taken from * the Linux DVB driver's 'tuxplayer' example and were rewritten to suit * VDR's needs. * * The cRepacker family's code was originally written by Reinhard Nissl <rnissl@gmx.de>, * and adapted to the VDR coding style by Klaus.Schmidinger@cadsoft.de. * * $Id: remux.c 2.1 2008/08/15 14:49:34 kls Exp $ */ #include "remux.h" #include <stdlib.h> #include "channels.h" #include "device.h" #include "libsi/si.h" #include "libsi/section.h" #include "libsi/descriptor.h" #include "shutdown.h" #include "tools.h" // Set this to 'true' for debug output: static bool DebugPatPmt = false; #define dbgpatpmt(a...) if (DebugPatPmt) fprintf(stderr, a) ePesHeader AnalyzePesHeader(const uchar *Data, int Count, int &PesPayloadOffset, bool *ContinuationHeader) { if (Count < 7) return phNeedMoreData; // too short if ((Data[6] & 0xC0) == 0x80) { // MPEG 2 if (Count < 9) return phNeedMoreData; // too short PesPayloadOffset = 6 + 3 + Data[8]; if (Count < PesPayloadOffset) return phNeedMoreData; // too short if (ContinuationHeader) *ContinuationHeader = ((Data[6] == 0x80) && !Data[7] && !Data[8]); return phMPEG2; // MPEG 2 } // check for MPEG 1 ... PesPayloadOffset = 6; // skip up to 16 stuffing bytes for (int i = 0; i < 16; i++) { if (Data[PesPayloadOffset] != 0xFF) break; if (Count <= ++PesPayloadOffset) return phNeedMoreData; // too short } // skip STD_buffer_scale/size if ((Data[PesPayloadOffset] & 0xC0) == 0x40) { PesPayloadOffset += 2; if (Count <= PesPayloadOffset) return phNeedMoreData; // too short } if (ContinuationHeader) *ContinuationHeader = false; if ((Data[PesPayloadOffset] & 0xF0) == 0x20) { // skip PTS only PesPayloadOffset += 5; } else if ((Data[PesPayloadOffset] & 0xF0) == 0x30) { // skip PTS and DTS PesPayloadOffset += 10; } else if (Data[PesPayloadOffset] == 0x0F) { // continuation header PesPayloadOffset++; if (ContinuationHeader) *ContinuationHeader = true; } else return phInvalid; // unknown if (Count < PesPayloadOffset) return phNeedMoreData; // too short return phMPEG1; // MPEG 1 } // --- cRepacker ------------------------------------------------------------- #define MIN_LOG_INTERVAL 10 // min. # of seconds between two consecutive log messages of a cRepacker #define LOG(a...) (LogAllowed() && (esyslog(a), true)) class cRepacker { protected: bool initiallySyncing; int maxPacketSize; uint8_t subStreamId; time_t lastLog; int suppressedLogMessages; bool LogAllowed(void); void DroppedData(const char *Reason, int Count) { LOG("%s (dropped %d bytes)", Reason, Count); } public: static int Put(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count, int CapacityNeeded); cRepacker(void); virtual ~cRepacker() {} virtual void Reset(void) { initiallySyncing = true; } virtual void Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count) = 0; virtual int BreakAt(const uchar *Data, int Count) = 0; virtual int QuerySnoopSize(void) { return 0; } void SetMaxPacketSize(int MaxPacketSize) { maxPacketSize = MaxPacketSize; } void SetSubStreamId(uint8_t SubStreamId) { subStreamId = SubStreamId; } }; cRepacker::cRepacker(void) { initiallySyncing = true; maxPacketSize = 6 + 65535; subStreamId = 0; suppressedLogMessages = 0;; lastLog = 0; } bool cRepacker::LogAllowed(void) { bool Allowed = time(NULL) - lastLog >= MIN_LOG_INTERVAL; lastLog = time(NULL); if (Allowed) { if (suppressedLogMessages) { esyslog("%d cRepacker messages suppressed", suppressedLogMessages); suppressedLogMessages = 0; } } else suppressedLogMessages++; return Allowed; } int cRepacker::Put(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count, int CapacityNeeded) { if (CapacityNeeded >= Count && ResultBuffer->Free() < CapacityNeeded) { esyslog("ERROR: possible result buffer overflow, dropped %d out of %d byte", CapacityNeeded, CapacityNeeded); return 0; } int n = ResultBuffer->Put(Data, Count); if (n != Count) esyslog("ERROR: result buffer overflow, dropped %d out of %d byte", Count - n, Count); return n; } // --- cCommonRepacker ------------------------------------------------------- class cCommonRepacker : public cRepacker { protected: int skippedBytes; int packetTodo; uchar fragmentData[6 + 65535 + 3]; int fragmentLen; uchar pesHeader[6 + 3 + 255 + 3]; int pesHeaderLen; uchar pesHeaderBackup[6 + 3 + 255]; int pesHeaderBackupLen; uint32_t scanner; uint32_t localScanner; int localStart; bool PushOutPacket(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count); virtual int QuerySnoopSize() { return 4; } virtual void Reset(void); }; void cCommonRepacker::Reset(void) { cRepacker::Reset(); skippedBytes = 0; packetTodo = 0; fragmentLen = 0; pesHeaderLen = 0; pesHeaderBackupLen = 0; localStart = -1; } bool cCommonRepacker::PushOutPacket(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count) { // enter packet length into PES header ... if (fragmentLen > 0) { // ... which is contained in the fragment buffer // determine PES packet payload int PacketLen = fragmentLen + Count - 6; fragmentData[ 4 ] = PacketLen >> 8; fragmentData[ 5 ] = PacketLen & 0xFF; // just skip packets with no payload int PesPayloadOffset = 0; if (AnalyzePesHeader(fragmentData, fragmentLen, PesPayloadOffset) <= phInvalid) LOG("cCommonRepacker: invalid PES packet encountered in fragment buffer!"); else if (6 + PacketLen <= PesPayloadOffset) { fragmentLen = 0; return true; // skip empty packet } // amount of data to put into result buffer: a negative Count value means // to strip off any partially contained start code. int Bite = fragmentLen + (Count >= 0 ? 0 : Count); // put data into result buffer int n = Put(ResultBuffer, fragmentData, Bite, 6 + PacketLen); fragmentLen = 0; if (n != Bite) return false; } else if (pesHeaderLen > 0) { // ... which is contained in the PES header buffer int PacketLen = pesHeaderLen + Count - 6; pesHeader[ 4 ] = PacketLen >> 8; pesHeader[ 5 ] = PacketLen & 0xFF; // just skip packets with no payload int PesPayloadOffset = 0; if (AnalyzePesHeader(pesHeader, pesHeaderLen, PesPayloadOffset) <= phInvalid) LOG("cCommonRepacker: invalid PES packet encountered in header buffer!"); else if (6 + PacketLen <= PesPayloadOffset) { pesHeaderLen = 0; return true; // skip empty packet } // amount of data to put into result buffer: a negative Count value means // to strip off any partially contained start code. int Bite = pesHeaderLen + (Count >= 0 ? 0 : Count); // put data into result buffer int n = Put(ResultBuffer, pesHeader, Bite, 6 + PacketLen); pesHeaderLen = 0; if (n != Bite) return false; } // append further payload if (Count > 0) { // amount of data to put into result buffer int Bite = Count; // put data into result buffer int n = Put(ResultBuffer, Data, Bite, Bite); if (n != Bite) return false; } // we did it ;-) return true; } // --- cVideoRepacker -------------------------------------------------------- class cVideoRepacker : public cCommonRepacker { private: enum eState { syncing, findPicture, scanPicture }; int state; void HandleStartCode(const uchar *const Data, cRingBufferLinear *const ResultBuffer, const uchar *&Payload, const uchar StreamID, const ePesHeader MpegLevel); inline bool ScanDataForStartCodeSlow(const uchar *const Data); inline bool ScanDataForStartCodeFast(const uchar *&Data, const uchar *Limit); inline bool ScanDataForStartCode(const uchar *&Data, int &Done, int &Todo); inline void AdjustCounters(const int Delta, int &Done, int &Todo); inline bool ScanForEndOfPictureSlow(const uchar *&Data); inline bool ScanForEndOfPictureFast(const uchar *&Data, const uchar *Limit); inline bool ScanForEndOfPicture(const uchar *&Data, const uchar *Limit); public: cVideoRepacker(void); virtual void Reset(void); virtual void Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count); virtual int BreakAt(const uchar *Data, int Count); }; cVideoRepacker::cVideoRepacker(void) { Reset(); } void cVideoRepacker::Reset(void) { cCommonRepacker::Reset(); scanner = 0xFFFFFFFF; state = syncing; } void cVideoRepacker::HandleStartCode(const uchar *const Data, cRingBufferLinear *const ResultBuffer, const uchar *&Payload, const uchar StreamID, const ePesHeader MpegLevel) { // synchronisation is detected some bytes after frame start. const int SkippedBytesLimit = 4; // which kind of start code have we got? switch (*Data) { case 0xB9 ... 0xFF: // system start codes LOG("cVideoRepacker: found system start code: stream seems to be scrambled or not demultiplexed"); break; case 0xB0 ... 0xB1: // reserved start codes case 0xB6: LOG("cVideoRepacker: found reserved start code: stream seems to be scrambled"); break; case 0xB4: // sequence error code LOG("cVideoRepacker: found sequence error code: stream seems to be damaged"); case 0xB2: // user data start code case 0xB5: // extension start code break; case 0xB7: // sequence end code case 0xB3: // sequence header code case 0xB8: // group start code case 0x00: // picture start code if (state == scanPicture) { // the above start codes indicate that the current picture is done. So // push out the packet to start a new packet for the next picuture. If // the byte count get's negative then the current buffer ends in a // partitial start code that must be stripped off, as it shall be put // in the next packet. PushOutPacket(ResultBuffer, Payload, Data - 3 - Payload); // go on with syncing to the next picture state = syncing; } if (state == syncing) { if (initiallySyncing) // omit report for the typical initial case initiallySyncing = false; else if (skippedBytes > SkippedBytesLimit) // report that syncing dropped some bytes LOG("cVideoRepacker: skipped %d bytes to sync on next picture", skippedBytes - SkippedBytesLimit); skippedBytes = 0; // if there is a PES header available, then use it ... if (pesHeaderBackupLen > 0) { // ISO 13818-1 says: // In the case of video, if a PTS is present in a PES packet header // it shall refer to the access unit containing the first picture start // code that commences in this PES packet. A picture start code commences // in PES packet if the first byte of the picture start code is present // in the PES packet. memcpy(pesHeader, pesHeaderBackup, pesHeaderBackupLen); pesHeaderLen = pesHeaderBackupLen; pesHeaderBackupLen = 0; } else { // ... otherwise create a continuation PES header pesHeaderLen = 0; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x01; pesHeader[pesHeaderLen++] = StreamID; // video stream ID pesHeader[pesHeaderLen++] = 0x00; // length still unknown pesHeader[pesHeaderLen++] = 0x00; // length still unknown if (MpegLevel == phMPEG2) { pesHeader[pesHeaderLen++] = 0x80; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x00; } else pesHeader[pesHeaderLen++] = 0x0F; } // append the first three bytes of the start code pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x01; // the next packet's payload will begin with the fourth byte of // the start code (= the actual code) Payload = Data; // as there is no length information available, assume the // maximum we can hold in one PES packet packetTodo = maxPacketSize - pesHeaderLen; // go on with finding the picture data state++; } break; case 0x01 ... 0xAF: // slice start codes if (state == findPicture) { // go on with scanning the picture data state++; } break; } } bool cVideoRepacker::ScanDataForStartCodeSlow(const uchar *const Data) { scanner <<= 8; bool FoundStartCode = (scanner == 0x00000100); scanner |= *Data; return FoundStartCode; } bool cVideoRepacker::ScanDataForStartCodeFast(const uchar *&Data, const uchar *Limit) { Limit--; while (Data < Limit && (Data = (const uchar *)memchr(Data, 0x01, Limit - Data))) { if (Data[-2] || Data[-1]) Data += 3; else { scanner = 0x00000100 | *++Data; return true; } } Data = Limit; uint32_t *Scanner = (uint32_t *)(Data - 3); scanner = ntohl(*Scanner); return false; } bool cVideoRepacker::ScanDataForStartCode(const uchar *&Data, int &Done, int &Todo) { const uchar *const DataOrig = Data; const int MinDataSize = 4; if (Todo < MinDataSize || (state != syncing && packetTodo < MinDataSize)) return ScanDataForStartCodeSlow(Data); int Limit = Todo; if (state != syncing && Limit > packetTodo) Limit = packetTodo; if (ScanDataForStartCodeSlow(Data)) return true; if (ScanDataForStartCodeSlow(++Data)) { AdjustCounters(1, Done, Todo); return true; } ++Data; bool FoundStartCode = ScanDataForStartCodeFast(Data, DataOrig + Limit); AdjustCounters(Data - DataOrig, Done, Todo); return FoundStartCode; } void cVideoRepacker::AdjustCounters(const int Delta, int &Done, int &Todo) { Done += Delta; Todo -= Delta; if (state <= syncing) skippedBytes += Delta; else packetTodo -= Delta; } void cVideoRepacker::Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count) { // synchronisation is detected some bytes after frame start. const int SkippedBytesLimit = 4; // reset local scanner localStart = -1; int pesPayloadOffset = 0; bool continuationHeader = false; ePesHeader mpegLevel = AnalyzePesHeader(Data, Count, pesPayloadOffset, &continuationHeader); if (mpegLevel <= phInvalid) { DroppedData("cVideoRepacker: no valid PES packet header found", Count); return; } if (!continuationHeader) { // backup PES header pesHeaderBackupLen = pesPayloadOffset; memcpy(pesHeaderBackup, Data, pesHeaderBackupLen); } // skip PES header int done = pesPayloadOffset; int todo = Count - done; const uchar *data = Data + done; // remember start of the data const uchar *payload = data; while (todo > 0) { // collect number of skipped bytes while syncing if (state <= syncing) skippedBytes++; // did we reach a start code? if (ScanDataForStartCode(data, done, todo)) HandleStartCode(data, ResultBuffer, payload, Data[3], mpegLevel); // move on data++; done++; todo--; // do we have to start a new packet as there is no more space left? if (state != syncing && --packetTodo <= 0) { // we connot start a new packet here if the current might end in a start // code and this start code shall possibly be put in the next packet. So // overfill the current packet until we can safely detect that we won't // break a start code into pieces: // // A) the last four bytes were a start code. // B) the current byte introduces a start code. // C) the last three bytes begin a start code. // // Todo : Data : Rule : Result // -----:-------------------------------:------:------- // : XX 00 00 00 01 YY|YY YY YY YY : : // 0 : ^^| : A : push // -----:-------------------------------:------:------- // : XX XX 00 00 00 01|YY YY YY YY : : // 0 : ^^| : B : wait // -1 : |^^ : A : push // -----:-------------------------------:------:------- // : XX XX XX 00 00 00|01 YY YY YY : : // 0 : ^^| : C : wait // -1 : |^^ : B : wait // -2 : | ^^ : A : push // -----:-------------------------------:------:------- // : XX XX XX XX 00 00|00 01 YY YY : : // 0 : ^^| : C : wait // -1 : |^^ : C : wait // -2 : | ^^ : B : wait // -3 : | ^^ : A : push // -----:-------------------------------:------:------- // : XX XX XX XX XX 00|00 00 01 YY : : // 0 : ^^| : C : wait // -1 : |^^ : C : wait // -2 : | ^^ : : push // -----:-------------------------------:------:------- bool A = ((scanner & 0xFFFFFF00) == 0x00000100); bool B = ((scanner & 0xFFFFFF) == 0x000001); bool C = ((scanner & 0xFF) == 0x00) && (packetTodo >= -1); if (A || (!B && !C)) { // actually we cannot push out an overfull packet. So we'll have to // adjust the byte count and payload start as necessary. If the byte // count get's negative we'll have to append the excess from fragment's // tail to the next PES header. int bite = data + packetTodo - payload; const uchar *excessData = fragmentData + fragmentLen + bite; // a negative byte count means to drop some bytes from the current // fragment's tail, to not exceed the maximum packet size. PushOutPacket(ResultBuffer, payload, bite); // create a continuation PES header pesHeaderLen = 0; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x01; pesHeader[pesHeaderLen++] = Data[3]; // video stream ID pesHeader[pesHeaderLen++] = 0x00; // length still unknown pesHeader[pesHeaderLen++] = 0x00; // length still unknown if (mpegLevel == phMPEG2) { pesHeader[pesHeaderLen++] = 0x80; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x00; } else pesHeader[pesHeaderLen++] = 0x0F; // copy any excess data while (bite++ < 0) { // append the excess data here pesHeader[pesHeaderLen++] = *excessData++; packetTodo++; } // the next packet's payload will begin here payload = data + packetTodo; // as there is no length information available, assume the // maximum we can hold in one PES packet packetTodo += maxPacketSize - pesHeaderLen; } } } // the packet is done. Now store any remaining data into fragment buffer // if we are no longer syncing. if (state != syncing) { // append the PES header ... int bite = pesHeaderLen; pesHeaderLen = 0; if (bite > 0) { memcpy(fragmentData + fragmentLen, pesHeader, bite); fragmentLen += bite; } // append payload. It may contain part of a start code at it's end, // which will be removed when the next packet gets processed. bite = data - payload; if (bite > 0) { memcpy(fragmentData + fragmentLen, payload, bite); fragmentLen += bite; } } // report that syncing dropped some bytes if (skippedBytes > SkippedBytesLimit) { if (!initiallySyncing) // omit report for the typical initial case LOG("cVideoRepacker: skipped %d bytes while syncing on next picture", skippedBytes - SkippedBytesLimit); skippedBytes = SkippedBytesLimit; } } bool cVideoRepacker::ScanForEndOfPictureSlow(const uchar *&Data) { localScanner <<= 8; localScanner |= *Data++; // check start codes which follow picture data switch (localScanner) { case 0x00000100: // picture start code case 0x000001B8: // group start code case 0x000001B3: // sequence header code case 0x000001B7: // sequence end code return true; } return false; } bool cVideoRepacker::ScanForEndOfPictureFast(const uchar *&Data, const uchar *Limit) { Limit--; while (Data < Limit && (Data = (const uchar *)memchr(Data, 0x01, Limit - Data))) { if (Data[-2] || Data[-1]) Data += 3; else { localScanner = 0x00000100 | *++Data; // check start codes which follow picture data switch (localScanner) { case 0x00000100: // picture start code case 0x000001B8: // group start code case 0x000001B3: // sequence header code case 0x000001B7: // sequence end code Data++; return true; default: Data += 3; } } } Data = Limit + 1; uint32_t *LocalScanner = (uint32_t *)(Data - 4); localScanner = ntohl(*LocalScanner); return false; } bool cVideoRepacker::ScanForEndOfPicture(const uchar *&Data, const uchar *Limit) { const uchar *const DataOrig = Data; const int MinDataSize = 4; bool FoundEndOfPicture; if (Limit - Data <= MinDataSize) { FoundEndOfPicture = false; while (Data < Limit) { if (ScanForEndOfPictureSlow(Data)) { FoundEndOfPicture = true; break; } } } else { FoundEndOfPicture = true; if (!ScanForEndOfPictureSlow(Data)) { if (!ScanForEndOfPictureSlow(Data)) { if (!ScanForEndOfPictureFast(Data, Limit)) FoundEndOfPicture = false; } } } localStart += (Data - DataOrig); return FoundEndOfPicture; } int cVideoRepacker::BreakAt(const uchar *Data, int Count) { if (initiallySyncing) return -1; // fill the packet buffer completely until we have synced once int PesPayloadOffset = 0; if (AnalyzePesHeader(Data, Count, PesPayloadOffset) <= phInvalid) return -1; // not enough data for test // just detect end of picture if (state == scanPicture) { // setup local scanner if (localStart < 0) { localScanner = scanner; localStart = 0; } // start where we've stopped at the last run const uchar *data = Data + PesPayloadOffset + localStart; const uchar *limit = Data + Count; // scan data if (ScanForEndOfPicture(data, limit)) return data - Data; } // just fill up packet and append next start code return PesPayloadOffset + packetTodo + 4; } // --- cAudioRepacker -------------------------------------------------------- class cAudioRepacker : public cCommonRepacker { private: static int bitRates[2][3][16]; enum eState { syncing, scanFrame }; int state; int frameTodo; int frameSize; int cid; static bool IsValidAudioHeader(uint32_t Header, bool Mpeg2, int *FrameSize = NULL); public: cAudioRepacker(int Cid); virtual void Reset(void); virtual void Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count); virtual int BreakAt(const uchar *Data, int Count); }; int cAudioRepacker::bitRates[2][3][16] = { // all values are specified as kbits/s { { 0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, -1 }, // MPEG 1, Layer I { 0, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, -1 }, // MPEG 1, Layer II { 0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, -1 } // MPEG 1, Layer III }, { { 0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256, -1 }, // MPEG 2, Layer I { 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, -1 }, // MPEG 2, Layer II/III { 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, -1 } // MPEG 2, Layer II/III } }; cAudioRepacker::cAudioRepacker(int Cid) { cid = Cid; Reset(); } void cAudioRepacker::Reset(void) { cCommonRepacker::Reset(); scanner = 0; state = syncing; frameTodo = 0; frameSize = 0; } bool cAudioRepacker::IsValidAudioHeader(uint32_t Header, bool Mpeg2, int *FrameSize) { int syncword = (Header & 0xFFF00000) >> 20; int id = (Header & 0x00080000) >> 19; int layer = (Header & 0x00060000) >> 17; //int protection_bit = (Header & 0x00010000) >> 16; int bitrate_index = (Header & 0x0000F000) >> 12; int sampling_frequency = (Header & 0x00000C00) >> 10; int padding_bit = (Header & 0x00000200) >> 9; //int private_bit = (Header & 0x00000100) >> 8; //int mode = (Header & 0x000000C0) >> 6; //int mode_extension = (Header & 0x00000030) >> 4; //int copyright = (Header & 0x00000008) >> 3; //int orignal_copy = (Header & 0x00000004) >> 2; int emphasis = (Header & 0x00000003); if (syncword != 0xFFF) return false; if (id == 0 && !Mpeg2) // reserved in MPEG 1 return false; if (layer == 0) // reserved return false; if (bitrate_index == 0xF) // forbidden return false; if (sampling_frequency == 3) // reserved return false; if (emphasis == 2) // reserved return false; if (FrameSize) { if (bitrate_index == 0) *FrameSize = 0; else { static int samplingFrequencies[2][4] = { // all values are specified in Hz { 44100, 48000, 32000, -1 }, // MPEG 1 { 22050, 24000, 16000, -1 } // MPEG 2 }; static int slots_per_frame[2][3] = { { 12, 144, 144 }, // MPEG 1, Layer I, II, III { 12, 144, 72 } // MPEG 2, Layer I, II, III }; int mpegIndex = 1 - id; int layerIndex = 3 - layer; // Layer I (i. e., layerIndex == 0) has a larger slot size int slotSize = (layerIndex == 0) ? 4 : 1; // bytes int br = 1000 * bitRates[mpegIndex][layerIndex][bitrate_index]; // bits/s int sf = samplingFrequencies[mpegIndex][sampling_frequency]; int N = slots_per_frame[mpegIndex][layerIndex] * br / sf; // slots *FrameSize = (N + padding_bit) * slotSize; // bytes } } return true; } void cAudioRepacker::Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count) { // synchronisation is detected some bytes after frame start. const int SkippedBytesLimit = 4; // reset local scanner localStart = -1; int pesPayloadOffset = 0; bool continuationHeader = false; ePesHeader mpegLevel = AnalyzePesHeader(Data, Count, pesPayloadOffset, &continuationHeader); if (mpegLevel <= phInvalid) { DroppedData("cAudioRepacker: no valid PES packet header found", Count); return; } if (!continuationHeader) { // backup PES header pesHeaderBackupLen = pesPayloadOffset; memcpy(pesHeaderBackup, Data, pesHeaderBackupLen); } // skip PES header int done = pesPayloadOffset; int todo = Count - done; const uchar *data = Data + done; // remember start of the data const uchar *payload = data; while (todo > 0) { // collect number of skipped bytes while syncing if (state <= syncing) skippedBytes++; // did we reach an audio frame header? scanner <<= 8; scanner |= *data; if ((scanner & 0xFFF00000) == 0xFFF00000) { if (frameTodo <= 0 && (frameSize == 0 || skippedBytes >= 4) && IsValidAudioHeader(scanner, mpegLevel == phMPEG2, &frameSize)) { if (state == scanFrame) { // As a new audio frame starts here, the previous one is done. So push // out the packet to start a new packet for the next audio frame. If // the byte count gets negative then the current buffer ends in a // partitial audio frame header that must be stripped off, as it shall // be put in the next packet. PushOutPacket(ResultBuffer, payload, data - 3 - payload); // go on with syncing to the next audio frame state = syncing; } if (state == syncing) { if (initiallySyncing) // omit report for the typical initial case initiallySyncing = false; else if (skippedBytes > SkippedBytesLimit) // report that syncing dropped some bytes LOG("cAudioRepacker(0x%02X): skipped %d bytes to sync on next audio frame", cid, skippedBytes - SkippedBytesLimit); skippedBytes = 0; // if there is a PES header available, then use it ... if (pesHeaderBackupLen > 0) { // ISO 13818-1 says: // In the case of audio, if a PTS is present in a PES packet header // it shall refer to the access unit commencing in the PES packet. An // audio access unit commences in a PES packet if the first byte of // the audio access unit is present in the PES packet. memcpy(pesHeader, pesHeaderBackup, pesHeaderBackupLen); pesHeaderLen = pesHeaderBackupLen; pesHeaderBackupLen = 0; } else { // ... otherwise create a continuation PES header pesHeaderLen = 0; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x01; pesHeader[pesHeaderLen++] = Data[3]; // audio stream ID pesHeader[pesHeaderLen++] = 0x00; // length still unknown pesHeader[pesHeaderLen++] = 0x00; // length still unknown if (mpegLevel == phMPEG2) { pesHeader[pesHeaderLen++] = 0x80; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x00; } else pesHeader[pesHeaderLen++] = 0x0F; } // append the first three bytes of the audio frame header pesHeader[pesHeaderLen++] = 0xFF; pesHeader[pesHeaderLen++] = (scanner >> 16) & 0xFF; pesHeader[pesHeaderLen++] = (scanner >> 8) & 0xFF; // the next packet's payload will begin with the fourth byte of // the audio frame header (= the actual byte) payload = data; // maximum we can hold in one PES packet packetTodo = maxPacketSize - pesHeaderLen; // expected remainder of audio frame: so far we have read 3 bytes from the frame header frameTodo = frameSize - 3; // go on with collecting the frame's data state++; } } } data++; done++; todo--; // do we have to start a new packet as the current is done? if (frameTodo > 0) { if (--frameTodo == 0) { // the current audio frame is is done now. So push out the packet to // start a new packet for the next audio frame. PushOutPacket(ResultBuffer, payload, data - payload); // go on with syncing to the next audio frame state = syncing; } } // do we have to start a new packet as there is no more space left? if (state != syncing && --packetTodo <= 0) { // We connot start a new packet here if the current might end in an audio // frame header and this header shall possibly be put in the next packet. So // overfill the current packet until we can safely detect that we won't // break an audio frame header into pieces: // // A) the last four bytes were an audio frame header. // B) the last three bytes introduce an audio frame header. // C) the last two bytes introduce an audio frame header. // D) the last byte introduces an audio frame header. // // Todo : Data : Rule : Result // -----:-------------------------------:------:------- // : XX XX FF Fz zz zz|YY YY YY YY : : // 0 : ^^| : A : push // -----:-------------------------------:------:------- // : XX XX XX FF Fz zz|zz YY YY YY : : // 0 : ^^| : B : wait // -1 : |^^ : A : push // -----:-------------------------------:------:------- // : XX XX XX XX FF Fz|zz zz YY YY : : // 0 : ^^| : C : wait // -1 : |^^ : B : wait // -2 : | ^^ : A : push // -----:-------------------------------:------:------- // : XX XX XX XX XX FF|Fz zz zz YY : : // 0 : ^^| : D : wait // -1 : |^^ : C : wait // -2 : | ^^ : B : wait // -3 : | ^^ : A : push // -----:-------------------------------:------:------- bool A = ((scanner & 0xFFF00000) == 0xFFF00000); bool B = ((scanner & 0xFFF000) == 0xFFF000); bool C = ((scanner & 0xFFF0) == 0xFFF0); bool D = ((scanner & 0xFF) == 0xFF); if (A || (!B && !C && !D)) { // Actually we cannot push out an overfull packet. So we'll have to // adjust the byte count and payload start as necessary. If the byte // count gets negative we'll have to append the excess from fragment's // tail to the next PES header. int bite = data + packetTodo - payload; const uchar *excessData = fragmentData + fragmentLen + bite; // A negative byte count means to drop some bytes from the current // fragment's tail, to not exceed the maximum packet size. PushOutPacket(ResultBuffer, payload, bite); // create a continuation PES header pesHeaderLen = 0; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x01; pesHeader[pesHeaderLen++] = Data[3]; // audio stream ID pesHeader[pesHeaderLen++] = 0x00; // length still unknown pesHeader[pesHeaderLen++] = 0x00; // length still unknown if (mpegLevel == phMPEG2) { pesHeader[pesHeaderLen++] = 0x80; pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = 0x00; } else pesHeader[pesHeaderLen++] = 0x0F; // copy any excess data while (bite++ < 0) { // append the excess data here pesHeader[pesHeaderLen++] = *excessData++; packetTodo++; } // the next packet's payload will begin here payload = data + packetTodo; // as there is no length information available, assume the // maximum we can hold in one PES packet packetTodo += maxPacketSize - pesHeaderLen; } } } // The packet is done. Now store any remaining data into fragment buffer // if we are no longer syncing. if (state != syncing) { // append the PES header ... int bite = pesHeaderLen; pesHeaderLen = 0; if (bite > 0) { memcpy(fragmentData + fragmentLen, pesHeader, bite); fragmentLen += bite; } // append payload. It may contain part of an audio frame header at it's // end, which will be removed when the next packet gets processed. bite = data - payload; if (bite > 0) { memcpy(fragmentData + fragmentLen, payload, bite); fragmentLen += bite; } } // report that syncing dropped some bytes if (skippedBytes > SkippedBytesLimit) { if (!initiallySyncing) // omit report for the typical initial case LOG("cAudioRepacker(0x%02X): skipped %d bytes while syncing on next audio frame", cid, skippedBytes - SkippedBytesLimit); skippedBytes = SkippedBytesLimit; } } int cAudioRepacker::BreakAt(const uchar *Data, int Count) { if (initiallySyncing) return -1; // fill the packet buffer completely until we have synced once int PesPayloadOffset = 0; ePesHeader MpegLevel = AnalyzePesHeader(Data, Count, PesPayloadOffset); if (MpegLevel <= phInvalid) return -1; // not enough data for test // determine amount of data to fill up packet and to append next audio frame header int packetRemainder = PesPayloadOffset + packetTodo + 4; // just detect end of an audio frame if (state == scanFrame) { // when remaining audio frame size is known, then omit scanning if (frameTodo > 0) { // determine amount of data to fill up audio frame and to append next audio frame header int remaining = PesPayloadOffset + frameTodo + 4; if (remaining < packetRemainder) return remaining; return packetRemainder; } // setup local scanner if (localStart < 0) { localScanner = scanner; localStart = 0; } // start where we've stopped at the last run const uchar *data = Data + PesPayloadOffset + localStart; const uchar *limit = Data + Count; // scan data while (data < limit) { localStart++; localScanner <<= 8; localScanner |= *data++; // check whether the next audio frame follows if (((localScanner & 0xFFF00000) == 0xFFF00000) && IsValidAudioHeader(localScanner, MpegLevel == phMPEG2)) return data - Data; } } // just fill up packet and append next audio frame header return packetRemainder; } // --- cDolbyRepacker -------------------------------------------------------- class cDolbyRepacker : public cRepacker { private: static int frameSizes[]; uchar fragmentData[6 + 65535]; int fragmentLen; int fragmentTodo; uchar pesHeader[6 + 3 + 255 + 4 + 4]; int pesHeaderLen; uchar pesHeaderBackup[6 + 3 + 255]; int pesHeaderBackupLen; uchar chk1; uchar chk2; int ac3todo; enum eState { find_0b, find_77, store_chk1, store_chk2, get_length, output_packet }; int state; int skippedBytes; void ResetPesHeader(bool ContinuationFrame = false); void AppendSubStreamID(bool ContinuationFrame = false); bool FinishRemainder(cRingBufferLinear *ResultBuffer, const uchar *const Data, const int Todo, int &Bite); bool StartNewPacket(cRingBufferLinear *ResultBuffer, const uchar *const Data, const int Todo, int &Bite); public: cDolbyRepacker(void); virtual void Reset(void); virtual void Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count); virtual int BreakAt(const uchar *Data, int Count); }; // frameSizes are in words, i. e. multiply them by 2 to get bytes int cDolbyRepacker::frameSizes[] = { // fs = 48 kHz 64, 64, 80, 80, 96, 96, 112, 112, 128, 128, 160, 160, 192, 192, 224, 224, 256, 256, 320, 320, 384, 384, 448, 448, 512, 512, 640, 640, 768, 768, 896, 896, 1024, 1024, 1152, 1152, 1280, 1280, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // fs = 44.1 kHz 69, 70, 87, 88, 104, 105, 121, 122, 139, 140, 174, 175, 208, 209, 243, 244, 278, 279, 348, 349, 417, 418, 487, 488, 557, 558, 696, 697, 835, 836, 975, 976, 1114, 1115, 1253, 1254, 1393, 1394, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // fs = 32 kHz 96, 96, 120, 120, 144, 144, 168, 168, 192, 192, 240, 240, 288, 288, 336, 336, 384, 384, 480, 480, 576, 576, 672, 672, 768, 768, 960, 960, 1152, 1152, 1344, 1344, 1536, 1536, 1728, 1728, 1920, 1920, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; cDolbyRepacker::cDolbyRepacker(void) { pesHeader[0] = 0x00; pesHeader[1] = 0x00; pesHeader[2] = 0x01; pesHeader[3] = 0xBD; pesHeader[4] = 0x00; pesHeader[5] = 0x00; Reset(); } void cDolbyRepacker::AppendSubStreamID(bool ContinuationFrame) { if (subStreamId) { pesHeader[pesHeaderLen++] = subStreamId; // number of ac3 frames "starting" in this packet (1 by design). pesHeader[pesHeaderLen++] = 0x01; // offset to start of first ac3 frame (0 means "no ac3 frame starting" // so 1 (by design) addresses the first byte after the next two bytes). pesHeader[pesHeaderLen++] = 0x00; pesHeader[pesHeaderLen++] = (ContinuationFrame ? 0x00 : 0x01); } } void cDolbyRepacker::ResetPesHeader(bool ContinuationFrame) { pesHeader[6] = 0x80; pesHeader[7] = 0x00; pesHeader[8] = 0x00; pesHeaderLen = 9; AppendSubStreamID(ContinuationFrame); } void cDolbyRepacker::Reset(void) { cRepacker::Reset(); ResetPesHeader(); state = find_0b; ac3todo = 0; chk1 = 0; chk2 = 0; fragmentLen = 0; fragmentTodo = 0; pesHeaderBackupLen = 0; skippedBytes = 0; } bool cDolbyRepacker::FinishRemainder(cRingBufferLinear *ResultBuffer, const uchar *const Data, const int Todo, int &Bite) { bool success = true; // enough data available to put PES packet into buffer? if (fragmentTodo <= Todo) { // output a previous fragment first if (fragmentLen > 0) { Bite = fragmentLen; int n = Put(ResultBuffer, fragmentData, Bite, fragmentLen + fragmentTodo); if (Bite != n) success = false; fragmentLen = 0; } Bite = fragmentTodo; if (success) { int n = Put(ResultBuffer, Data, Bite, Bite); if (Bite != n) success = false; } fragmentTodo = 0; // ac3 frame completely processed? if (Bite >= ac3todo) state = find_0b; // go on with finding start of next packet } else { // copy the fragment into separate buffer for later processing Bite = Todo; memcpy(fragmentData + fragmentLen, Data, Bite); fragmentLen += Bite; fragmentTodo -= Bite; } return success; } bool cDolbyRepacker::StartNewPacket(cRingBufferLinear *ResultBuffer, const uchar *const Data, const int Todo, int &Bite) { bool success = true; int packetLen = pesHeaderLen + ac3todo; // limit packet to maximum size if (packetLen > maxPacketSize) packetLen = maxPacketSize; pesHeader[4] = (packetLen - 6) >> 8; pesHeader[5] = (packetLen - 6) & 0xFF; Bite = pesHeaderLen; // enough data available to put PES packet into buffer? if (packetLen - pesHeaderLen <= Todo) { int n = Put(ResultBuffer, pesHeader, Bite, packetLen); if (Bite != n) success = false; Bite = packetLen - pesHeaderLen; if (success) { n = Put(ResultBuffer, Data, Bite, Bite); if (Bite != n) success = false; } // ac3 frame completely processed? if (Bite >= ac3todo) state = find_0b; // go on with finding start of next packet } else { fragmentTodo = packetLen; // copy the pesheader into separate buffer for later processing memcpy(fragmentData + fragmentLen, pesHeader, Bite); fragmentLen += Bite; fragmentTodo -= Bite; // copy the fragment into separate buffer for later processing Bite = Todo; memcpy(fragmentData + fragmentLen, Data, Bite); fragmentLen += Bite; fragmentTodo -= Bite; } return success; } void cDolbyRepacker::Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count) { // synchronisation is detected some bytes after frame start. const int SkippedBytesLimit = 4; // check for MPEG 2 if ((Data[6] & 0xC0) != 0x80) { DroppedData("cDolbyRepacker: MPEG 2 PES header expected", Count); return; } // backup PES header if (Data[6] != 0x80 || Data[7] != 0x00 || Data[8] != 0x00) { pesHeaderBackupLen = 6 + 3 + Data[8]; memcpy(pesHeaderBackup, Data, pesHeaderBackupLen); } // skip PES header int done = 6 + 3 + Data[8]; int todo = Count - done; const uchar *data = Data + done; // look for 0x0B 0x77 <chk1> <chk2> <frameSize> while (todo > 0) { switch (state) { case find_0b: if (*data == 0x0B) { state++; // copy header information once for later use if (pesHeaderBackupLen > 0) { pesHeaderLen = pesHeaderBackupLen; pesHeaderBackupLen = 0; memcpy(pesHeader, pesHeaderBackup, pesHeaderLen); AppendSubStreamID(); } } data++; done++; todo--; skippedBytes++; // collect number of skipped bytes while syncing continue; case find_77: if (*data != 0x77) { state = find_0b; continue; } data++; done++; todo--; skippedBytes++; // collect number of skipped bytes while syncing state++; continue; case store_chk1: chk1 = *data++; done++; todo--; skippedBytes++; // collect number of skipped bytes while syncing state++; continue; case store_chk2: chk2 = *data++; done++; todo--; skippedBytes++; // collect number of skipped bytes while syncing state++; continue; case get_length: ac3todo = 2 * frameSizes[*data]; // frameSizeCode was invalid => restart searching if (ac3todo <= 0) { // reset PES header instead of using a wrong one ResetPesHeader(); if (chk1 == 0x0B) { if (chk2 == 0x77) { state = store_chk1; continue; } if (chk2 == 0x0B) { state = find_77; continue; } state = find_0b; continue; } if (chk2 == 0x0B) { state = find_77; continue; } state = find_0b; continue; } if (initiallySyncing) // omit report for the typical initial case initiallySyncing = false; else if (skippedBytes > SkippedBytesLimit) // report that syncing dropped some bytes LOG("cDolbyRepacker: skipped %d bytes to sync on next AC3 frame", skippedBytes - SkippedBytesLimit); skippedBytes = 0; // append read data to header for common output processing pesHeader[pesHeaderLen++] = 0x0B; pesHeader[pesHeaderLen++] = 0x77; pesHeader[pesHeaderLen++] = chk1; pesHeader[pesHeaderLen++] = chk2; ac3todo -= 4; state++; // fall through to output case output_packet: { int bite = 0; // finish remainder of ac3 frame? if (fragmentTodo > 0) FinishRemainder(ResultBuffer, data, todo, bite); else { // start a new packet StartNewPacket(ResultBuffer, data, todo, bite); // prepare for next (continuation) packet ResetPesHeader(state == output_packet); } data += bite; done += bite; todo -= bite; ac3todo -= bite; } } } // report that syncing dropped some bytes if (skippedBytes > SkippedBytesLimit) { if (!initiallySyncing) // omit report for the typical initial case LOG("cDolbyRepacker: skipped %d bytes while syncing on next AC3 frame", skippedBytes - 4); skippedBytes = SkippedBytesLimit; } } int cDolbyRepacker::BreakAt(const uchar *Data, int Count) { if (initiallySyncing) return -1; // fill the packet buffer completely until we have synced once // enough data for test? if (Count < 6 + 3) return -1; // check for MPEG 2 if ((Data[6] & 0xC0) != 0x80) return -1; int headerLen = Data[8] + 6 + 3; // break after fragment tail? if (ac3todo > 0) return headerLen + ac3todo; // enough data for test? if (Count < headerLen + 5) return -1; const uchar *data = Data + headerLen; // break after ac3 frame? if (data[0] == 0x0B && data[1] == 0x77 && frameSizes[data[4]] > 0) return headerLen + 2 * frameSizes[data[4]]; return -1; } // --- cTS2PES --------------------------------------------------------------- #include <netinet/in.h> //XXX TODO: these should really be available in some driver header file! #define PROG_STREAM_MAP 0xBC #ifndef PRIVATE_STREAM1 #define PRIVATE_STREAM1 0xBD #endif #define PADDING_STREAM 0xBE #ifndef PRIVATE_STREAM2 #define PRIVATE_STREAM2 0xBF #endif #define AUDIO_STREAM_S 0xC0 #define AUDIO_STREAM_E 0xDF #define VIDEO_STREAM_S 0xE0 #define VIDEO_STREAM_E 0xEF #define ECM_STREAM 0xF0 #define EMM_STREAM 0xF1 #define DSM_CC_STREAM 0xF2 #define ISO13522_STREAM 0xF3 #define PROG_STREAM_DIR 0xFF //pts_dts flags #define PTS_ONLY 0x80 #define PID_MASK_HI 0x1F #define CONT_CNT_MASK 0x0F // Flags: #define PAY_LOAD 0x10 #define ADAPT_FIELD 0x20 #define PAY_START 0x40 #define TS_ERROR 0x80 #define MAX_PLENGTH 0xFFFF // the maximum PES packet length (theoretically) #define MMAX_PLENGTH (64*MAX_PLENGTH) // some stations send PES packets that are extremely large, e.g. DVB-T in Finland or HDTV 1920x1080 #define IPACKS 2048 // Start codes: #define SC_SEQUENCE 0xB3 // "sequence header code" #define SC_GROUP 0xB8 // "group start code" #define SC_PICTURE 0x00 // "picture start code" #define MAXNONUSEFULDATA (10*1024*1024) #define MAXNUMUPTERRORS 10 class cTS2PES { private: int pid; int size; int found; int count; uint8_t *buf; uint8_t cid; uint8_t rewriteCid; uint8_t subStreamId; int plength; uint8_t plen[2]; uint8_t flag1; uint8_t flag2; uint8_t hlength; int mpeg; uint8_t check; int mpeg1_required; int mpeg1_stuffing; bool done; cRingBufferLinear *resultBuffer; int tsErrors; int ccErrors; int ccCounter; cRepacker *repacker; static uint8_t headr[]; void store(uint8_t *Data, int Count); void reset_ipack(void); void send_ipack(void); void write_ipack(const uint8_t *Data, int Count); void instant_repack(const uint8_t *Buf, int Count); public: cTS2PES(int Pid, cRingBufferLinear *ResultBuffer, int Size, uint8_t RewriteCid = 0x00, uint8_t SubStreamId = 0x00, cRepacker *Repacker = NULL); ~cTS2PES(); int Pid(void) { return pid; } void ts_to_pes(const uint8_t *Buf); // don't need count (=188) void Clear(void); }; uint8_t cTS2PES::headr[] = { 0x00, 0x00, 0x01 }; cTS2PES::cTS2PES(int Pid, cRingBufferLinear *ResultBuffer, int Size, uint8_t RewriteCid, uint8_t SubStreamId, cRepacker *Repacker) { pid = Pid; resultBuffer = ResultBuffer; size = Size; rewriteCid = RewriteCid; subStreamId = SubStreamId; repacker = Repacker; if (repacker) { repacker->SetMaxPacketSize(size); repacker->SetSubStreamId(subStreamId); size += repacker->QuerySnoopSize(); } tsErrors = 0; ccErrors = 0; ccCounter = -1; if (!(buf = MALLOC(uint8_t, size))) esyslog("Not enough memory for ts_transform"); reset_ipack(); } cTS2PES::~cTS2PES() { if (tsErrors || ccErrors) dsyslog("cTS2PES got %d TS errors, %d TS continuity errors", tsErrors, ccErrors); free(buf); delete repacker; } void cTS2PES::Clear(void) { reset_ipack(); if (repacker) repacker->Reset(); } void cTS2PES::store(uint8_t *Data, int Count) { if (repacker) repacker->Repack(resultBuffer, Data, Count); else cRepacker::Put(resultBuffer, Data, Count, Count); } void cTS2PES::reset_ipack(void) { found = 0; cid = 0; plength = 0; flag1 = 0; flag2 = 0; hlength = 0; mpeg = 0; check = 0; mpeg1_required = 0; mpeg1_stuffing = 0; done = false; count = 0; } void cTS2PES::send_ipack(void) { if (count <= ((mpeg == 2) ? 9 : 7)) // skip empty packets return; buf[3] = rewriteCid ? rewriteCid : cid; buf[4] = (uint8_t)(((count - 6) & 0xFF00) >> 8); buf[5] = (uint8_t)((count - 6) & 0x00FF); store(buf, count); switch (mpeg) { case 2: buf[6] = 0x80; buf[7] = 0x00; buf[8] = 0x00; count = 9; if (!repacker && subStreamId) { buf[9] = subStreamId; buf[10] = 1; buf[11] = 0; buf[12] = 1; count = 13; } break; case 1: buf[6] = 0x0F; count = 7; break; } } void cTS2PES::write_ipack(const uint8_t *Data, int Count) { if (count < 6) { memcpy(buf, headr, 3); count = 6; } // determine amount of data to process int bite = Count; if (count + bite > size) bite = size - count; if (repacker) { int breakAt = repacker->BreakAt(buf, count); // avoid memcpy of data after break location if (0 <= breakAt && breakAt < count + bite) { bite = breakAt - count; if (bite < 0) // should never happen bite = 0; } } memcpy(buf + count, Data, bite); count += bite; if (repacker) { // determine break location int breakAt = repacker->BreakAt(buf, count); if (breakAt > size) // won't fit into packet? breakAt = -1; if (breakAt > count) // not enough data? breakAt = -1; // push out data before break location if (breakAt > 0) { // adjust bite if above memcpy was to large bite -= count - breakAt; count = breakAt; send_ipack(); // recurse for data after break location if (Count - bite > 0) write_ipack(Data + bite, Count - bite); } } // push out data when buffer is full if (count >= size) { send_ipack(); // recurse for remaining data if (Count - bite > 0) write_ipack(Data + bite, Count - bite); } } void cTS2PES::instant_repack(const uint8_t *Buf, int Count) { int c = 0; while (c < Count && (mpeg == 0 || (mpeg == 1 && found < mpeg1_required) || (mpeg == 2 && found < 9)) && (found < 5 || !done)) { switch (found ) { case 0: case 1: if (Buf[c] == 0x00) found++; else found = 0; c++; break; case 2: if (Buf[c] == 0x01) found++; else if (Buf[c] != 0) found = 0; c++; break; case 3: cid = 0; switch (Buf[c]) { case PROG_STREAM_MAP: case PRIVATE_STREAM2: case PROG_STREAM_DIR: case ECM_STREAM : case EMM_STREAM : case PADDING_STREAM : case DSM_CC_STREAM : case ISO13522_STREAM: done = true; case PRIVATE_STREAM1: case VIDEO_STREAM_S ... VIDEO_STREAM_E: case AUDIO_STREAM_S ... AUDIO_STREAM_E: found++; cid = Buf[c++]; break; default: found = 0; break; } break; case 4: if (Count - c > 1) { unsigned short *pl = (unsigned short *)(Buf + c); plength = ntohs(*pl); c += 2; found += 2; mpeg1_stuffing = 0; } else { plen[0] = Buf[c]; found++; return; } break; case 5: { plen[1] = Buf[c++]; unsigned short *pl = (unsigned short *)plen; plength = ntohs(*pl); found++; mpeg1_stuffing = 0; } break; case 6: if (!done) { flag1 = Buf[c++]; found++; if (mpeg1_stuffing == 0) { // first stuffing iteration: determine MPEG level if ((flag1 & 0xC0) == 0x80) mpeg = 2; else { mpeg = 1; mpeg1_required = 7; } } if (mpeg == 1) { if (flag1 == 0xFF) { // MPEG1 stuffing if (++mpeg1_stuffing > 16) found = 0; // invalid MPEG1 header else { // ignore stuffing found--; if (plength > 0) plength--; } } else if ((flag1 & 0xC0) == 0x40) // STD_buffer_scale/size mpeg1_required += 2; else if (flag1 != 0x0F && (flag1 & 0xF0) != 0x20 && (flag1 & 0xF0) != 0x30) found = 0; // invalid MPEG1 header else { flag2 = 0; hlength = 0; } } } break; case 7: if (!done && (mpeg == 2 || mpeg1_required > 7)) { flag2 = Buf[c++]; found++; } break; case 8: if (!done && (mpeg == 2 || mpeg1_required > 7)) { hlength = Buf[c++]; found++; if (mpeg == 1 && hlength != 0x0F && (hlength & 0xF0) != 0x20 && (hlength & 0xF0) != 0x30) found = 0; // invalid MPEG1 header } break; default: break; } } if (!plength) plength = MMAX_PLENGTH - 6; if (done || ((mpeg == 2 && found >= 9) || (mpeg == 1 && found >= mpeg1_required))) { switch (cid) { case AUDIO_STREAM_S ... AUDIO_STREAM_E: case VIDEO_STREAM_S ... VIDEO_STREAM_E: case PRIVATE_STREAM1: if (mpeg == 2 && found == 9 && count < found) { // make sure to not write the data twice by looking at count write_ipack(&flag1, 1); write_ipack(&flag2, 1); write_ipack(&hlength, 1); } if (mpeg == 1 && found == mpeg1_required && count < found) { // make sure to not write the data twice by looking at count write_ipack(&flag1, 1); if (mpeg1_required > 7) { write_ipack(&flag2, 1); write_ipack(&hlength, 1); } } if (mpeg == 2 && (flag2 & PTS_ONLY) && found < 14) { while (c < Count && found < 14) { write_ipack(Buf + c, 1); c++; found++; } if (c == Count) return; } if (!repacker && subStreamId) { while (c < Count && found < (hlength + 9) && found < plength + 6) { write_ipack(Buf + c, 1); c++; found++; } if (found == (hlength + 9)) { uchar sbuf[] = { 0x01, 0x00, 0x00 }; write_ipack(&subStreamId, 1); write_ipack(sbuf, 3); } } while (c < Count && found < plength + 6) { int l = Count - c; if (l + found > plength + 6) l = plength + 6 - found; write_ipack(Buf + c, l); found += l; c += l; } break; } if (done) { if (found + Count - c < plength + 6) { found += Count - c; c = Count; } else { c += plength + 6 - found; found = plength + 6; } } if (plength && found == plength + 6) { if (plength == MMAX_PLENGTH - 6) esyslog("ERROR: PES packet length overflow in remuxer (stream corruption)"); send_ipack(); reset_ipack(); if (c < Count) instant_repack(Buf + c, Count - c); } } return; } void cTS2PES::ts_to_pes(const uint8_t *Buf) // don't need count (=188) { if (!Buf) return; if (Buf[1] & TS_ERROR) tsErrors++; if (!(Buf[3] & (ADAPT_FIELD | PAY_LOAD))) return; // discard TS packet with adaption_field_control set to '00'. if ((Buf[3] & PAY_LOAD) && ((Buf[3] ^ ccCounter) & CONT_CNT_MASK)) { // This should check duplicates and packets which do not increase the counter. // But as the errors usually come in bursts this should be enough to // show you there is something wrong with signal quality. if (ccCounter != -1 && ((Buf[3] ^ (ccCounter + 1)) & CONT_CNT_MASK)) { ccErrors++; // Enable this if you are having problems with signal quality. // These are the errors I used to get with Nova-T when antenna // was not positioned correcly (not transport errors). //tvr //dsyslog("TS continuity error (%d)", ccCounter); } ccCounter = Buf[3] & CONT_CNT_MASK; } if (Buf[1] & PAY_START) { if (found > 6) { if (plength != MMAX_PLENGTH - 6 && plength != found - 6) dsyslog("PES packet shortened to %d bytes (expected: %d bytes)", found, plength + 6); plength = found - 6; send_ipack(); reset_ipack(); } found = 0; } uint8_t off = 0; if (Buf[3] & ADAPT_FIELD) { // adaptation field? off = Buf[4] + 1; if (off + 4 > 187) return; } if (Buf[3] & PAY_LOAD) instant_repack(Buf + 4 + off, TS_SIZE - 4 - off); } // --- cRingBufferLinearPes -------------------------------------------------- class cRingBufferLinearPes : public cRingBufferLinear { protected: virtual int DataReady(const uchar *Data, int Count); public: cRingBufferLinearPes(int Size, int Margin = 0, bool Statistics = false, const char *Description = NULL) :cRingBufferLinear(Size, Margin, Statistics, Description) {} }; int cRingBufferLinearPes::DataReady(const uchar *Data, int Count) { int c = cRingBufferLinear::DataReady(Data, Count); if (!c && Count >= 6) { if (!Data[0] && !Data[1] && Data[2] == 0x01) { int Length = 6 + Data[4] * 256 + Data[5]; if (Length <= Count) return Length; } } return c; } // --- cRemux ---------------------------------------------------------------- #define RESULTBUFFERSIZE KILOBYTE(256) cRemux::cRemux(int VPid, const int *APids, const int *DPids, const int *SPids, bool ExitOnFailure) { exitOnFailure = ExitOnFailure; noVideo = VPid == 0 || VPid == 1 || VPid == 0x1FFF; numUPTerrors = 0; synced = false; skipped = 0; numTracks = 0; resultSkipped = 0; resultBuffer = new cRingBufferLinearPes(RESULTBUFFERSIZE, IPACKS, false, "Result"); resultBuffer->SetTimeouts(0, 100); if (VPid) #define TEST_cVideoRepacker #ifdef TEST_cVideoRepacker ts2pes[numTracks++] = new cTS2PES(VPid, resultBuffer, IPACKS, 0xE0, 0x00, new cVideoRepacker); #else ts2pes[numTracks++] = new cTS2PES(VPid, resultBuffer, IPACKS, 0xE0); #endif if (APids) { int n = 0; while (*APids && numTracks < MAXTRACKS && n < MAXAPIDS) { #define TEST_cAudioRepacker #ifdef TEST_cAudioRepacker ts2pes[numTracks++] = new cTS2PES(*APids++, resultBuffer, IPACKS, 0xC0 + n, 0x00, new cAudioRepacker(0xC0 + n)); n++; #else ts2pes[numTracks++] = new cTS2PES(*APids++, resultBuffer, IPACKS, 0xC0 + n++); #endif } } if (DPids) { int n = 0; while (*DPids && numTracks < MAXTRACKS && n < MAXDPIDS) ts2pes[numTracks++] = new cTS2PES(*DPids++, resultBuffer, IPACKS, 0x00, 0x80 + n++, new cDolbyRepacker); } if (SPids) { int n = 0; while (*SPids && numTracks < MAXTRACKS && n < MAXSPIDS) ts2pes[numTracks++] = new cTS2PES(*SPids++, resultBuffer, IPACKS, 0x00, 0x20 + n++); } } cRemux::~cRemux() { for (int t = 0; t < numTracks; t++) delete ts2pes[t]; delete resultBuffer; } int cRemux::GetPid(const uchar *Data) { return (((uint16_t)Data[0] & PID_MASK_HI) << 8) | (Data[1] & 0xFF); } int cRemux::GetPacketLength(const uchar *Data, int Count, int Offset) { // Returns the length of the packet starting at Offset, or -1 if Count is // too small to contain the entire packet. int Length = (Offset + 5 < Count) ? (Data[Offset + 4] << 8) + Data[Offset + 5] + 6 : -1; if (Length > 0 && Offset + Length <= Count) return Length; return -1; } int cRemux::ScanVideoPacket(const uchar *Data, int Count, int Offset, uchar &PictureType) { // Scans the video packet starting at Offset and returns its length. // If the return value is -1 the packet was not completely in the buffer. int Length = GetPacketLength(Data, Count, Offset); if (Length > 0) { int PesPayloadOffset = 0; if (AnalyzePesHeader(Data + Offset, Length, PesPayloadOffset) >= phMPEG1) { const uchar *p = Data + Offset + PesPayloadOffset + 2; const uchar *pLimit = Data + Offset + Length - 3; #ifdef TEST_cVideoRepacker // cVideoRepacker ensures that a new PES packet is started for a new sequence, // group or picture which allows us to easily skip scanning through a huge // amount of video data. if (p < pLimit) { if (p[-2] || p[-1] || p[0] != 0x01) pLimit = 0; // skip scanning: packet doesn't start with 0x000001 else { switch (p[1]) { case SC_SEQUENCE: case SC_GROUP: case SC_PICTURE: break; default: // skip scanning: packet doesn't start a new sequence, group or picture pLimit = 0; } } } #endif while (p < pLimit && (p = (const uchar *)memchr(p, 0x01, pLimit - p))) { if (!p[-2] && !p[-1]) { // found 0x000001 switch (p[1]) { case SC_PICTURE: PictureType = (p[3] >> 3) & 0x07; return Length; } p += 4; // continue scanning after 0x01ssxxyy } else p += 3; // continue scanning after 0x01xxyy } } PictureType = NO_PICTURE; return Length; } return -1; } int cRemux::Put(const uchar *Data, int Count) { int used = 0; // Make sure we are looking at a TS packet: while (Count > TS_SIZE) { if (Data[0] == TS_SYNC_BYTE && Data[TS_SIZE] == TS_SYNC_BYTE) break; Data++; Count--; used++; } if (used) esyslog("ERROR: skipped %d byte to sync on TS packet", used); // Convert incoming TS data into multiplexed PES: for (int i = 0; i < Count; i += TS_SIZE) { if (Count - i < TS_SIZE) break; if (Data[i] != TS_SYNC_BYTE) break; if (resultBuffer->Free() < 2 * IPACKS) break; // A cTS2PES might write one full packet and also a small rest int pid = GetPid(Data + i + 1); if (Data[i + 3] & 0x10) { // got payload for (int t = 0; t < numTracks; t++) { if (ts2pes[t]->Pid() == pid) { ts2pes[t]->ts_to_pes(Data + i); break; } } } used += TS_SIZE; } // Check if we're getting anywhere here: if (!synced && skipped >= 0) { if (skipped > MAXNONUSEFULDATA) { esyslog("ERROR: no useful data seen within %d byte of video stream", skipped); skipped = -1; if (exitOnFailure) ShutdownHandler.RequestEmergencyExit(); } else skipped += used; } return used; } uchar *cRemux::Get(int &Count, uchar *PictureType) { // Remove any previously skipped data from the result buffer: if (resultSkipped > 0) { resultBuffer->Del(resultSkipped); resultSkipped = 0; } #if 0 // Test recording without determining the real frame borders: if (PictureType) *PictureType = I_FRAME; return resultBuffer->Get(Count); #endif // Check for frame borders: if (PictureType) *PictureType = NO_PICTURE; Count = 0; uchar *resultData = NULL; int resultCount = 0; uchar *data = resultBuffer->Get(resultCount); if (data) { for (int i = 0; i < resultCount - 3; i++) { if (data[i] == 0 && data[i + 1] == 0 && data[i + 2] == 1) { int l = 0; uchar StreamType = data[i + 3]; if (VIDEO_STREAM_S <= StreamType && StreamType <= VIDEO_STREAM_E) { uchar pt = NO_PICTURE; l = ScanVideoPacket(data, resultCount, i, pt); if (l < 0) return resultData; if (pt != NO_PICTURE) { if (pt < I_FRAME || B_FRAME < pt) { esyslog("ERROR: unknown picture type '%d'", pt); if (++numUPTerrors > MAXNUMUPTERRORS && exitOnFailure) { ShutdownHandler.RequestEmergencyExit(); numUPTerrors = 0; } } else if (!synced) { if (pt == I_FRAME) { if (PictureType) *PictureType = pt; resultSkipped = i; // will drop everything before this position SetBrokenLink(data + i, l); synced = true; } } else if (Count) return resultData; else if (PictureType) *PictureType = pt; } } else { //if (AUDIO_STREAM_S <= StreamType && StreamType <= AUDIO_STREAM_E || StreamType == PRIVATE_STREAM1) { l = GetPacketLength(data, resultCount, i); if (l < 0) return resultData; if (noVideo) { if (!synced) { if (PictureType) *PictureType = I_FRAME; resultSkipped = i; // will drop everything before this position synced = true; } else if (Count) return resultData; else if (PictureType) *PictureType = I_FRAME; } } if (synced) { if (!Count) resultData = data + i; Count += l; } else resultSkipped = i + l; if (l > 0) i += l - 1; // the loop increments, too } } } return resultData; } void cRemux::Del(int Count) { resultBuffer->Del(Count); } void cRemux::Clear(void) { for (int t = 0; t < numTracks; t++) ts2pes[t]->Clear(); resultBuffer->Clear(); synced = false; skipped = 0; resultSkipped = 0; } void cRemux::SetBrokenLink(uchar *Data, int Length) { int PesPayloadOffset = 0; if (AnalyzePesHeader(Data, Length, PesPayloadOffset) >= phMPEG1 && (Data[3] & 0xF0) == VIDEO_STREAM_S) { for (int i = PesPayloadOffset; i < Length - 7; i++) { if (Data[i] == 0 && Data[i + 1] == 0 && Data[i + 2] == 1 && Data[i + 3] == 0xB8) { if (!(Data[i + 7] & 0x40)) // set flag only if GOP is not closed Data[i + 7] |= 0x20; return; } } dsyslog("SetBrokenLink: no GOP header found in video packet"); } else dsyslog("SetBrokenLink: no video packet in frame"); } // --- cPatPmtGenerator ------------------------------------------------------ cPatPmtGenerator::cPatPmtGenerator(void) { numPmtPackets = 0; patCounter = pmtCounter = 0; patVersion = pmtVersion = 0; esInfoLength = NULL; GeneratePat(); } void cPatPmtGenerator::IncCounter(int &Counter, uchar *TsPacket) { TsPacket[3] = (TsPacket[3] & 0xF0) | Counter; if (++Counter > 0x0F) Counter = 0x00; } void cPatPmtGenerator::IncVersion(int &Version) { if (++Version > 0x1F) Version = 0x00; } void cPatPmtGenerator::IncEsInfoLength(int Length) { if (esInfoLength) { Length += ((*esInfoLength & 0x0F) << 8) | *(esInfoLength + 1); *esInfoLength = 0xF0 | (Length >> 8); *(esInfoLength + 1) = Length; } } int cPatPmtGenerator::MakeStream(uchar *Target, uchar Type, int Pid) { int i = 0; Target[i++] = Type; // stream type Target[i++] = 0xE0 | (Pid >> 8); // dummy (3), pid hi (5) Target[i++] = Pid; // pid lo esInfoLength = &Target[i]; Target[i++] = 0xF0; // dummy (4), ES info length hi Target[i++] = 0x00; // ES info length lo return i; } int cPatPmtGenerator::MakeAC3Descriptor(uchar *Target) { int i = 0; Target[i++] = SI::AC3DescriptorTag; Target[i++] = 0x01; // length Target[i++] = 0x00; IncEsInfoLength(i); return i; } int cPatPmtGenerator::MakeSubtitlingDescriptor(uchar *Target, const char *Language) { int i = 0; Target[i++] = SI::SubtitlingDescriptorTag; Target[i++] = 0x08; // length Target[i++] = *Language++; Target[i++] = *Language++; Target[i++] = *Language++; Target[i++] = 0x00; // subtitling type Target[i++] = 0x00; // composition page id hi Target[i++] = 0x01; // composition page id lo Target[i++] = 0x00; // ancillary page id hi Target[i++] = 0x01; // ancillary page id lo IncEsInfoLength(i); return i; } int cPatPmtGenerator::MakeLanguageDescriptor(uchar *Target, const char *Language) { int i = 0; Target[i++] = SI::ISO639LanguageDescriptorTag; Target[i++] = 0x04; // length Target[i++] = *Language++; Target[i++] = *Language++; Target[i++] = *Language++; Target[i++] = 0x01; // audio type IncEsInfoLength(i); return i; } int cPatPmtGenerator::MakeCRC(uchar *Target, const uchar *Data, int Length) { int crc = SI::CRC32::crc32((const char *)Data, Length, 0xFFFFFFFF); int i = 0; Target[i++] = crc >> 24; Target[i++] = crc >> 16; Target[i++] = crc >> 8; Target[i++] = crc; return i; } #define P_TSID 0x8008 // pseudo TS ID #define P_PNR 0x0084 // pseudo Program Number #define P_PMT_PID 0x0084 // pseudo PMT pid void cPatPmtGenerator::GeneratePat(void) { memset(pat, 0xFF, sizeof(pat)); uchar *p = pat; int i = 0; p[i++] = 0x47; // TS indicator p[i++] = 0x40; // flags (3), pid hi (5) p[i++] = 0x00; // pid lo p[i++] = 0x10; // flags (4), continuity counter (4) int PayloadStart = i; p[i++] = 0x00; // table id p[i++] = 0xB0; // section syntax indicator (1), dummy (3), section length hi (4) int SectionLength = i; p[i++] = 0x00; // section length lo (filled in later) p[i++] = P_TSID >> 8; // TS id hi p[i++] = P_TSID & 0xFF; // TS id lo p[i++] = 0xC1 | (patVersion << 1); // dummy (2), version number (5), current/next indicator (1) p[i++] = 0x00; // section number p[i++] = 0x00; // last section number p[i++] = P_PNR >> 8; // program number hi p[i++] = P_PNR & 0xFF; // program number lo p[i++] = 0xE0 | (P_PMT_PID >> 8); // dummy (3), PMT pid hi (5) p[i++] = P_PMT_PID & 0xFF; // PMT pid lo pat[SectionLength] = i - SectionLength - 1 + 4; // -2 = SectionLength storage, +4 = length of CRC MakeCRC(pat + i, pat + PayloadStart, i - PayloadStart); IncVersion(patVersion); } void cPatPmtGenerator::GeneratePmt(tChannelID ChannelID) { // generate the complete PMT section: uchar buf[MAX_SECTION_SIZE]; memset(buf, 0xFF, sizeof(buf)); numPmtPackets = 0; cChannel *Channel = Channels.GetByChannelID(ChannelID); if (Channel) { int Vpid = Channel->Vpid(); uchar *p = buf; int i = 0; p[i++] = 0x02; // table id int SectionLength = i; p[i++] = 0xB0; // section syntax indicator (1), dummy (3), section length hi (4) p[i++] = 0x00; // section length lo (filled in later) p[i++] = P_PNR >> 8; // program number hi p[i++] = P_PNR & 0xFF; // program number lo p[i++] = 0xC1 | (pmtVersion << 1); // dummy (2), version number (5), current/next indicator (1) p[i++] = 0x00; // section number p[i++] = 0x00; // last section number p[i++] = 0xE0 | (Vpid >> 8); // dummy (3), PCR pid hi (5) p[i++] = Vpid; // PCR pid lo p[i++] = 0xF0; // dummy (4), program info length hi (4) p[i++] = 0x00; // program info length lo if (Vpid) i += MakeStream(buf + i, Channel->Vtype(), Vpid); for (int n = 0; Channel->Apid(n); n++) { i += MakeStream(buf + i, 0x04, Channel->Apid(n)); const char *Alang = Channel->Alang(n); i += MakeLanguageDescriptor(buf + i, Alang); if (Alang[3] == '+') i += MakeLanguageDescriptor(buf + i, Alang + 3); } for (int n = 0; Channel->Dpid(n); n++) { i += MakeStream(buf + i, 0x06, Channel->Dpid(n)); i += MakeAC3Descriptor(buf + i); i += MakeLanguageDescriptor(buf + i, Channel->Dlang(n)); } for (int n = 0; Channel->Spid(n); n++) { i += MakeStream(buf + i, 0x06, Channel->Spid(n)); i += MakeSubtitlingDescriptor(buf + i, Channel->Slang(n)); } int sl = i - SectionLength - 2 + 4; // -2 = SectionLength storage, +4 = length of CRC buf[SectionLength] |= (sl >> 8) & 0x0F; buf[SectionLength + 1] = sl; MakeCRC(buf + i, buf, i); // split the PMT section into several TS packets: uchar *q = buf; while (i > 0) { uchar *p = pmt[numPmtPackets++]; int j = 0; p[j++] = 0x47; // TS indicator p[j++] = 0x40 | (P_PNR >> 8); // flags (3), pid hi (5) p[j++] = P_PNR & 0xFF; // pid lo p[j++] = 0x10; // flags (4), continuity counter (4) int l = TS_SIZE - j; memcpy(p + j, q, l); q += l; i -= l; } IncVersion(pmtVersion); } else esyslog("ERROR: can't find channel %s", *ChannelID.ToString()); } uchar *cPatPmtGenerator::GetPat(void) { IncCounter(patCounter, pat); return pat; } uchar *cPatPmtGenerator::GetPmt(int &Index) { if (Index < numPmtPackets) { IncCounter(patCounter, pmt[Index]); return pmt[Index++]; } return NULL; } // --- cPatPmtParser --------------------------------------------------------- cPatPmtParser::cPatPmtParser(void) { pmtSize = 0; pmtPid = -1; vpid = vtype = 0; } void cPatPmtParser::ParsePat(const uchar *Data, int Length) { // The PAT is always assumed to fit into a single TS packet SI::PAT Pat(Data, false); if (Pat.CheckCRCAndParse()) { dbgpatpmt("PAT: TSid = %d, c/n = %d, v = %d, s = %d, ls = %d\n", Pat.getTransportStreamId(), Pat.getCurrentNextIndicator(), Pat.getVersionNumber(), Pat.getSectionNumber(), Pat.getLastSectionNumber()); SI::PAT::Association assoc; for (SI::Loop::Iterator it; Pat.associationLoop.getNext(assoc, it); ) { dbgpatpmt(" isNITPid = %d\n", assoc.isNITPid()); if (!assoc.isNITPid()) { pmtPid = assoc.getPid(); dbgpatpmt(" service id = %d, pid = %d\n", assoc.getServiceId(), assoc.getPid()); } } } else esyslog("ERROR: can't parse PAT"); } void cPatPmtParser::ParsePmt(const uchar *Data, int Length) { // The PMT may extend over several TS packets, so we need to assemble them if (pmtSize == 0) { // this is the first packet if (SectionLength(Data, Length) > Length) { if (Length <= int(sizeof(pmt))) { memcpy(pmt, Data, Length); pmtSize = Length; } else esyslog("ERROR: PMT packet length too big (%d byte)!", Length); return; } // the packet contains the entire PMT section, so we run into the actual parsing } else { // this is a following packet, so we add it to the pmt storage if (Length <= int(sizeof(pmt)) - pmtSize) { memcpy(pmt + pmtSize, Data, Length); pmtSize += Length; } else { esyslog("ERROR: PMT section length too big (%d byte)!", pmtSize + Length); pmtSize = 0; } if (SectionLength(pmt, pmtSize) > pmtSize) return; // more packets to come // the PMT section is now complete, so we run into the actual parsing Data = pmt; } SI::PMT Pmt(Data, false); if (Pmt.CheckCRCAndParse()) { dbgpatpmt("PMT: sid = %d, c/n = %d, v = %d, s = %d, ls = %d\n", Pmt.getServiceId(), Pmt.getCurrentNextIndicator(), Pmt.getVersionNumber(), Pmt.getSectionNumber(), Pmt.getLastSectionNumber()); dbgpatpmt(" pcr = %d\n", Pmt.getPCRPid()); cDevice::PrimaryDevice()->ClrAvailableTracks(false, true); int NumApids = 0; int NumDpids = 0; int NumSpids = 0; SI::PMT::Stream stream; for (SI::Loop::Iterator it; Pmt.streamLoop.getNext(stream, it); ) { dbgpatpmt(" stream type = %02X, pid = %d", stream.getStreamType(), stream.getPid()); switch (stream.getStreamType()) { case 0x02: // STREAMTYPE_13818_VIDEO case 0x1B: // MPEG4 vpid = stream.getPid(); vtype = stream.getStreamType(); break; case 0x04: // STREAMTYPE_13818_AUDIO { if (NumApids < MAXAPIDS) { char ALangs[MAXLANGCODE2] = ""; SI::Descriptor *d; for (SI::Loop::Iterator it; (d = stream.streamDescriptors.getNext(it)); ) { switch (d->getDescriptorTag()) { case SI::ISO639LanguageDescriptorTag: { SI::ISO639LanguageDescriptor *ld = (SI::ISO639LanguageDescriptor *)d; SI::ISO639LanguageDescriptor::Language l; char *s = ALangs; int n = 0; for (SI::Loop::Iterator it; ld->languageLoop.getNext(l, it); ) { if (*ld->languageCode != '-') { // some use "---" to indicate "none" dbgpatpmt(" '%s'", l.languageCode); if (n > 0) *s++ = '+'; strn0cpy(s, I18nNormalizeLanguageCode(l.languageCode), MAXLANGCODE1); s += strlen(s); if (n++ > 1) break; } } } break; default: ; } delete d; } cDevice::PrimaryDevice()->SetAvailableTrack(ttAudio, NumApids, stream.getPid(), ALangs); NumApids++; } } break; case 0x06: // STREAMTYPE_13818_PES_PRIVATE { int dpid = 0; char lang[MAXLANGCODE1] = ""; SI::Descriptor *d; for (SI::Loop::Iterator it; (d = stream.streamDescriptors.getNext(it)); ) { switch (d->getDescriptorTag()) { case SI::AC3DescriptorTag: dbgpatpmt(" AC3"); dpid = stream.getPid(); break; case SI::SubtitlingDescriptorTag: dbgpatpmt(" subtitling"); if (NumSpids < MAXSPIDS) { SI::SubtitlingDescriptor *sd = (SI::SubtitlingDescriptor *)d; SI::SubtitlingDescriptor::Subtitling sub; char SLangs[MAXLANGCODE2] = ""; char *s = SLangs; int n = 0; for (SI::Loop::Iterator it; sd->subtitlingLoop.getNext(sub, it); ) { if (sub.languageCode[0]) { dbgpatpmt(" '%s'", sub.languageCode); if (n > 0) *s++ = '+'; strn0cpy(s, I18nNormalizeLanguageCode(sub.languageCode), MAXLANGCODE1); s += strlen(s); if (n++ > 1) break; } } cDevice::PrimaryDevice()->SetAvailableTrack(ttSubtitle, NumSpids, stream.getPid(), SLangs); NumSpids++; } break; case SI::ISO639LanguageDescriptorTag: { SI::ISO639LanguageDescriptor *ld = (SI::ISO639LanguageDescriptor *)d; dbgpatpmt(" '%s'", ld->languageCode); strn0cpy(lang, I18nNormalizeLanguageCode(ld->languageCode), MAXLANGCODE1); } break; default: ; } delete d; } if (dpid) { if (NumDpids < MAXDPIDS) { cDevice::PrimaryDevice()->SetAvailableTrack(ttDolby, NumDpids, dpid, lang); NumDpids++; } } } break; } dbgpatpmt("\n"); cDevice::PrimaryDevice()->EnsureAudioTrack(true); cDevice::PrimaryDevice()->EnsureSubtitleTrack(); } } else esyslog("ERROR: can't parse PMT"); pmtSize = 0; } // --- cTsToPes -------------------------------------------------------------- cTsToPes::cTsToPes(void) { data = NULL; size = length = 0; synced = false; } cTsToPes::~cTsToPes() { free(data); } void cTsToPes::PutTs(const uchar *Data, int Length) { if (TsPayloadStart(Data)) Reset(); else if (!size) return; // skip everything before the first payload start Length = TsGetPayload(&Data); if (length + Length > size) { size = max(KILOBYTE(2), length + Length); data = (uchar *)realloc(data, size); } memcpy(data + length, Data, Length); length += Length; } const uchar *cTsToPes::GetPes(int &Length) { if (PesLongEnough(length)) { Length = PesLength(data); if (Length <= length) { Length = length; // in case the PES packet has no explicit length, as is the case for video PES return data; } } return NULL; } void cTsToPes::Reset(void) { length = 0; } // --- Some helper functions for debugging ----------------------------------- void BlockDump(const char *Name, const u_char *Data, int Length) { printf("--- %s\n", Name); for (int i = 0; i < Length; i++) { if (i && (i % 16) == 0) printf("\n"); printf(" %02X", Data[i]); } printf("\n"); } void TsDump(const char *Name, const u_char *Data, int Length) { printf("%s: %04X", Name, Length); int n = min(Length, 20); for (int i = 0; i < n; i++) printf(" %02X", Data[i]); if (n < Length) { printf(" ..."); n = max(n, Length - 10); for (n = max(n, Length - 10); n < Length; n++) printf(" %02X", Data[n]); } printf("\n"); } void PesDump(const char *Name, const u_char *Data, int Length) { TsDump(Name, Data, Length); }