/* * tools.c: Various tools * * See the main source file 'vdr.c' for copyright information and * how to reach the author. * * $Id: tools.c 3.4 2015/02/07 16:07:22 kls Exp $ */ #include "tools.h" #include <ctype.h> #include <dirent.h> #include <errno.h> extern "C" { #ifdef boolean #define HAVE_BOOLEAN #endif #include <jpeglib.h> #undef boolean } #include <locale.h> #include <stdlib.h> #include <sys/time.h> #include <sys/vfs.h> #include <time.h> #include <unistd.h> #include <utime.h> #include "i18n.h" #include "thread.h" int SysLogLevel = 3; #define MAXSYSLOGBUF 256 void syslog_with_tid(int priority, const char *format, ...) { va_list ap; char fmt[MAXSYSLOGBUF]; snprintf(fmt, sizeof(fmt), "[%d] %s", cThread::ThreadId(), format); va_start(ap, format); vsyslog(priority, fmt, ap); va_end(ap); } int BCD2INT(int x) { return ((1000000 * BCDCHARTOINT((x >> 24) & 0xFF)) + (10000 * BCDCHARTOINT((x >> 16) & 0xFF)) + (100 * BCDCHARTOINT((x >> 8) & 0xFF)) + BCDCHARTOINT( x & 0xFF)); } ssize_t safe_read(int filedes, void *buffer, size_t size) { for (;;) { ssize_t p = read(filedes, buffer, size); if (p < 0 && errno == EINTR) { dsyslog("EINTR while reading from file handle %d - retrying", filedes); continue; } return p; } } ssize_t safe_write(int filedes, const void *buffer, size_t size) { ssize_t p = 0; ssize_t written = size; const unsigned char *ptr = (const unsigned char *)buffer; while (size > 0) { p = write(filedes, ptr, size); if (p < 0) { if (errno == EINTR) { dsyslog("EINTR while writing to file handle %d - retrying", filedes); continue; } break; } ptr += p; size -= p; } return p < 0 ? p : written; } void writechar(int filedes, char c) { safe_write(filedes, &c, sizeof(c)); } int WriteAllOrNothing(int fd, const uchar *Data, int Length, int TimeoutMs, int RetryMs) { int written = 0; while (Length > 0) { int w = write(fd, Data + written, Length); if (w > 0) { Length -= w; written += w; } else if (written > 0 && !FATALERRNO) { // we've started writing, so we must finish it! cTimeMs t; cPoller Poller(fd, true); Poller.Poll(RetryMs); if (TimeoutMs > 0 && (TimeoutMs -= t.Elapsed()) <= 0) break; } else // nothing written yet (or fatal error), so we can just return the error code: return w; } return written; } char *strcpyrealloc(char *dest, const char *src) { if (src) { int l = max(dest ? strlen(dest) : 0, strlen(src)) + 1; // don't let the block get smaller! dest = (char *)realloc(dest, l); if (dest) strcpy(dest, src); else esyslog("ERROR: out of memory"); } else { free(dest); dest = NULL; } return dest; } char *strn0cpy(char *dest, const char *src, size_t n) { char *s = dest; for ( ; --n && (*dest = *src) != 0; dest++, src++) ; *dest = 0; return s; } char *strreplace(char *s, char c1, char c2) { if (s) { char *p = s; while (*p) { if (*p == c1) *p = c2; p++; } } return s; } char *strreplace(char *s, const char *s1, const char *s2) { char *p = strstr(s, s1); if (p) { int of = p - s; int l = strlen(s); int l1 = strlen(s1); int l2 = strlen(s2); if (l2 > l1) { if (char *NewBuffer = (char *)realloc(s, l + l2 - l1 + 1)) s = NewBuffer; else { esyslog("ERROR: out of memory"); return s; } } char *sof = s + of; if (l2 != l1) memmove(sof + l2, sof + l1, l - of - l1 + 1); strncpy(sof, s2, l2); } return s; } const char *strchrn(const char *s, char c, size_t n) { if (n == 0) return s; if (s) { for ( ; *s; s++) { if (*s == c && --n == 0) return s; } } return NULL; } int strcountchr(const char *s, char c) { int n = 0; if (s && c) { for ( ; *s; s++) { if (*s == c) n++; } } return n; } char *stripspace(char *s) { if (s && *s) { for (char *p = s + strlen(s) - 1; p >= s; p--) { if (!isspace(*p)) break; *p = 0; } } return s; } char *compactspace(char *s) { if (s && *s) { char *t = stripspace(skipspace(s)); char *p = t; while (p && *p) { char *q = skipspace(p); if (q - p > 1) memmove(p + 1, q, strlen(q) + 1); p++; } if (t != s) memmove(s, t, strlen(t) + 1); } return s; } char *compactchars(char *s, char c) { if (s && *s && c) { char *t = s; char *p = s; int n = 0; while (*p) { if (*p != c) { *t++ = *p; n = 0; } else if (t != s && n == 0) { *t++ = *p; n++; } p++; } if (n) t--; // the last character was c *t = 0; } return s; } cString strescape(const char *s, const char *chars) { char *buffer; const char *p = s; char *t = NULL; while (*p) { if (strchr(chars, *p)) { if (!t) { buffer = MALLOC(char, 2 * strlen(s) + 1); t = buffer + (p - s); s = strcpy(buffer, s); } *t++ = '\\'; } if (t) *t++ = *p; p++; } if (t) *t = 0; return cString(s, t != NULL); } bool startswith(const char *s, const char *p) { while (*p) { if (*p++ != *s++) return false; } return true; } bool endswith(const char *s, const char *p) { const char *se = s + strlen(s) - 1; const char *pe = p + strlen(p) - 1; while (pe >= p) { if (*pe-- != *se-- || (se < s && pe >= p)) return false; } return true; } bool isempty(const char *s) { return !(s && *skipspace(s)); } int numdigits(int n) { int res = 1; while (n >= 10) { n /= 10; res++; } return res; } bool isnumber(const char *s) { if (!s || !*s) return false; do { if (!isdigit(*s)) return false; } while (*++s); return true; } int64_t StrToNum(const char *s) { char *t = NULL; int64_t n = strtoll(s, &t, 10); if (t) { switch (*t) { case 'T': n *= 1024; case 'G': n *= 1024; case 'M': n *= 1024; case 'K': n *= 1024; } } return n; } bool StrInArray(const char *a[], const char *s) { if (a) { while (*a) { if (strcmp(*a, s) == 0) return true; a++; } } return false; } cString AddDirectory(const char *DirName, const char *FileName) { return cString::sprintf("%s/%s", DirName && *DirName ? DirName : ".", FileName); } #define DECIMAL_POINT_C '.' double atod(const char *s) { static lconv *loc = localeconv(); if (*loc->decimal_point != DECIMAL_POINT_C) { char buf[strlen(s) + 1]; char *p = buf; while (*s) { if (*s == DECIMAL_POINT_C) *p = *loc->decimal_point; else *p = *s; p++; s++; } *p = 0; return atof(buf); } else return atof(s); } cString dtoa(double d, const char *Format) { static lconv *loc = localeconv(); char buf[16]; snprintf(buf, sizeof(buf), Format, d); if (*loc->decimal_point != DECIMAL_POINT_C) strreplace(buf, *loc->decimal_point, DECIMAL_POINT_C); return buf; } cString itoa(int n) { char buf[16]; snprintf(buf, sizeof(buf), "%d", n); return buf; } bool EntriesOnSameFileSystem(const char *File1, const char *File2) { struct stat st; if (stat(File1, &st) == 0) { dev_t dev1 = st.st_dev; if (stat(File2, &st) == 0) return st.st_dev == dev1; else LOG_ERROR_STR(File2); } else LOG_ERROR_STR(File1); return true; // we only return false if both files actually exist and are in different file systems! } int FreeDiskSpaceMB(const char *Directory, int *UsedMB) { if (UsedMB) *UsedMB = 0; int Free = 0; struct statfs statFs; if (statfs(Directory, &statFs) == 0) { double blocksPerMeg = 1024.0 * 1024.0 / statFs.f_bsize; if (UsedMB) *UsedMB = int((statFs.f_blocks - statFs.f_bfree) / blocksPerMeg); Free = int(statFs.f_bavail / blocksPerMeg); } else LOG_ERROR_STR(Directory); return Free; } bool DirectoryOk(const char *DirName, bool LogErrors) { struct stat ds; if (stat(DirName, &ds) == 0) { if (S_ISDIR(ds.st_mode)) { if (access(DirName, R_OK | W_OK | X_OK) == 0) return true; else if (LogErrors) esyslog("ERROR: can't access %s", DirName); } else if (LogErrors) esyslog("ERROR: %s is not a directory", DirName); } else if (LogErrors) LOG_ERROR_STR(DirName); return false; } bool MakeDirs(const char *FileName, bool IsDirectory) { bool result = true; char *s = strdup(FileName); char *p = s; if (*p == '/') p++; while ((p = strchr(p, '/')) != NULL || IsDirectory) { if (p) *p = 0; struct stat fs; if (stat(s, &fs) != 0 || !S_ISDIR(fs.st_mode)) { dsyslog("creating directory %s", s); if (mkdir(s, ACCESSPERMS) == -1) { LOG_ERROR_STR(s); result = false; break; } } if (p) *p++ = '/'; else break; } free(s); return result; } bool RemoveFileOrDir(const char *FileName, bool FollowSymlinks) { struct stat st; if (stat(FileName, &st) == 0) { if (S_ISDIR(st.st_mode)) { cReadDir d(FileName); if (d.Ok()) { struct dirent *e; while ((e = d.Next()) != NULL) { cString buffer = AddDirectory(FileName, e->d_name); if (FollowSymlinks) { struct stat st2; if (lstat(buffer, &st2) == 0) { if (S_ISLNK(st2.st_mode)) { int size = st2.st_size + 1; char *l = MALLOC(char, size); int n = readlink(buffer, l, size - 1); if (n < 0) { if (errno != EINVAL) LOG_ERROR_STR(*buffer); } else { l[n] = 0; dsyslog("removing %s", l); if (remove(l) < 0) LOG_ERROR_STR(l); } free(l); } } else if (errno != ENOENT) { LOG_ERROR_STR(FileName); return false; } } dsyslog("removing %s", *buffer); if (remove(buffer) < 0) LOG_ERROR_STR(*buffer); } } else { LOG_ERROR_STR(FileName); return false; } } dsyslog("removing %s", FileName); if (remove(FileName) < 0) { LOG_ERROR_STR(FileName); return false; } } else if (errno != ENOENT) { LOG_ERROR_STR(FileName); return false; } return true; } bool RemoveEmptyDirectories(const char *DirName, bool RemoveThis, const char *IgnoreFiles[]) { bool HasIgnoredFiles = false; cReadDir d(DirName); if (d.Ok()) { bool empty = true; struct dirent *e; while ((e = d.Next()) != NULL) { if (strcmp(e->d_name, "lost+found")) { cString buffer = AddDirectory(DirName, e->d_name); struct stat st; if (stat(buffer, &st) == 0) { if (S_ISDIR(st.st_mode)) { if (!RemoveEmptyDirectories(buffer, true, IgnoreFiles)) empty = false; } else if (RemoveThis && IgnoreFiles && StrInArray(IgnoreFiles, e->d_name)) HasIgnoredFiles = true; else empty = false; } else { LOG_ERROR_STR(*buffer); empty = false; } } } if (RemoveThis && empty) { if (HasIgnoredFiles) { while (*IgnoreFiles) { cString buffer = AddDirectory(DirName, *IgnoreFiles); if (access(buffer, F_OK) == 0) { dsyslog("removing %s", *buffer); if (remove(buffer) < 0) { LOG_ERROR_STR(*buffer); return false; } } IgnoreFiles++; } } dsyslog("removing %s", DirName); if (remove(DirName) < 0) { LOG_ERROR_STR(DirName); return false; } } return empty; } else LOG_ERROR_STR(DirName); return false; } int DirSizeMB(const char *DirName) { cReadDir d(DirName); if (d.Ok()) { int size = 0; struct dirent *e; while (size >= 0 && (e = d.Next()) != NULL) { cString buffer = AddDirectory(DirName, e->d_name); struct stat st; if (stat(buffer, &st) == 0) { if (S_ISDIR(st.st_mode)) { int n = DirSizeMB(buffer); if (n >= 0) size += n; else size = -1; } else size += st.st_size / MEGABYTE(1); } else { LOG_ERROR_STR(*buffer); size = -1; } } return size; } else if (errno != ENOENT) LOG_ERROR_STR(DirName); return -1; } char *ReadLink(const char *FileName) { if (!FileName) return NULL; char *TargetName = canonicalize_file_name(FileName); if (!TargetName) { if (errno == ENOENT) // file doesn't exist TargetName = strdup(FileName); else // some other error occurred LOG_ERROR_STR(FileName); } return TargetName; } bool SpinUpDisk(const char *FileName) { for (int n = 0; n < 10; n++) { cString buf; if (DirectoryOk(FileName)) buf = cString::sprintf("%s/vdr-%06d", *FileName ? FileName : ".", n); else buf = cString::sprintf("%s.vdr-%06d", FileName, n); if (access(buf, F_OK) != 0) { // the file does not exist timeval tp1, tp2; gettimeofday(&tp1, NULL); int f = open(buf, O_WRONLY | O_CREAT, DEFFILEMODE); // O_SYNC doesn't work on all file systems if (f >= 0) { if (fdatasync(f) < 0) LOG_ERROR_STR(*buf); close(f); remove(buf); gettimeofday(&tp2, NULL); double seconds = (((long long)tp2.tv_sec * 1000000 + tp2.tv_usec) - ((long long)tp1.tv_sec * 1000000 + tp1.tv_usec)) / 1000000.0; if (seconds > 0.5) dsyslog("SpinUpDisk took %.2f seconds", seconds); return true; } else LOG_ERROR_STR(*buf); } } esyslog("ERROR: SpinUpDisk failed"); return false; } void TouchFile(const char *FileName) { if (utime(FileName, NULL) == -1 && errno != ENOENT) LOG_ERROR_STR(FileName); } time_t LastModifiedTime(const char *FileName) { struct stat fs; if (stat(FileName, &fs) == 0) return fs.st_mtime; return 0; } off_t FileSize(const char *FileName) { struct stat fs; if (stat(FileName, &fs) == 0) return fs.st_size; return -1; } // --- cTimeMs --------------------------------------------------------------- cTimeMs::cTimeMs(int Ms) { if (Ms >= 0) Set(Ms); else begin = 0; } uint64_t cTimeMs::Now(void) { #if _POSIX_TIMERS > 0 && defined(_POSIX_MONOTONIC_CLOCK) #define MIN_RESOLUTION 5 // ms static bool initialized = false; static bool monotonic = false; struct timespec tp; if (!initialized) { // check if monotonic timer is available and provides enough accurate resolution: if (clock_getres(CLOCK_MONOTONIC, &tp) == 0) { long Resolution = tp.tv_nsec; // require a minimum resolution: if (tp.tv_sec == 0 && tp.tv_nsec <= MIN_RESOLUTION * 1000000) { if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) { dsyslog("cTimeMs: using monotonic clock (resolution is %ld ns)", Resolution); monotonic = true; } else esyslog("cTimeMs: clock_gettime(CLOCK_MONOTONIC) failed"); } else dsyslog("cTimeMs: not using monotonic clock - resolution is too bad (%ld s %ld ns)", tp.tv_sec, tp.tv_nsec); } else esyslog("cTimeMs: clock_getres(CLOCK_MONOTONIC) failed"); initialized = true; } if (monotonic) { if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) return (uint64_t(tp.tv_sec)) * 1000 + tp.tv_nsec / 1000000; esyslog("cTimeMs: clock_gettime(CLOCK_MONOTONIC) failed"); monotonic = false; // fall back to gettimeofday() } #else # warning Posix monotonic clock not available #endif struct timeval t; if (gettimeofday(&t, NULL) == 0) return (uint64_t(t.tv_sec)) * 1000 + t.tv_usec / 1000; return 0; } void cTimeMs::Set(int Ms) { begin = Now() + Ms; } bool cTimeMs::TimedOut(void) const { return Now() >= begin; } uint64_t cTimeMs::Elapsed(void) const { return Now() - begin; } // --- UTF-8 support --------------------------------------------------------- static uint SystemToUtf8[128] = { 0 }; int Utf8CharLen(const char *s) { if (cCharSetConv::SystemCharacterTable()) return 1; #define MT(s, m, v) ((*(s) & (m)) == (v)) // Mask Test if (MT(s, 0xE0, 0xC0) && MT(s + 1, 0xC0, 0x80)) return 2; if (MT(s, 0xF0, 0xE0) && MT(s + 1, 0xC0, 0x80) && MT(s + 2, 0xC0, 0x80)) return 3; if (MT(s, 0xF8, 0xF0) && MT(s + 1, 0xC0, 0x80) && MT(s + 2, 0xC0, 0x80) && MT(s + 3, 0xC0, 0x80)) return 4; return 1; } uint Utf8CharGet(const char *s, int Length) { if (cCharSetConv::SystemCharacterTable()) return (uchar)*s < 128 ? *s : SystemToUtf8[(uchar)*s - 128]; if (!Length) Length = Utf8CharLen(s); switch (Length) { case 2: return ((*s & 0x1F) << 6) | (*(s + 1) & 0x3F); case 3: return ((*s & 0x0F) << 12) | ((*(s + 1) & 0x3F) << 6) | (*(s + 2) & 0x3F); case 4: return ((*s & 0x07) << 18) | ((*(s + 1) & 0x3F) << 12) | ((*(s + 2) & 0x3F) << 6) | (*(s + 3) & 0x3F); default: ; } return *s; } int Utf8CharSet(uint c, char *s) { if (c < 0x80 || cCharSetConv::SystemCharacterTable()) { if (s) *s = c; return 1; } if (c < 0x800) { if (s) { *s++ = ((c >> 6) & 0x1F) | 0xC0; *s = (c & 0x3F) | 0x80; } return 2; } if (c < 0x10000) { if (s) { *s++ = ((c >> 12) & 0x0F) | 0xE0; *s++ = ((c >> 6) & 0x3F) | 0x80; *s = (c & 0x3F) | 0x80; } return 3; } if (c < 0x110000) { if (s) { *s++ = ((c >> 18) & 0x07) | 0xF0; *s++ = ((c >> 12) & 0x3F) | 0x80; *s++ = ((c >> 6) & 0x3F) | 0x80; *s = (c & 0x3F) | 0x80; } return 4; } return 0; // can't convert to UTF-8 } int Utf8SymChars(const char *s, int Symbols) { if (cCharSetConv::SystemCharacterTable()) return Symbols; int n = 0; while (*s && Symbols--) { int sl = Utf8CharLen(s); s += sl; n += sl; } return n; } int Utf8StrLen(const char *s) { if (cCharSetConv::SystemCharacterTable()) return strlen(s); int n = 0; while (*s) { s += Utf8CharLen(s); n++; } return n; } char *Utf8Strn0Cpy(char *Dest, const char *Src, int n) { if (cCharSetConv::SystemCharacterTable()) return strn0cpy(Dest, Src, n); char *d = Dest; while (*Src) { int sl = Utf8CharLen(Src); n -= sl; if (n > 0) { while (sl--) *d++ = *Src++; } else break; } *d = 0; return Dest; } int Utf8ToArray(const char *s, uint *a, int Size) { int n = 0; while (*s && --Size > 0) { if (cCharSetConv::SystemCharacterTable()) *a++ = (uchar)(*s++); else { int sl = Utf8CharLen(s); *a++ = Utf8CharGet(s, sl); s += sl; } n++; } if (Size > 0) *a = 0; return n; } int Utf8FromArray(const uint *a, char *s, int Size, int Max) { int NumChars = 0; int NumSyms = 0; while (*a && NumChars < Size) { if (Max >= 0 && NumSyms++ >= Max) break; if (cCharSetConv::SystemCharacterTable()) { *s++ = *a++; NumChars++; } else { int sl = Utf8CharSet(*a); if (NumChars + sl <= Size) { Utf8CharSet(*a, s); a++; s += sl; NumChars += sl; } else break; } } if (NumChars < Size) *s = 0; return NumChars; } // --- cCharSetConv ---------------------------------------------------------- char *cCharSetConv::systemCharacterTable = NULL; cCharSetConv::cCharSetConv(const char *FromCode, const char *ToCode) { if (!FromCode) FromCode = systemCharacterTable ? systemCharacterTable : "UTF-8"; if (!ToCode) ToCode = "UTF-8"; cd = iconv_open(ToCode, FromCode); result = NULL; length = 0; } cCharSetConv::~cCharSetConv() { free(result); if (cd != (iconv_t)-1) iconv_close(cd); } void cCharSetConv::SetSystemCharacterTable(const char *CharacterTable) { free(systemCharacterTable); systemCharacterTable = NULL; if (!strcasestr(CharacterTable, "UTF-8")) { // Set up a map for the character values 128...255: char buf[129]; for (int i = 0; i < 128; i++) buf[i] = i + 128; buf[128] = 0; cCharSetConv csc(CharacterTable); const char *s = csc.Convert(buf); int i = 0; while (*s) { int sl = Utf8CharLen(s); SystemToUtf8[i] = Utf8CharGet(s, sl); s += sl; i++; } systemCharacterTable = strdup(CharacterTable); } } const char *cCharSetConv::Convert(const char *From, char *To, size_t ToLength) { if (cd != (iconv_t)-1 && From && *From) { char *FromPtr = (char *)From; size_t FromLength = strlen(From); char *ToPtr = To; if (!ToPtr) { int NewLength = max(length, FromLength * 2); // some reserve to avoid later reallocations if (char *NewBuffer = (char *)realloc(result, NewLength)) { length = NewLength; result = NewBuffer; } else { esyslog("ERROR: out of memory"); return From; } ToPtr = result; ToLength = length; } else if (!ToLength) return From; // can't convert into a zero sized buffer ToLength--; // save space for terminating 0 char *Converted = ToPtr; while (FromLength > 0) { if (iconv(cd, &FromPtr, &FromLength, &ToPtr, &ToLength) == size_t(-1)) { if (errno == E2BIG || errno == EILSEQ && ToLength < 1) { if (To) break; // caller provided a fixed size buffer, but it was too small // The result buffer is too small, so increase it: size_t d = ToPtr - result; size_t r = length / 2; int NewLength = length + r; if (char *NewBuffer = (char *)realloc(result, NewLength)) { length = NewLength; Converted = result = NewBuffer; } else { esyslog("ERROR: out of memory"); return From; } ToLength += r; ToPtr = result + d; } if (errno == EILSEQ) { // A character can't be converted, so mark it with '?' and proceed: FromPtr++; FromLength--; *ToPtr++ = '?'; ToLength--; } else if (errno != E2BIG) return From; // unknown error, return original string } } *ToPtr = 0; return Converted; } return From; } // --- cString --------------------------------------------------------------- cString::cString(const char *S, bool TakePointer) { s = TakePointer ? (char *)S : S ? strdup(S) : NULL; } cString::cString(const char *S, const char *To) { if (!S) s = NULL; else if (!To) s = strdup(S); else { int l = To - S; s = MALLOC(char, l + 1); strncpy(s, S, l); s[l] = 0; } } cString::cString(const cString &String) { s = String.s ? strdup(String.s) : NULL; } cString::~cString() { free(s); } cString &cString::operator=(const cString &String) { if (this == &String) return *this; free(s); s = String.s ? strdup(String.s) : NULL; return *this; } cString &cString::operator=(const char *String) { if (s == String) return *this; free(s); s = String ? strdup(String) : NULL; return *this; } cString &cString::Truncate(int Index) { int l = strlen(s); if (Index < 0) Index = l + Index; if (Index >= 0 && Index < l) s[Index] = 0; return *this; } cString &cString::CompactChars(char c) { compactchars(s, c); return *this; } cString cString::sprintf(const char *fmt, ...) { va_list ap; va_start(ap, fmt); char *buffer; if (!fmt || vasprintf(&buffer, fmt, ap) < 0) { esyslog("error in vasprintf('%s', ...)", fmt); buffer = strdup("???"); } va_end(ap); return cString(buffer, true); } cString cString::vsprintf(const char *fmt, va_list &ap) { char *buffer; if (!fmt || vasprintf(&buffer, fmt, ap) < 0) { esyslog("error in vasprintf('%s', ...)", fmt); buffer = strdup("???"); } return cString(buffer, true); } cString WeekDayName(int WeekDay) { char buffer[16]; WeekDay = WeekDay == 0 ? 6 : WeekDay - 1; // we start with Monday==0! if (0 <= WeekDay && WeekDay <= 6) { // TRANSLATORS: abbreviated weekdays, beginning with monday (must all be 3 letters!) const char *day = tr("MonTueWedThuFriSatSun"); day += Utf8SymChars(day, WeekDay * 3); strn0cpy(buffer, day, min(Utf8SymChars(day, 3) + 1, int(sizeof(buffer)))); return buffer; } else return "???"; } cString WeekDayName(time_t t) { struct tm tm_r; return WeekDayName(localtime_r(&t, &tm_r)->tm_wday); } cString WeekDayNameFull(int WeekDay) { WeekDay = WeekDay == 0 ? 6 : WeekDay - 1; // we start with Monday==0! switch (WeekDay) { case 0: return tr("Monday"); case 1: return tr("Tuesday"); case 2: return tr("Wednesday"); case 3: return tr("Thursday"); case 4: return tr("Friday"); case 5: return tr("Saturday"); case 6: return tr("Sunday"); default: return "???"; } } cString WeekDayNameFull(time_t t) { struct tm tm_r; return WeekDayNameFull(localtime_r(&t, &tm_r)->tm_wday); } cString DayDateTime(time_t t) { char buffer[32]; if (t == 0) time(&t); struct tm tm_r; tm *tm = localtime_r(&t, &tm_r); snprintf(buffer, sizeof(buffer), "%s %02d.%02d. %02d:%02d", *WeekDayName(tm->tm_wday), tm->tm_mday, tm->tm_mon + 1, tm->tm_hour, tm->tm_min); return buffer; } cString TimeToString(time_t t) { char buffer[32]; if (ctime_r(&t, buffer)) { buffer[strlen(buffer) - 1] = 0; // strip trailing newline return buffer; } return "???"; } cString DateString(time_t t) { char buf[32]; struct tm tm_r; tm *tm = localtime_r(&t, &tm_r); char *p = stpcpy(buf, WeekDayName(tm->tm_wday)); *p++ = ' '; strftime(p, sizeof(buf) - (p - buf), "%d.%m.%Y", tm); return buf; } cString ShortDateString(time_t t) { char buf[32]; struct tm tm_r; tm *tm = localtime_r(&t, &tm_r); strftime(buf, sizeof(buf), "%d.%m.%y", tm); return buf; } cString TimeString(time_t t) { char buf[25]; struct tm tm_r; strftime(buf, sizeof(buf), "%R", localtime_r(&t, &tm_r)); return buf; } // --- RgbToJpeg ------------------------------------------------------------- #define JPEGCOMPRESSMEM 500000 struct tJpegCompressData { int size; uchar *mem; }; static void JpegCompressInitDestination(j_compress_ptr cinfo) { tJpegCompressData *jcd = (tJpegCompressData *)cinfo->client_data; if (jcd) { cinfo->dest->free_in_buffer = jcd->size = JPEGCOMPRESSMEM; cinfo->dest->next_output_byte = jcd->mem = MALLOC(uchar, jcd->size); } } static boolean JpegCompressEmptyOutputBuffer(j_compress_ptr cinfo) { tJpegCompressData *jcd = (tJpegCompressData *)cinfo->client_data; if (jcd) { int Used = jcd->size; int NewSize = jcd->size + JPEGCOMPRESSMEM; if (uchar *NewBuffer = (uchar *)realloc(jcd->mem, NewSize)) { jcd->size = NewSize; jcd->mem = NewBuffer; } else { esyslog("ERROR: out of memory"); return false; } if (jcd->mem) { cinfo->dest->next_output_byte = jcd->mem + Used; cinfo->dest->free_in_buffer = jcd->size - Used; return true; } } return false; } static void JpegCompressTermDestination(j_compress_ptr cinfo) { tJpegCompressData *jcd = (tJpegCompressData *)cinfo->client_data; if (jcd) { int Used = cinfo->dest->next_output_byte - jcd->mem; if (Used < jcd->size) { if (uchar *NewBuffer = (uchar *)realloc(jcd->mem, Used)) { jcd->size = Used; jcd->mem = NewBuffer; } else esyslog("ERROR: out of memory"); } } } uchar *RgbToJpeg(uchar *Mem, int Width, int Height, int &Size, int Quality) { if (Quality < 0) Quality = 0; else if (Quality > 100) Quality = 100; jpeg_destination_mgr jdm; jdm.init_destination = JpegCompressInitDestination; jdm.empty_output_buffer = JpegCompressEmptyOutputBuffer; jdm.term_destination = JpegCompressTermDestination; struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; cinfo.err = jpeg_std_error(&jerr); jpeg_create_compress(&cinfo); cinfo.dest = &jdm; tJpegCompressData jcd; cinfo.client_data = &jcd; cinfo.image_width = Width; cinfo.image_height = Height; cinfo.input_components = 3; cinfo.in_color_space = JCS_RGB; jpeg_set_defaults(&cinfo); jpeg_set_quality(&cinfo, Quality, true); jpeg_start_compress(&cinfo, true); int rs = Width * 3; JSAMPROW rp[Height]; for (int k = 0; k < Height; k++) rp[k] = &Mem[rs * k]; jpeg_write_scanlines(&cinfo, rp, Height); jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); Size = jcd.size; return jcd.mem; } // --- cBase64Encoder -------------------------------------------------------- const char *cBase64Encoder::b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; cBase64Encoder::cBase64Encoder(const uchar *Data, int Length, int MaxResult) { data = Data; length = Length; maxResult = MaxResult; i = 0; result = MALLOC(char, maxResult + 1); } cBase64Encoder::~cBase64Encoder() { free(result); } const char *cBase64Encoder::NextLine(void) { int r = 0; while (i < length && r < maxResult - 3) { result[r++] = b64[(data[i] >> 2) & 0x3F]; uchar c = (data[i] << 4) & 0x3F; if (++i < length) c |= (data[i] >> 4) & 0x0F; result[r++] = b64[c]; if (i < length) { c = (data[i] << 2) & 0x3F; if (++i < length) c |= (data[i] >> 6) & 0x03; result[r++] = b64[c]; } else { i++; result[r++] = '='; } if (i < length) { c = data[i] & 0x3F; result[r++] = b64[c]; } else result[r++] = '='; i++; } if (r > 0) { result[r] = 0; return result; } return NULL; } // --- cBitStream ------------------------------------------------------------ int cBitStream::GetBit(void) { if (index >= length) return 1; int r = (data[index >> 3] >> (7 - (index & 7))) & 1; ++index; return r; } uint32_t cBitStream::GetBits(int n) { uint32_t r = 0; while (n--) r |= GetBit() << n; return r; } void cBitStream::ByteAlign(void) { int n = index % 8; if (n > 0) SkipBits(8 - n); } void cBitStream::WordAlign(void) { int n = index % 16; if (n > 0) SkipBits(16 - n); } bool cBitStream::SetLength(int Length) { if (Length > length) return false; length = Length; return true; } // --- cReadLine ------------------------------------------------------------- cReadLine::cReadLine(void) { size = 0; buffer = NULL; } cReadLine::~cReadLine() { free(buffer); } char *cReadLine::Read(FILE *f) { int n = getline(&buffer, &size, f); if (n > 0) { n--; if (buffer[n] == '\n') { buffer[n] = 0; if (n > 0) { n--; if (buffer[n] == '\r') buffer[n] = 0; } } return buffer; } return NULL; } // --- cPoller --------------------------------------------------------------- cPoller::cPoller(int FileHandle, bool Out) { numFileHandles = 0; Add(FileHandle, Out); } bool cPoller::Add(int FileHandle, bool Out) { if (FileHandle >= 0) { for (int i = 0; i < numFileHandles; i++) { if (pfd[i].fd == FileHandle && pfd[i].events == (Out ? POLLOUT : POLLIN)) return true; } if (numFileHandles < MaxPollFiles) { pfd[numFileHandles].fd = FileHandle; pfd[numFileHandles].events = Out ? POLLOUT : POLLIN; pfd[numFileHandles].revents = 0; numFileHandles++; return true; } esyslog("ERROR: too many file handles in cPoller"); } return false; } bool cPoller::Poll(int TimeoutMs) { if (numFileHandles) { if (poll(pfd, numFileHandles, TimeoutMs) != 0) return true; // returns true even in case of an error, to let the caller // access the file and thus see the error code } return false; } // --- cReadDir -------------------------------------------------------------- cReadDir::cReadDir(const char *Directory) { directory = opendir(Directory); } cReadDir::~cReadDir() { if (directory) closedir(directory); } struct dirent *cReadDir::Next(void) { if (directory) { while (readdir_r(directory, &u.d, &result) == 0 && result) { if (strcmp(result->d_name, ".") && strcmp(result->d_name, "..")) return result; } } return NULL; } // --- cStringList ----------------------------------------------------------- cStringList::~cStringList() { Clear(); } int cStringList::Find(const char *s) const { for (int i = 0; i < Size(); i++) { if (!strcmp(s, At(i))) return i; } return -1; } void cStringList::Clear(void) { for (int i = 0; i < Size(); i++) free(At(i)); cVector<char *>::Clear(); } // --- cFileNameList --------------------------------------------------------- // TODO better GetFileNames(const char *Directory, cStringList *List)? cFileNameList::cFileNameList(const char *Directory, bool DirsOnly) { Load(Directory, DirsOnly); } bool cFileNameList::Load(const char *Directory, bool DirsOnly) { Clear(); if (Directory) { cReadDir d(Directory); struct dirent *e; if (d.Ok()) { while ((e = d.Next()) != NULL) { if (DirsOnly) { struct stat ds; if (stat(AddDirectory(Directory, e->d_name), &ds) == 0) { if (!S_ISDIR(ds.st_mode)) continue; } } Append(strdup(e->d_name)); } Sort(); return true; } else LOG_ERROR_STR(Directory); } return false; } // --- cFile ----------------------------------------------------------------- bool cFile::files[FD_SETSIZE] = { false }; int cFile::maxFiles = 0; cFile::cFile(void) { f = -1; } cFile::~cFile() { Close(); } bool cFile::Open(const char *FileName, int Flags, mode_t Mode) { if (!IsOpen()) return Open(open(FileName, Flags, Mode)); esyslog("ERROR: attempt to re-open %s", FileName); return false; } bool cFile::Open(int FileDes) { if (FileDes >= 0) { if (!IsOpen()) { f = FileDes; if (f >= 0) { if (f < FD_SETSIZE) { if (f >= maxFiles) maxFiles = f + 1; if (!files[f]) files[f] = true; else esyslog("ERROR: file descriptor %d already in files[]", f); return true; } else esyslog("ERROR: file descriptor %d is larger than FD_SETSIZE (%d)", f, FD_SETSIZE); } } else esyslog("ERROR: attempt to re-open file descriptor %d", FileDes); } return false; } void cFile::Close(void) { if (f >= 0) { close(f); files[f] = false; f = -1; } } bool cFile::Ready(bool Wait) { return f >= 0 && AnyFileReady(f, Wait ? 1000 : 0); } bool cFile::AnyFileReady(int FileDes, int TimeoutMs) { fd_set set; FD_ZERO(&set); for (int i = 0; i < maxFiles; i++) { if (files[i]) FD_SET(i, &set); } if (0 <= FileDes && FileDes < FD_SETSIZE && !files[FileDes]) FD_SET(FileDes, &set); // in case we come in with an arbitrary descriptor if (TimeoutMs == 0) TimeoutMs = 10; // load gets too heavy with 0 struct timeval timeout; timeout.tv_sec = TimeoutMs / 1000; timeout.tv_usec = (TimeoutMs % 1000) * 1000; return select(FD_SETSIZE, &set, NULL, NULL, &timeout) > 0 && (FileDes < 0 || FD_ISSET(FileDes, &set)); } bool cFile::FileReady(int FileDes, int TimeoutMs) { fd_set set; struct timeval timeout; FD_ZERO(&set); FD_SET(FileDes, &set); if (TimeoutMs >= 0) { if (TimeoutMs < 100) TimeoutMs = 100; timeout.tv_sec = TimeoutMs / 1000; timeout.tv_usec = (TimeoutMs % 1000) * 1000; } return select(FD_SETSIZE, &set, NULL, NULL, (TimeoutMs >= 0) ? &timeout : NULL) > 0 && FD_ISSET(FileDes, &set); } bool cFile::FileReadyForWriting(int FileDes, int TimeoutMs) { fd_set set; struct timeval timeout; FD_ZERO(&set); FD_SET(FileDes, &set); if (TimeoutMs < 100) TimeoutMs = 100; timeout.tv_sec = 0; timeout.tv_usec = TimeoutMs * 1000; return select(FD_SETSIZE, NULL, &set, NULL, &timeout) > 0 && FD_ISSET(FileDes, &set); } // --- cSafeFile ------------------------------------------------------------- cSafeFile::cSafeFile(const char *FileName) { f = NULL; fileName = ReadLink(FileName); tempName = fileName ? MALLOC(char, strlen(fileName) + 5) : NULL; if (tempName) strcat(strcpy(tempName, fileName), ".$$$"); } cSafeFile::~cSafeFile() { if (f) fclose(f); unlink(tempName); free(fileName); free(tempName); } bool cSafeFile::Open(void) { if (!f && fileName && tempName) { f = fopen(tempName, "w"); if (!f) LOG_ERROR_STR(tempName); } return f != NULL; } bool cSafeFile::Close(void) { bool result = true; if (f) { if (ferror(f) != 0) { LOG_ERROR_STR(tempName); result = false; } fflush(f); fsync(fileno(f)); if (fclose(f) < 0) { LOG_ERROR_STR(tempName); result = false; } f = NULL; if (result && rename(tempName, fileName) < 0) { LOG_ERROR_STR(fileName); result = false; } } else result = false; return result; } // --- cUnbufferedFile ------------------------------------------------------- #define USE_FADVISE #define WRITE_BUFFER KILOBYTE(800) cUnbufferedFile::cUnbufferedFile(void) { fd = -1; } cUnbufferedFile::~cUnbufferedFile() { Close(); } int cUnbufferedFile::Open(const char *FileName, int Flags, mode_t Mode) { Close(); fd = open(FileName, Flags, Mode); curpos = 0; #ifdef USE_FADVISE begin = lastpos = ahead = 0; cachedstart = 0; cachedend = 0; readahead = KILOBYTE(128); written = 0; totwritten = 0; if (fd >= 0) posix_fadvise(fd, 0, 0, POSIX_FADV_RANDOM); // we could use POSIX_FADV_SEQUENTIAL, but we do our own readahead, disabling the kernel one. #endif return fd; } int cUnbufferedFile::Close(void) { if (fd >= 0) { #ifdef USE_FADVISE if (totwritten) // if we wrote anything make sure the data has hit the disk before fdatasync(fd); // calling fadvise, as this is our last chance to un-cache it. posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED); #endif int OldFd = fd; fd = -1; return close(OldFd); } errno = EBADF; return -1; } // When replaying and going e.g. FF->PLAY the position jumps back 2..8M // hence we do not want to drop recently accessed data at once. // We try to handle the common cases such as PLAY->FF->PLAY, small // jumps, moving editing marks etc. #define FADVGRAN KILOBYTE(4) // AKA fadvise-chunk-size; PAGE_SIZE or getpagesize(2) would also work. #define READCHUNK MEGABYTE(8) void cUnbufferedFile::SetReadAhead(size_t ra) { readahead = ra; } int cUnbufferedFile::FadviseDrop(off_t Offset, off_t Len) { // rounding up the window to make sure that not PAGE_SIZE-aligned data gets freed. return posix_fadvise(fd, Offset - (FADVGRAN - 1), Len + (FADVGRAN - 1) * 2, POSIX_FADV_DONTNEED); } off_t cUnbufferedFile::Seek(off_t Offset, int Whence) { if (Whence == SEEK_SET && Offset == curpos) return curpos; curpos = lseek(fd, Offset, Whence); return curpos; } ssize_t cUnbufferedFile::Read(void *Data, size_t Size) { if (fd >= 0) { #ifdef USE_FADVISE off_t jumped = curpos-lastpos; // nonzero means we're not at the last offset if ((cachedstart < cachedend) && (curpos < cachedstart || curpos > cachedend)) { // current position is outside the cached window -- invalidate it. FadviseDrop(cachedstart, cachedend-cachedstart); cachedstart = curpos; cachedend = curpos; } cachedstart = min(cachedstart, curpos); #endif ssize_t bytesRead = safe_read(fd, Data, Size); if (bytesRead > 0) { curpos += bytesRead; #ifdef USE_FADVISE cachedend = max(cachedend, curpos); // Read ahead: // no jump? (allow small forward jump still inside readahead window). if (jumped >= 0 && jumped <= (off_t)readahead) { // Trigger the readahead IO, but only if we've used at least // 1/2 of the previously requested area. This avoids calling // fadvise() after every read() call. if (ahead - curpos < (off_t)(readahead / 2)) { posix_fadvise(fd, curpos, readahead, POSIX_FADV_WILLNEED); ahead = curpos + readahead; cachedend = max(cachedend, ahead); } if (readahead < Size * 32) { // automagically tune readahead size. readahead = Size * 32; } } else ahead = curpos; // jumped -> we really don't want any readahead, otherwise e.g. fast-rewind gets in trouble. #endif } #ifdef USE_FADVISE if (cachedstart < cachedend) { if (curpos - cachedstart > READCHUNK * 2) { // current position has moved forward enough, shrink tail window. FadviseDrop(cachedstart, curpos - READCHUNK - cachedstart); cachedstart = curpos - READCHUNK; } else if (cachedend > ahead && cachedend - curpos > READCHUNK * 2) { // current position has moved back enough, shrink head window. FadviseDrop(curpos + READCHUNK, cachedend - (curpos + READCHUNK)); cachedend = curpos + READCHUNK; } } lastpos = curpos; #endif return bytesRead; } return -1; } ssize_t cUnbufferedFile::Write(const void *Data, size_t Size) { if (fd >=0) { ssize_t bytesWritten = safe_write(fd, Data, Size); #ifdef USE_FADVISE if (bytesWritten > 0) { begin = min(begin, curpos); curpos += bytesWritten; written += bytesWritten; lastpos = max(lastpos, curpos); if (written > WRITE_BUFFER) { if (lastpos > begin) { // Now do three things: // 1) Start writeback of begin..lastpos range // 2) Drop the already written range (by the previous fadvise call) // 3) Handle nonpagealigned data. // This is why we double the WRITE_BUFFER; the first time around the // last (partial) page might be skipped, writeback will start only after // second call; the third call will still include this page and finally // drop it from cache. off_t headdrop = min(begin, off_t(WRITE_BUFFER * 2)); posix_fadvise(fd, begin - headdrop, lastpos - begin + headdrop, POSIX_FADV_DONTNEED); } begin = lastpos = curpos; totwritten += written; written = 0; // The above fadvise() works when writing slowly (recording), but could // leave cached data around when writing at a high rate, e.g. when cutting, // because by the time we try to flush the cached pages (above) the data // can still be dirty - we are faster than the disk I/O. // So we do another round of flushing, just like above, but at larger // intervals -- this should catch any pages that couldn't be released // earlier. if (totwritten > MEGABYTE(32)) { // It seems in some setups, fadvise() does not trigger any I/O and // a fdatasync() call would be required do all the work (reiserfs with some // kind of write gathering enabled), but the syncs cause (io) load.. // Uncomment the next line if you think you need them. //fdatasync(fd); off_t headdrop = min(off_t(curpos - totwritten), off_t(totwritten * 2)); posix_fadvise(fd, curpos - totwritten - headdrop, totwritten + headdrop, POSIX_FADV_DONTNEED); totwritten = 0; } } } #endif return bytesWritten; } return -1; } cUnbufferedFile *cUnbufferedFile::Create(const char *FileName, int Flags, mode_t Mode) { cUnbufferedFile *File = new cUnbufferedFile; if (File->Open(FileName, Flags, Mode) < 0) { delete File; File = NULL; } return File; } // --- cLockFile ------------------------------------------------------------- #define LOCKFILENAME ".lock-vdr" #define LOCKFILESTALETIME 600 // seconds before considering a lock file "stale" cLockFile::cLockFile(const char *Directory) { fileName = NULL; f = -1; if (DirectoryOk(Directory)) fileName = strdup(AddDirectory(Directory, LOCKFILENAME)); } cLockFile::~cLockFile() { Unlock(); free(fileName); } bool cLockFile::Lock(int WaitSeconds) { if (f < 0 && fileName) { time_t Timeout = time(NULL) + WaitSeconds; do { f = open(fileName, O_WRONLY | O_CREAT | O_EXCL, DEFFILEMODE); if (f < 0) { if (errno == EEXIST) { struct stat fs; if (stat(fileName, &fs) == 0) { if (abs(time(NULL) - fs.st_mtime) > LOCKFILESTALETIME) { esyslog("ERROR: removing stale lock file '%s'", fileName); if (remove(fileName) < 0) { LOG_ERROR_STR(fileName); break; } continue; } } else if (errno != ENOENT) { LOG_ERROR_STR(fileName); break; } } else { LOG_ERROR_STR(fileName); break; } if (WaitSeconds) cCondWait::SleepMs(1000); } } while (f < 0 && time(NULL) < Timeout); } return f >= 0; } void cLockFile::Unlock(void) { if (f >= 0) { close(f); remove(fileName); f = -1; } } // --- cListObject ----------------------------------------------------------- cListObject::cListObject(void) { prev = next = NULL; } cListObject::~cListObject() { } void cListObject::Append(cListObject *Object) { next = Object; Object->prev = this; } void cListObject::Insert(cListObject *Object) { prev = Object; Object->next = this; } void cListObject::Unlink(void) { if (next) next->prev = prev; if (prev) prev->next = next; next = prev = NULL; } int cListObject::Index(void) const { cListObject *p = prev; int i = 0; while (p) { i++; p = p->prev; } return i; } // --- cListBase ------------------------------------------------------------- cListBase::cListBase(void) { objects = lastObject = NULL; count = 0; } cListBase::~cListBase() { Clear(); } void cListBase::Add(cListObject *Object, cListObject *After) { if (After && After != lastObject) { After->Next()->Insert(Object); After->Append(Object); } else { if (lastObject) lastObject->Append(Object); else objects = Object; lastObject = Object; } count++; } void cListBase::Ins(cListObject *Object, cListObject *Before) { if (Before && Before != objects) { Before->Prev()->Append(Object); Before->Insert(Object); } else { if (objects) objects->Insert(Object); else lastObject = Object; objects = Object; } count++; } void cListBase::Del(cListObject *Object, bool DeleteObject) { if (Object == objects) objects = Object->Next(); if (Object == lastObject) lastObject = Object->Prev(); Object->Unlink(); if (DeleteObject) delete Object; count--; } void cListBase::Move(int From, int To) { Move(Get(From), Get(To)); } void cListBase::Move(cListObject *From, cListObject *To) { if (From && To && From != To) { if (From->Index() < To->Index()) To = To->Next(); if (From == objects) objects = From->Next(); if (From == lastObject) lastObject = From->Prev(); From->Unlink(); if (To) { if (To->Prev()) To->Prev()->Append(From); From->Append(To); } else { lastObject->Append(From); lastObject = From; } if (!From->Prev()) objects = From; } } void cListBase::Clear(void) { while (objects) { cListObject *object = objects->Next(); delete objects; objects = object; } objects = lastObject = NULL; count = 0; } cListObject *cListBase::Get(int Index) const { if (Index < 0) return NULL; cListObject *object = objects; while (object && Index-- > 0) object = object->Next(); return object; } static int CompareListObjects(const void *a, const void *b) { const cListObject *la = *(const cListObject **)a; const cListObject *lb = *(const cListObject **)b; return la->Compare(*lb); } void cListBase::Sort(void) { int n = Count(); cListObject *a[n]; cListObject *object = objects; int i = 0; while (object && i < n) { a[i++] = object; object = object->Next(); } qsort(a, n, sizeof(cListObject *), CompareListObjects); objects = lastObject = NULL; for (i = 0; i < n; i++) { a[i]->Unlink(); count--; Add(a[i]); } } // --- cHashBase ------------------------------------------------------------- cHashBase::cHashBase(int Size) { size = Size; hashTable = (cList<cHashObject>**)calloc(size, sizeof(cList<cHashObject>*)); } cHashBase::~cHashBase(void) { Clear(); free(hashTable); } void cHashBase::Add(cListObject *Object, unsigned int Id) { unsigned int hash = hashfn(Id); if (!hashTable[hash]) hashTable[hash] = new cList<cHashObject>; hashTable[hash]->Add(new cHashObject(Object, Id)); } void cHashBase::Del(cListObject *Object, unsigned int Id) { cList<cHashObject> *list = hashTable[hashfn(Id)]; if (list) { for (cHashObject *hob = list->First(); hob; hob = list->Next(hob)) { if (hob->object == Object) { list->Del(hob); break; } } } } void cHashBase::Clear(void) { for (int i = 0; i < size; i++) { delete hashTable[i]; hashTable[i] = NULL; } } cListObject *cHashBase::Get(unsigned int Id) const { cList<cHashObject> *list = hashTable[hashfn(Id)]; if (list) { for (cHashObject *hob = list->First(); hob; hob = list->Next(hob)) { if (hob->id == Id) return hob->object; } } return NULL; } cList<cHashObject> *cHashBase::GetList(unsigned int Id) const { return hashTable[hashfn(Id)]; }