/* * tools.h: Various tools * * See the main source file 'vdr.c' for copyright information and * how to reach the author. * * $Id: tools.h 2.4 2009/12/23 15:14:39 kls Exp $ */ #ifndef __TOOLS_H #define __TOOLS_H #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <float.h> #include <iconv.h> #include <math.h> #include <poll.h> #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <syslog.h> #include <sys/stat.h> #include <sys/types.h> typedef unsigned char uchar; extern int SysLogLevel; #define esyslog(a...) void( (SysLogLevel > 0) ? syslog_with_tid(LOG_ERR, a) : void() ) #define isyslog(a...) void( (SysLogLevel > 1) ? syslog_with_tid(LOG_ERR, a) : void() ) #define dsyslog(a...) void( (SysLogLevel > 2) ? syslog_with_tid(LOG_ERR, a) : void() ) #define LOG_ERROR esyslog("ERROR (%s,%d): %m", __FILE__, __LINE__) #define LOG_ERROR_STR(s) esyslog("ERROR: %s: %m", s) #define SECSINDAY 86400 #define KILOBYTE(n) ((n) * 1024) #define MEGABYTE(n) ((n) * 1024LL * 1024LL) #define MALLOC(type, size) (type *)malloc(sizeof(type) * (size)) #define DELETENULL(p) (delete (p), p = NULL) #define CHECK(s) { if ((s) < 0) LOG_ERROR; } // used for 'ioctl()' calls #define FATALERRNO (errno && errno != EAGAIN && errno != EINTR) #ifndef __STL_CONFIG_H // in case some plugin needs to use the STL template<class T> inline T min(T a, T b) { return a <= b ? a : b; } template<class T> inline T max(T a, T b) { return a >= b ? a : b; } template<class T> inline int sgn(T a) { return a < 0 ? -1 : a > 0 ? 1 : 0; } template<class T> inline void swap(T &a, T &b) { T t = a; a = b; b = t; } #endif void syslog_with_tid(int priority, const char *format, ...) __attribute__ ((format (printf, 2, 3))); #define BCDCHARTOINT(x) (10 * ((x & 0xF0) >> 4) + (x & 0xF)) int BCD2INT(int x); // Unfortunately there are no platform independent macros for unaligned // access, so we do it this way: template<class T> inline T get_unaligned(T *p) { struct s { T v; } __attribute__((packed)); return ((s *)p)->v; } template<class T> inline void put_unaligned(unsigned int v, T* p) { struct s { T v; } __attribute__((packed)); ((s *)p)->v = v; } // Comparing doubles for equality is unsafe, but unfortunately we can't // overwrite operator==(double, double), so this will have to do: inline bool DoubleEqual(double a, double b) { return fabs(a - b) <= DBL_EPSILON; } // When handling strings that might contain UTF-8 characters, it may be necessary // to process a "symbol" that consists of several actual character bytes. The // following functions allow transparently accessing a "char *" string without // having to worry about what character set is actually used. int Utf8CharLen(const char *s); ///< Returns the number of character bytes at the beginning of the given ///< string that form a UTF-8 symbol. uint Utf8CharGet(const char *s, int Length = 0); ///< Returns the UTF-8 symbol at the beginning of the given string. ///< Length can be given from a previous call to Utf8CharLen() to avoid calculating ///< it again. If no Length is given, Utf8CharLen() will be called. int Utf8CharSet(uint c, char *s = NULL); ///< Converts the given UTF-8 symbol to a sequence of character bytes and copies ///< them to the given string. Returns the number of bytes written. If no string ///< is given, only the number of bytes is returned and nothing is copied. int Utf8SymChars(const char *s, int Symbols); ///< Returns the number of character bytes at the beginning of the given ///< string that form at most the given number of UTF-8 symbols. int Utf8StrLen(const char *s); ///< Returns the number of UTF-8 symbols formed by the given string of ///< character bytes. char *Utf8Strn0Cpy(char *Dest, const char *Src, int n); ///< Copies at most n character bytes from Src to Dst, making sure that the ///< resulting copy ends with a complete UTF-8 symbol. The copy is guaranteed ///< to be zero terminated. ///< Returns a pointer to Dest. int Utf8ToArray(const char *s, uint *a, int Size); ///< Converts the given character bytes (including the terminating 0) into an ///< array of UTF-8 symbols of the given Size. Returns the number of symbols ///< in the array (without the terminating 0). int Utf8FromArray(const uint *a, char *s, int Size, int Max = -1); ///< Converts the given array of UTF-8 symbols (including the terminating 0) ///< into a sequence of character bytes of at most Size length. Returns the ///< number of character bytes written (without the terminating 0). ///< If Max is given, only that many symbols will be converted. ///< The resulting string is always zero-terminated if Size is big enough. // When allocating buffer space, make sure we reserve enough space to hold // a string in UTF-8 representation: #define Utf8BufSize(s) ((s) * 4) // The following macros automatically use the correct versions of the character // class functions: #define Utf8to(conv, c) (cCharSetConv::SystemCharacterTable() ? to##conv(c) : tow##conv(c)) #define Utf8is(ccls, c) (cCharSetConv::SystemCharacterTable() ? is##ccls(c) : isw##ccls(c)) class cCharSetConv { private: iconv_t cd; char *result; size_t length; static char *systemCharacterTable; public: cCharSetConv(const char *FromCode = NULL, const char *ToCode = NULL); ///< Sets up a character set converter to convert from FromCode to ToCode. ///< If FromCode is NULL, the previously set systemCharacterTable is used ///< (or "UTF-8" if no systemCharacterTable has been set). ///< If ToCode is NULL, "UTF-8" is used. ~cCharSetConv(); const char *Convert(const char *From, char *To = NULL, size_t ToLength = 0); ///< Converts the given Text from FromCode to ToCode (as set in the constructor). ///< If To is given, it is used to copy at most ToLength bytes of the result ///< (including the terminating 0) into that buffer. If To is not given, ///< the result is copied into a dynamically allocated buffer and is valid as ///< long as this object lives, or until the next call to Convert(). The ///< return value always points to the result if the conversion was successful ///< (even if a fixed size To buffer was given and the result didn't fit into ///< it). If the string could not be converted, the result points to the ///< original From string. static const char *SystemCharacterTable(void) { return systemCharacterTable; } static void SetSystemCharacterTable(const char *CharacterTable); }; class cString { private: char *s; public: cString(const char *S = NULL, bool TakePointer = false); cString(const cString &String); virtual ~cString(); operator const void * () const { return s; } // to catch cases where operator*() should be used operator const char * () const { return s; } // for use in (const char *) context const char * operator*() const { return s; } // for use in (const void *) context (printf() etc.) cString &operator=(const cString &String); cString &Truncate(int Index); ///< Truncate the string at the given Index (if Index is < 0 it is counted from the end of the string). static cString sprintf(const char *fmt, ...) __attribute__ ((format (printf, 1, 2))); static cString sprintf(const char *fmt, va_list &ap); }; ssize_t safe_read(int filedes, void *buffer, size_t size); ssize_t safe_write(int filedes, const void *buffer, size_t size); void writechar(int filedes, char c); int WriteAllOrNothing(int fd, const uchar *Data, int Length, int TimeoutMs = 0, int RetryMs = 0); ///< Writes either all Data to the given file descriptor, or nothing at all. ///< If TimeoutMs is greater than 0, it will only retry for that long, otherwise ///< it will retry forever. RetryMs defines the time between two retries. char *strcpyrealloc(char *dest, const char *src); char *strn0cpy(char *dest, const char *src, size_t n); char *strreplace(char *s, char c1, char c2); char *strreplace(char *s, const char *s1, const char *s2); ///< re-allocates 's' and deletes the original string if necessary! inline char *skipspace(const char *s) { if ((uchar)*s > ' ') // most strings don't have any leading space, so handle this case as fast as possible return (char *)s; while (*s && (uchar)*s <= ' ') // avoiding isspace() here, because it is much slower s++; return (char *)s; } char *stripspace(char *s); char *compactspace(char *s); cString strescape(const char *s, const char *chars); bool startswith(const char *s, const char *p); bool endswith(const char *s, const char *p); bool isempty(const char *s); int numdigits(int n); bool isnumber(const char *s); cString itoa(int n); cString AddDirectory(const char *DirName, const char *FileName); bool EntriesOnSameFileSystem(const char *File1, const char *File2); int FreeDiskSpaceMB(const char *Directory, int *UsedMB = NULL); bool DirectoryOk(const char *DirName, bool LogErrors = false); bool MakeDirs(const char *FileName, bool IsDirectory = false); bool RemoveFileOrDir(const char *FileName, bool FollowSymlinks = false); bool RemoveEmptyDirectories(const char *DirName, bool RemoveThis = false); int DirSizeMB(const char *DirName); ///< returns the total size of the files in the given directory, or -1 in case of an error char *ReadLink(const char *FileName); ///< returns a new string allocated on the heap, which the caller must delete (or NULL in case of an error) bool SpinUpDisk(const char *FileName); void TouchFile(const char *FileName); time_t LastModifiedTime(const char *FileName); cString WeekDayName(int WeekDay); cString WeekDayName(time_t t); cString WeekDayNameFull(int WeekDay); cString WeekDayNameFull(time_t t); cString DayDateTime(time_t t = 0); cString TimeToString(time_t t); cString DateString(time_t t); cString TimeString(time_t t); uchar *RgbToJpeg(uchar *Mem, int Width, int Height, int &Size, int Quality = 100); ///< Converts the given Memory to a JPEG image and returns a pointer ///< to the resulting image. Mem must point to a data block of exactly ///< (Width * Height) triplets of RGB image data bytes. Upon return, Size ///< will hold the number of bytes of the resulting JPEG data. ///< Quality can be in the range 0..100 and controls the quality of the ///< resulting image, where 100 is "best". The caller takes ownership of ///< the result and has to delete it once it is no longer needed. ///< The result may be NULL in case of an error. class cBase64Encoder { private: const uchar *data; int length; int maxResult; int i; char *result; static const char *b64; public: cBase64Encoder(const uchar *Data, int Length, int MaxResult = 64); ///< Sets up a new base 64 encoder for the given Data, with the given Length. ///< Data will not be copied and must be valid as long as NextLine() will be ///< called. MaxResult defines the maximum number of characters in any ///< result line. The resulting lines may be shorter than MaxResult in case ///< its value is not a multiple of 4. ~cBase64Encoder(); const char *NextLine(void); ///< Returns the next line of encoded data (terminated by '\0'), or NULL if ///< there is no more encoded data. The caller must call NextLine() and process ///< each returned line until NULL is returned, in order to get the entire ///< data encoded. The returned data is only valid until the next time NextLine() ///< is called, or until the object is destroyed. }; class cTimeMs { private: uint64_t begin; public: cTimeMs(int Ms = 0); ///< Creates a timer with ms resolution and an initial timeout of Ms. static uint64_t Now(void); void Set(int Ms = 0); bool TimedOut(void); uint64_t Elapsed(void); }; class cReadLine { private: size_t size; char *buffer; public: cReadLine(void); ~cReadLine(); char *Read(FILE *f); }; class cPoller { private: enum { MaxPollFiles = 16 }; pollfd pfd[MaxPollFiles]; int numFileHandles; public: cPoller(int FileHandle = -1, bool Out = false); bool Add(int FileHandle, bool Out); bool Poll(int TimeoutMs = 0); }; class cReadDir { private: DIR *directory; struct dirent *result; union { // according to "The GNU C Library Reference Manual" struct dirent d; char b[offsetof(struct dirent, d_name) + NAME_MAX + 1]; } u; public: cReadDir(const char *Directory); ~cReadDir(); bool Ok(void) { return directory != NULL; } struct dirent *Next(void); }; class cFile { private: static bool files[]; static int maxFiles; int f; public: cFile(void); ~cFile(); operator int () { return f; } bool Open(const char *FileName, int Flags, mode_t Mode = DEFFILEMODE); bool Open(int FileDes); void Close(void); bool IsOpen(void) { return f >= 0; } bool Ready(bool Wait = true); static bool AnyFileReady(int FileDes = -1, int TimeoutMs = 1000); static bool FileReady(int FileDes, int TimeoutMs = 1000); static bool FileReadyForWriting(int FileDes, int TimeoutMs = 1000); }; class cSafeFile { private: FILE *f; char *fileName; char *tempName; public: cSafeFile(const char *FileName); ~cSafeFile(); operator FILE* () { return f; } bool Open(void); bool Close(void); }; /// cUnbufferedFile is used for large files that are mainly written or read /// in a streaming manner, and thus should not be cached. class cUnbufferedFile { private: int fd; off_t curpos; off_t cachedstart; off_t cachedend; off_t begin; off_t lastpos; off_t ahead; size_t readahead; size_t written; size_t totwritten; int FadviseDrop(off_t Offset, off_t Len); public: cUnbufferedFile(void); ~cUnbufferedFile(); int Open(const char *FileName, int Flags, mode_t Mode = DEFFILEMODE); int Close(void); void SetReadAhead(size_t ra); off_t Seek(off_t Offset, int Whence); ssize_t Read(void *Data, size_t Size); ssize_t Write(const void *Data, size_t Size); static cUnbufferedFile *Create(const char *FileName, int Flags, mode_t Mode = DEFFILEMODE); }; class cLockFile { private: char *fileName; int f; public: cLockFile(const char *Directory); ~cLockFile(); bool Lock(int WaitSeconds = 0); void Unlock(void); }; class cListObject { private: cListObject *prev, *next; public: cListObject(void); virtual ~cListObject(); virtual int Compare(const cListObject &ListObject) const { return 0; } ///< Must return 0 if this object is equal to ListObject, a positive value ///< if it is "greater", and a negative value if it is "smaller". void Append(cListObject *Object); void Insert(cListObject *Object); void Unlink(void); int Index(void) const; cListObject *Prev(void) const { return prev; } cListObject *Next(void) const { return next; } }; class cListBase { protected: cListObject *objects, *lastObject; cListBase(void); int count; public: virtual ~cListBase(); void Add(cListObject *Object, cListObject *After = NULL); void Ins(cListObject *Object, cListObject *Before = NULL); void Del(cListObject *Object, bool DeleteObject = true); virtual void Move(int From, int To); void Move(cListObject *From, cListObject *To); virtual void Clear(void); cListObject *Get(int Index) const; int Count(void) const { return count; } void Sort(void); }; template<class T> class cList : public cListBase { public: T *Get(int Index) const { return (T *)cListBase::Get(Index); } T *First(void) const { return (T *)objects; } T *Last(void) const { return (T *)lastObject; } T *Prev(const T *object) const { return (T *)object->cListObject::Prev(); } // need to call cListObject's members to T *Next(const T *object) const { return (T *)object->cListObject::Next(); } // avoid ambiguities in case of a "list of lists" }; template<class T> class cVector { private: mutable int allocated; mutable int size; mutable T *data; cVector(const cVector &Vector) {} // don't copy... cVector &operator=(const cVector &Vector) { return *this; } // ...or assign this! void Realloc(int Index) const { if (++Index > allocated) { data = (T *)realloc(data, Index * sizeof(T)); for (int i = allocated; i < Index; i++) data[i] = T(0); allocated = Index; } } public: cVector(int Allocated = 10) { allocated = 0; size = 0; data = NULL; Realloc(Allocated); } virtual ~cVector() { free(data); } T& At(int Index) const { Realloc(Index); if (Index >= size) size = Index + 1; return data[Index]; } const T& operator[](int Index) const { return At(Index); } T& operator[](int Index) { return At(Index); } int Size(void) const { return size; } virtual void Insert(T Data, int Before = 0) { if (Before < size) { Realloc(size); memmove(&data[Before + 1], &data[Before], (size - Before) * sizeof(T)); size++; data[Before] = Data; } else Append(Data); } virtual void Append(T Data) { if (size >= allocated) Realloc(allocated * 4 / 2); // increase size by 50% data[size++] = Data; } virtual void Remove(int Index) { if (Index < size - 1) memmove(&data[Index], &data[Index + 1], (size - Index) * sizeof(T)); size--; } virtual void Clear(void) { size = 0; } void Sort(__compar_fn_t Compare) { qsort(data, size, sizeof(T), Compare); } }; inline int CompareStrings(const void *a, const void *b) { return strcmp(*(const char **)a, *(const char **)b); } class cStringList : public cVector<char *> { public: cStringList(int Allocated = 10): cVector<char *>(Allocated) {} virtual ~cStringList(); int Find(const char *s) const; void Sort(void) { cVector<char *>::Sort(CompareStrings); } virtual void Clear(void); }; class cFileNameList : public cStringList { public: cFileNameList(const char *Directory = NULL, bool DirsOnly = false); bool Load(const char *Directory, bool DirsOnly = false); }; class cHashObject : public cListObject { friend class cHashBase; private: unsigned int id; cListObject *object; public: cHashObject(cListObject *Object, unsigned int Id) { object = Object; id = Id; } cListObject *Object(void) { return object; } }; class cHashBase { private: cList<cHashObject> **hashTable; int size; unsigned int hashfn(unsigned int Id) const { return Id % size; } protected: cHashBase(int Size); public: virtual ~cHashBase(); void Add(cListObject *Object, unsigned int Id); void Del(cListObject *Object, unsigned int Id); void Clear(void); cListObject *Get(unsigned int Id) const; cList<cHashObject> *GetList(unsigned int Id) const; }; #define HASHSIZE 512 template<class T> class cHash : public cHashBase { public: cHash(int Size = HASHSIZE) : cHashBase(Size) {} T *Get(unsigned int Id) const { return (T *)cHashBase::Get(Id); } }; #endif //__TOOLS_H