diff options
author | Miguel Freitas <miguelfreitas@users.sourceforge.net> | 2002-07-14 23:43:01 +0000 |
---|---|---|
committer | Miguel Freitas <miguelfreitas@users.sourceforge.net> | 2002-07-14 23:43:01 +0000 |
commit | 53c5ec96b87ef2bb61c7d3188d549623495d4500 (patch) | |
tree | a1b4904418281d23a2ab750b70be88db40062aa3 /src/libfaad/mdct.c | |
parent | 0ee981a355115c35cc9b6aa5066d6b7271c4b28a (diff) | |
download | xine-lib-53c5ec96b87ef2bb61c7d3188d549623495d4500.tar.gz xine-lib-53c5ec96b87ef2bb61c7d3188d549623495d4500.tar.bz2 |
merge FAAD2 - the GPL AAC decoder library.
xine_decoder.c is working, but demux_qt must send some needed
initialization data. currently it's hardcoded to play my test stream, so
it's not usable yet.
CVS patchset: 2267
CVS date: 2002/07/14 23:43:01
Diffstat (limited to 'src/libfaad/mdct.c')
-rw-r--r-- | src/libfaad/mdct.c | 188 |
1 files changed, 188 insertions, 0 deletions
diff --git a/src/libfaad/mdct.c b/src/libfaad/mdct.c new file mode 100644 index 000000000..4d6d05997 --- /dev/null +++ b/src/libfaad/mdct.c @@ -0,0 +1,188 @@ +/* +** FAAD - Freeware Advanced Audio Decoder +** Copyright (C) 2002 M. Bakker +** +** This program is free software; you can redistribute it and/or modify +** it under the terms of the GNU General Public License as published by +** the Free Software Foundation; either version 2 of the License, or +** (at your option) any later version. +** +** This program is distributed in the hope that it will be useful, +** but WITHOUT ANY WARRANTY; without even the implied warranty of +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +** GNU General Public License for more details. +** +** You should have received a copy of the GNU General Public License +** along with this program; if not, write to the Free Software +** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. +** +** $Id: mdct.c,v 1.1 2002/07/14 23:43:01 miguelfreitas Exp $ +**/ + +/* + * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform) + * and consists of three steps: pre-(I)FFT complex multiplication, complex + * (I)FFT, post-(I)FFT complex multiplication, + * + * As described in: + * P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the + * Implementation of Filter Banks Based on 'Time Domain Aliasing + * Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212. + * + * + * As of April 6th 2002 completely rewritten. + * Thanks to the FFTW library this (I)MDCT can now be used for any data + * size n, where n is divisible by 8. + * + */ + + +#include "common.h" + +#include <stdlib.h> +#include <assert.h> + +/* uses fftw (http://www.fftw.org) for very fast arbitrary-n FFT and IFFT */ +#include <fftw.h> + + +#include "mdct.h" + + +void faad_mdct_init(mdct_info *mdct, uint16_t N) +{ + uint16_t k; + + assert(N % 8 == 0); + + mdct->N = N; + mdct->sincos = (faad_sincos*)malloc(N/4*sizeof(faad_sincos)); + mdct->Z1 = (fftw_complex*)malloc(N/4*sizeof(fftw_complex)); + mdct->Z2 = (fftw_complex*)malloc(N/4*sizeof(fftw_complex)); + + for (k = 0; k < N/4; k++) + { + real_t angle = 2.0 * M_PI * (k + 1.0/8.0)/(real_t)N; + mdct->sincos[k].sin = -sin(angle); + mdct->sincos[k].cos = -cos(angle); + } + + mdct->plan_backward = fftw_create_plan(N/4, FFTW_BACKWARD, FFTW_ESTIMATE); +#ifdef LTP_DEC + mdct->plan_forward = fftw_create_plan(N/4, FFTW_FORWARD, FFTW_ESTIMATE); +#endif +} + +void faad_mdct_end(mdct_info *mdct) +{ + fftw_destroy_plan(mdct->plan_backward); +#ifdef LTP_DEC + fftw_destroy_plan(mdct->plan_forward); +#endif + + if (mdct->Z2) free(mdct->Z2); + if (mdct->Z1) free(mdct->Z1); + if (mdct->sincos) free(mdct->sincos); +} + +void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out) +{ + uint16_t k; + + fftw_complex *Z1 = mdct->Z1; + fftw_complex *Z2 = mdct->Z2; + faad_sincos *sincos = mdct->sincos; + + uint16_t N = mdct->N; + uint16_t N2 = N >> 1; + uint16_t N4 = N >> 2; + uint16_t N8 = N >> 3; + + real_t fac = 2.0/(real_t)N; + + /* pre-IFFT complex multiplication */ + for (k = 0; k < N4; k++) + { + uint16_t n = k << 1; + real_t x0 = X_in[ n]; + real_t x1 = X_in[N2 - 1 - n]; + Z1[k].re = MUL(fac, MUL(x1, sincos[k].cos) - MUL(x0, sincos[k].sin)); + Z1[k].im = MUL(fac, MUL(x0, sincos[k].cos) + MUL(x1, sincos[k].sin)); + } + + /* complex IFFT */ + fftw_one(mdct->plan_backward, Z1, Z2); + + /* post-IFFT complex multiplication */ + for (k = 0; k < N4; k++) + { + real_t zr = Z2[k].re; + real_t zi = Z2[k].im; + Z2[k].re = MUL(zr, sincos[k].cos) - MUL(zi, sincos[k].sin); + Z2[k].im = MUL(zi, sincos[k].cos) + MUL(zr, sincos[k].sin); + } + + /* reordering */ + for (k = 0; k < N8; k++) + { + uint16_t n = k << 1; + X_out[ n] = -Z2[N8 + k].im; + X_out[ 1 + n] = Z2[N8 - 1 - k].re; + X_out[N4 + n] = -Z2[ k].re; + X_out[N4 + 1 + n] = Z2[N4 - 1 - k].im; + X_out[N2 + n] = -Z2[N8 + k].re; + X_out[N2 + 1 + n] = Z2[N8 - 1 - k].im; + X_out[N2 + N4 + n] = Z2[ k].im; + X_out[N2 + N4 + 1 + n] = -Z2[N4 - 1 - k].re; + } +} + +#ifdef LTP_DEC +void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out) +{ + uint16_t k; + + fftw_complex *Z1 = mdct->Z1; + fftw_complex *Z2 = mdct->Z2; + faad_sincos *sincos = mdct->sincos; + + uint16_t N = mdct->N; + uint16_t N2 = N >> 1; + uint16_t N4 = N >> 2; + uint16_t N8 = N >> 3; + + + /* pre-FFT complex multiplication */ + for (k = 0; k < N8; k++) + { + uint16_t n = k << 1; + real_t zr = X_in[N - N4 - 1 - n] + X_in[N - N4 + n]; + real_t zi = X_in[ N4 + n] - X_in[ N4 - 1 - n]; + + Z1[k ].re = -MUL(zr, sincos[k ].cos) - MUL(zi, sincos[k ].sin); + Z1[k ].im = -MUL(zi, sincos[k ].cos) + MUL(zr, sincos[k ].sin); + + zr = X_in[ N2 - 1 - n] - X_in[ n]; + zi = X_in[ N2 + n] + X_in[N - 1 - n]; + + Z1[k + N8].re = -MUL(zr, sincos[k + N8].cos) - MUL(zi, sincos[k + N8].sin); + Z1[k + N8].im = -MUL(zi, sincos[k + N8].cos) + MUL(zr, sincos[k + N8].sin); + } + + /* complex FFT */ + fftw_one(mdct->plan_forward, Z1, Z2); + + /* post-FFT complex multiplication */ + for (k = 0; k < N4; k++) + { + uint16_t n = k << 1; + real_t zr = MUL(2.0, MUL(Z2[k].re, sincos[k].cos) + MUL(Z2[k].im, sincos[k].sin)); + real_t zi = MUL(2.0, MUL(Z2[k].im, sincos[k].cos) - MUL(Z2[k].re, sincos[k].sin)); + + X_out[ n] = -zr; + X_out[N2 - 1 - n] = zi; + X_out[N2 + n] = -zi; + X_out[N - 1 - n] = zr; + } +} +#endif |