1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
/*
* mtd.c: Multi Transponder Decryption
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: mtd.c 1.9 2017/03/27 14:26:04 kls Exp $
*/
#include "mtd.h"
#include "receiver.h"
//#define DEBUG_MTD
#ifdef DEBUG_MTD
#define DBGMTD(a...) dsyslog(a)
#else
#define DBGMTD(a...)
#endif
//#define KEEPPIDS // for testing and debugging - USE ONLY IF YOU KNOW WHAT YOU ARE DOING!
#define MAX_REAL_PIDS MAXPID // real PIDs are 13 bit (0x0000 - 0x1FFF)
#ifdef KEEPPIDS
#define MAX_UNIQ_PIDS MAXPID
#define UNIQ_PID_MASK 0x1FFF
#else
#define MAX_UNIQ_PIDS 256 // uniq PIDs are 8 bit (0x00 - 0xFF)
#define UNIQ_PID_MASK 0x00FF
#define UNIQ_PID_SHIFT 8
#endif // KEEPPIDS
// --- cMtdHandler -----------------------------------------------------------
cMtdHandler::cMtdHandler(void)
{
}
cMtdHandler::~cMtdHandler()
{
for (int i = 0; i < camSlots.Size(); i++) {
dsyslog("CAM %d/%d: deleting MTD CAM slot", camSlots[i]->MasterSlot()->SlotNumber(), i + 1);
delete camSlots[i];
}
}
cMtdCamSlot *cMtdHandler::GetMtdCamSlot(cCamSlot *MasterSlot)
{
for (int i = 0; i < camSlots.Size(); i++) {
if (!camSlots[i]->Device()) {
dsyslog("CAM %d/%d: reusing MTD CAM slot", MasterSlot->SlotNumber(), i + 1);
return camSlots[i];
}
}
dsyslog("CAM %d/%d: creating new MTD CAM slot", MasterSlot->SlotNumber(), camSlots.Size() + 1);
cMtdCamSlot *s = new cMtdCamSlot(MasterSlot, camSlots.Size());
camSlots.Append(s);
return s;
}
int cMtdHandler::Put(const uchar *Data, int Count)
{
int Used = 0;
while (Count >= TS_SIZE) {
if (int Skipped = TS_SYNC(Data, Count))
return Used + Skipped;
int Pid = TsPid(Data);
if (Pid != CATPID) { // the original CAT with mapped PIDs must be skipped here!
#ifdef KEEPPIDS
int Index = 0;
#else
int Index = (Pid >> UNIQ_PID_SHIFT) - 1;
#endif // KEEPPIDS
if (Index >= 0 && Index < camSlots.Size()) {
int w = camSlots[Index]->PutData(Data, TS_SIZE);
if (w == 0)
break;
else if (w != TS_SIZE)
esyslog("ERROR: incomplete MTD packet written (%d) in PID %d (%04X)", Index + 1, Pid, Pid);
}
else if (Index >= 0) // we silently ignore Index -1 (i.e. MTD number 0), since there are several hundred empty TS packets when switching to an encrypted channel for the first time since startup
esyslog("ERROR: invalid MTD number (%d) in PID %d (%04X)", Index + 1, Pid, Pid);
}
Data += TS_SIZE;
Count -= TS_SIZE;
Used += TS_SIZE;
}
return Used;
}
int cMtdHandler::Priority(void)
{
int p = IDLEPRIORITY;
for (int i = 0; i < camSlots.Size(); i++)
p = max(p, camSlots[i]->Priority());
return p;
}
bool cMtdHandler::IsDecrypting(void)
{
for (int i = 0; i < camSlots.Size(); i++) {
if (camSlots[i]->IsDecrypting())
return true;
}
return false;
}
void cMtdHandler::StartDecrypting(void)
{
for (int i = 0; i < camSlots.Size(); i++) {
if (camSlots[i]->Device()) {
camSlots[i]->TriggerResendPmt();
camSlots[i]->StartDecrypting();
}
}
}
void cMtdHandler::CancelActivation(void)
{
for (int i = 0; i < camSlots.Size(); i++)
camSlots[i]->CancelActivation();
}
bool cMtdHandler::IsActivating(void)
{
for (int i = 0; i < camSlots.Size(); i++) {
if (camSlots[i]->IsActivating())
return true;
}
return false;
}
bool cMtdHandler::Devices(cVector<int> &CardIndexes)
{
for (int i = 0; i < camSlots.Size(); i++)
camSlots[i]->Devices(CardIndexes);
return CardIndexes.Size() > 0;
}
// --- cMtdMapper ------------------------------------------------------------
#define MTD_INVALID_PID 0xFFFF
class cMtdMapper {
private:
int number;
int masterCamSlotNumber;
uint16_t uniqPids[MAX_REAL_PIDS]; // maps a real PID to a unique PID
uint16_t realPids[MAX_UNIQ_PIDS]; // maps a unique PID to a real PID
cVector<uint16_t> uniqSids;
uint16_t MakeUniqPid(uint16_t RealPid);
public:
cMtdMapper(int Number, int MasterCamSlotNumber);
~cMtdMapper();
uint16_t RealToUniqPid(uint16_t RealPid) { if (uniqPids[RealPid]) return uniqPids[RealPid]; return MakeUniqPid(RealPid); }
uint16_t UniqToRealPid(uint16_t UniqPid) { return realPids[UniqPid & UNIQ_PID_MASK]; }
uint16_t RealToUniqSid(uint16_t RealSid);
void Clear(void);
};
cMtdMapper::cMtdMapper(int Number, int MasterCamSlotNumber)
{
number = Number;
masterCamSlotNumber = MasterCamSlotNumber;
Clear();
}
cMtdMapper::~cMtdMapper()
{
}
uint16_t cMtdMapper::MakeUniqPid(uint16_t RealPid)
{
#ifdef KEEPPIDS
uniqPids[RealPid] = realPids[RealPid] = RealPid;
DBGMTD("CAM %d/%d: mapped PID %d (%04X) to %d (%04X)", masterCamSlotNumber, number, RealPid, RealPid, uniqPids[RealPid], uniqPids[RealPid]);
return uniqPids[RealPid];
#else
for (int i = 0; i < MAX_UNIQ_PIDS; i++) {
if (realPids[i] == MTD_INVALID_PID) { // 0x0000 is a valid PID (PAT)!
realPids[i] = RealPid;
uniqPids[RealPid] = (number << UNIQ_PID_SHIFT) | i;
DBGMTD("CAM %d/%d: mapped PID %d (%04X) to %d (%04X)", masterCamSlotNumber, number, RealPid, RealPid, uniqPids[RealPid], uniqPids[RealPid]);
return uniqPids[RealPid];
}
}
#endif // KEEPPIDS
esyslog("ERROR: MTD %d: mapper ran out of unique PIDs", number);
return 0;
}
uint16_t cMtdMapper::RealToUniqSid(uint16_t RealSid)
{
#ifdef KEEPPIDS
return RealSid;
#endif // KEEPPIDS
int UniqSid = uniqSids.IndexOf(RealSid);
if (UniqSid < 0) {
UniqSid = uniqSids.Size();
uniqSids.Append(RealSid);
DBGMTD("CAM %d/%d: mapped SID %d (%04X) to %d (%04X)", masterCamSlotNumber, number, RealSid, RealSid, UniqSid | (number << UNIQ_PID_SHIFT), UniqSid | (number << UNIQ_PID_SHIFT));
}
UniqSid |= number << UNIQ_PID_SHIFT;
return UniqSid;
}
void cMtdMapper::Clear(void)
{
DBGMTD("CAM %d/%d: MTD mapper cleared", masterCamSlotNumber, number);
memset(uniqPids, 0, sizeof(uniqPids));
memset(realPids, MTD_INVALID_PID, sizeof(realPids));
uniqSids.Clear();
}
void MtdMapSid(uchar *p, cMtdMapper *MtdMapper)
{
Poke13(p, MtdMapper->RealToUniqSid(Peek13(p)));
}
void MtdMapPid(uchar *p, cMtdMapper *MtdMapper)
{
Poke13(p, MtdMapper->RealToUniqPid(Peek13(p)));
}
// --- cMtdCamSlot -----------------------------------------------------------
#define MTD_BUFFER_SIZE MEGABYTE(1)
cMtdCamSlot::cMtdCamSlot(cCamSlot *MasterSlot, int Index)
:cCamSlot(NULL, true, MasterSlot)
{
mtdBuffer = new cRingBufferLinear(MTD_BUFFER_SIZE, TS_SIZE, true, "MTD buffer");
mtdMapper = new cMtdMapper(Index + 1, MasterSlot->SlotNumber());
delivered = false;
ciAdapter = MasterSlot->ciAdapter; // we don't pass the CI adapter in the constructor, to prevent this one from being inserted into CamSlots
}
cMtdCamSlot::~cMtdCamSlot()
{
Assign(NULL);
delete mtdMapper;
delete mtdBuffer;
}
const int *cMtdCamSlot::GetCaSystemIds(void)
{
return MasterSlot()->GetCaSystemIds();
}
void cMtdCamSlot::SendCaPmt(uint8_t CmdId)
{
cMutexLock MutexLock(&mutex);
cCiCaPmtList CaPmtList;
BuildCaPmts(CmdId, CaPmtList, mtdMapper);
MasterSlot()->SendCaPmts(CaPmtList);
}
bool cMtdCamSlot::RepliesToQuery(void)
{
return MasterSlot()->RepliesToQuery();
}
bool cMtdCamSlot::ProvidesCa(const int *CaSystemIds)
{
return MasterSlot()->ProvidesCa(CaSystemIds);
}
bool cMtdCamSlot::CanDecrypt(const cChannel *Channel, cMtdMapper *MtdMapper)
{
return MasterSlot()->CanDecrypt(Channel, mtdMapper);
}
void cMtdCamSlot::StartDecrypting(void)
{
MasterSlot()->StartDecrypting();
cCamSlot::StartDecrypting();
}
void cMtdCamSlot::StopDecrypting(void)
{
cCamSlot::StopDecrypting();
if (!MasterSlot()->IsDecrypting())
MasterSlot()->StopDecrypting();
cMutexLock MutexLock(&clearMutex);
mtdMapper->Clear();
mtdBuffer->Clear();
delivered = false;
}
uchar *cMtdCamSlot::Decrypt(uchar *Data, int &Count)
{
// Send data to CAM:
if (Count >= TS_SIZE) {
Count = TS_SIZE;
int Pid = TsPid(Data);
TsSetPid(Data, mtdMapper->RealToUniqPid(Pid));
MasterSlot()->Decrypt(Data, Count);
if (Count == 0)
TsSetPid(Data, Pid); // must restore PID for later retry
}
else
Count = 0;
// Drop delivered data from previous call:
cMutexLock MutexLock(&clearMutex);
if (delivered) {
mtdBuffer->Del(TS_SIZE);
delivered = false;
}
// Receive data from buffer:
int c = 0;
uchar *d = mtdBuffer->Get(c);
if (d) {
if (int Skipped = TS_SYNC(d, c)) {
mtdBuffer->Del(Skipped);
return NULL;
}
if (c >= TS_SIZE) {
TsSetPid(d, mtdMapper->UniqToRealPid(TsPid(d)));
delivered = true;
}
else
d = NULL;
}
return d;
}
int cMtdCamSlot::PutData(const uchar *Data, int Count)
{
int Free = mtdBuffer->Free();
Free -= Free % TS_SIZE;
if (Free < TS_SIZE)
return 0;
if (Free < Count)
Count = Free;
return mtdBuffer->Put(Data, Count);
}
int cMtdCamSlot::PutCat(const uchar *Data, int Count)
{
MasterSlot()->Decrypt(const_cast<uchar *>(Data), Count);
return Count;
}
|