summaryrefslogtreecommitdiff
path: root/contrib/ffmpeg/libavcodec/ac3dec.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ffmpeg/libavcodec/ac3dec.c')
-rw-r--r--contrib/ffmpeg/libavcodec/ac3dec.c1173
1 files changed, 0 insertions, 1173 deletions
diff --git a/contrib/ffmpeg/libavcodec/ac3dec.c b/contrib/ffmpeg/libavcodec/ac3dec.c
deleted file mode 100644
index 0ce75e769..000000000
--- a/contrib/ffmpeg/libavcodec/ac3dec.c
+++ /dev/null
@@ -1,1173 +0,0 @@
-/*
- * AC-3 Audio Decoder
- * This code is developed as part of Google Summer of Code 2006 Program.
- *
- * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
- * Copyright (c) 2007 Justin Ruggles
- *
- * Portions of this code are derived from liba52
- * http://liba52.sourceforge.net
- * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
- * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <stdio.h>
-#include <stddef.h>
-#include <math.h>
-#include <string.h>
-
-#include "avcodec.h"
-#include "ac3_parser.h"
-#include "bitstream.h"
-#include "crc.h"
-#include "dsputil.h"
-#include "random.h"
-
-/**
- * Table of bin locations for rematrixing bands
- * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
- */
-static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };
-
-/**
- * table for exponent to scale_factor mapping
- * scale_factors[i] = 2 ^ -i
- */
-static float scale_factors[25];
-
-/** table for grouping exponents */
-static uint8_t exp_ungroup_tab[128][3];
-
-
-/** tables for ungrouping mantissas */
-static float b1_mantissas[32][3];
-static float b2_mantissas[128][3];
-static float b3_mantissas[8];
-static float b4_mantissas[128][2];
-static float b5_mantissas[16];
-
-/**
- * Quantization table: levels for symmetric. bits for asymmetric.
- * reference: Table 7.18 Mapping of bap to Quantizer
- */
-static const uint8_t quantization_tab[16] = {
- 0, 3, 5, 7, 11, 15,
- 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
-};
-
-/** dynamic range table. converts codes to scale factors. */
-static float dynamic_range_tab[256];
-
-/** Adjustments in dB gain */
-#define LEVEL_MINUS_3DB 0.7071067811865476
-#define LEVEL_MINUS_4POINT5DB 0.5946035575013605
-#define LEVEL_MINUS_6DB 0.5000000000000000
-#define LEVEL_MINUS_9DB 0.3535533905932738
-#define LEVEL_ZERO 0.0000000000000000
-#define LEVEL_ONE 1.0000000000000000
-
-static const float gain_levels[6] = {
- LEVEL_ZERO,
- LEVEL_ONE,
- LEVEL_MINUS_3DB,
- LEVEL_MINUS_4POINT5DB,
- LEVEL_MINUS_6DB,
- LEVEL_MINUS_9DB
-};
-
-/**
- * Table for center mix levels
- * reference: Section 5.4.2.4 cmixlev
- */
-static const uint8_t center_levels[4] = { 2, 3, 4, 3 };
-
-/**
- * Table for surround mix levels
- * reference: Section 5.4.2.5 surmixlev
- */
-static const uint8_t surround_levels[4] = { 2, 4, 0, 4 };
-
-/**
- * Table for default stereo downmixing coefficients
- * reference: Section 7.8.2 Downmixing Into Two Channels
- */
-static const uint8_t ac3_default_coeffs[8][5][2] = {
- { { 1, 0 }, { 0, 1 }, },
- { { 2, 2 }, },
- { { 1, 0 }, { 0, 1 }, },
- { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
- { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
- { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
- { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
- { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
-};
-
-/* override ac3.h to include coupling channel */
-#undef AC3_MAX_CHANNELS
-#define AC3_MAX_CHANNELS 7
-#define CPL_CH 0
-
-#define AC3_OUTPUT_LFEON 8
-
-typedef struct {
- int channel_mode; ///< channel mode (acmod)
- int block_switch[AC3_MAX_CHANNELS]; ///< block switch flags
- int dither_flag[AC3_MAX_CHANNELS]; ///< dither flags
- int dither_all; ///< true if all channels are dithered
- int cpl_in_use; ///< coupling in use
- int channel_in_cpl[AC3_MAX_CHANNELS]; ///< channel in coupling
- int phase_flags_in_use; ///< phase flags in use
- int phase_flags[18]; ///< phase flags
- int cpl_band_struct[18]; ///< coupling band structure
- int num_rematrixing_bands; ///< number of rematrixing bands
- int rematrixing_flags[4]; ///< rematrixing flags
- int exp_strategy[AC3_MAX_CHANNELS]; ///< exponent strategies
- int snr_offset[AC3_MAX_CHANNELS]; ///< signal-to-noise ratio offsets
- int fast_gain[AC3_MAX_CHANNELS]; ///< fast gain values (signal-to-mask ratio)
- int dba_mode[AC3_MAX_CHANNELS]; ///< delta bit allocation mode
- int dba_nsegs[AC3_MAX_CHANNELS]; ///< number of delta segments
- uint8_t dba_offsets[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
- uint8_t dba_lengths[AC3_MAX_CHANNELS][8]; ///< delta segment lengths
- uint8_t dba_values[AC3_MAX_CHANNELS][8]; ///< delta values for each segment
-
- int sample_rate; ///< sample frequency, in Hz
- int bit_rate; ///< stream bit rate, in bits-per-second
- int frame_size; ///< current frame size, in bytes
-
- int channels; ///< number of total channels
- int fbw_channels; ///< number of full-bandwidth channels
- int lfe_on; ///< lfe channel in use
- int lfe_ch; ///< index of LFE channel
- int output_mode; ///< output channel configuration
- int out_channels; ///< number of output channels
-
- int center_mix_level; ///< Center mix level index
- int surround_mix_level; ///< Surround mix level index
- float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
- float dynamic_range[2]; ///< dynamic range
- float cpl_coords[AC3_MAX_CHANNELS][18]; ///< coupling coordinates
- int num_cpl_bands; ///< number of coupling bands
- int num_cpl_subbands; ///< number of coupling sub bands
- int start_freq[AC3_MAX_CHANNELS]; ///< start frequency bin
- int end_freq[AC3_MAX_CHANNELS]; ///< end frequency bin
- AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
-
- int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
- uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
- int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
- int16_t band_psd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
- int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
-
- DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); ///< transform coefficients
-
- /* For IMDCT. */
- MDCTContext imdct_512; ///< for 512 sample IMDCT
- MDCTContext imdct_256; ///< for 256 sample IMDCT
- DSPContext dsp; ///< for optimization
- float add_bias; ///< offset for float_to_int16 conversion
- float mul_bias; ///< scaling for float_to_int16 conversion
-
- DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); ///< output after imdct transform and windowing
- DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
- DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); ///< delay - added to the next block
- DECLARE_ALIGNED_16(float, tmp_imdct[256]); ///< temporary storage for imdct transform
- DECLARE_ALIGNED_16(float, tmp_output[512]); ///< temporary storage for output before windowing
- DECLARE_ALIGNED_16(float, window[256]); ///< window coefficients
-
- /* Miscellaneous. */
- GetBitContext gbc; ///< bitstream reader
- AVRandomState dith_state; ///< for dither generation
- AVCodecContext *avctx; ///< parent context
-} AC3DecodeContext;
-
-/**
- * Symmetrical Dequantization
- * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
- * Tables 7.19 to 7.23
- */
-static inline float
-symmetric_dequant(int code, int levels)
-{
- return (code - (levels >> 1)) * (2.0f / levels);
-}
-
-/*
- * Initialize tables at runtime.
- */
-static void ac3_tables_init(void)
-{
- int i;
-
- /* generate grouped mantissa tables
- reference: Section 7.3.5 Ungrouping of Mantissas */
- for(i=0; i<32; i++) {
- /* bap=1 mantissas */
- b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
- b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
- b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
- }
- for(i=0; i<128; i++) {
- /* bap=2 mantissas */
- b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
- b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
- b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
-
- /* bap=4 mantissas */
- b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
- b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
- }
- /* generate ungrouped mantissa tables
- reference: Tables 7.21 and 7.23 */
- for(i=0; i<7; i++) {
- /* bap=3 mantissas */
- b3_mantissas[i] = symmetric_dequant(i, 7);
- }
- for(i=0; i<15; i++) {
- /* bap=5 mantissas */
- b5_mantissas[i] = symmetric_dequant(i, 15);
- }
-
- /* generate dynamic range table
- reference: Section 7.7.1 Dynamic Range Control */
- for(i=0; i<256; i++) {
- int v = (i >> 5) - ((i >> 7) << 3) - 5;
- dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
- }
-
- /* generate scale factors for exponents and asymmetrical dequantization
- reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */
- for (i = 0; i < 25; i++)
- scale_factors[i] = pow(2.0, -i);
-
- /* generate exponent tables
- reference: Section 7.1.3 Exponent Decoding */
- for(i=0; i<128; i++) {
- exp_ungroup_tab[i][0] = i / 25;
- exp_ungroup_tab[i][1] = (i % 25) / 5;
- exp_ungroup_tab[i][2] = (i % 25) % 5;
- }
-}
-
-
-/**
- * AVCodec initialization
- */
-static int ac3_decode_init(AVCodecContext *avctx)
-{
- AC3DecodeContext *s = avctx->priv_data;
- s->avctx = avctx;
-
- ac3_common_init();
- ac3_tables_init();
- ff_mdct_init(&s->imdct_256, 8, 1);
- ff_mdct_init(&s->imdct_512, 9, 1);
- ff_kbd_window_init(s->window, 5.0, 256);
- dsputil_init(&s->dsp, avctx);
- av_init_random(0, &s->dith_state);
-
- /* set bias values for float to int16 conversion */
- if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
- s->add_bias = 385.0f;
- s->mul_bias = 1.0f;
- } else {
- s->add_bias = 0.0f;
- s->mul_bias = 32767.0f;
- }
-
- /* allow downmixing to stereo or mono */
- if (avctx->channels > 0 && avctx->request_channels > 0 &&
- avctx->request_channels < avctx->channels &&
- avctx->request_channels <= 2) {
- avctx->channels = avctx->request_channels;
- }
-
- return 0;
-}
-
-/**
- * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
- * GetBitContext within AC3DecodeContext must point to
- * start of the synchronized ac3 bitstream.
- */
-static int ac3_parse_header(AC3DecodeContext *s)
-{
- AC3HeaderInfo hdr;
- GetBitContext *gbc = &s->gbc;
- int err, i;
-
- err = ff_ac3_parse_header(gbc->buffer, &hdr);
- if(err)
- return err;
-
- if(hdr.bitstream_id > 10)
- return AC3_PARSE_ERROR_BSID;
-
- /* get decoding parameters from header info */
- s->bit_alloc_params.sr_code = hdr.sr_code;
- s->channel_mode = hdr.channel_mode;
- s->lfe_on = hdr.lfe_on;
- s->bit_alloc_params.sr_shift = hdr.sr_shift;
- s->sample_rate = hdr.sample_rate;
- s->bit_rate = hdr.bit_rate;
- s->channels = hdr.channels;
- s->fbw_channels = s->channels - s->lfe_on;
- s->lfe_ch = s->fbw_channels + 1;
- s->frame_size = hdr.frame_size;
-
- /* set default output to all source channels */
- s->out_channels = s->channels;
- s->output_mode = s->channel_mode;
- if(s->lfe_on)
- s->output_mode |= AC3_OUTPUT_LFEON;
-
- /* set default mix levels */
- s->center_mix_level = 3; // -4.5dB
- s->surround_mix_level = 4; // -6.0dB
-
- /* skip over portion of header which has already been read */
- skip_bits(gbc, 16); // skip the sync_word
- skip_bits(gbc, 16); // skip crc1
- skip_bits(gbc, 8); // skip fscod and frmsizecod
- skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
- if(s->channel_mode == AC3_CHMODE_STEREO) {
- skip_bits(gbc, 2); // skip dsurmod
- } else {
- if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO)
- s->center_mix_level = center_levels[get_bits(gbc, 2)];
- if(s->channel_mode & 4)
- s->surround_mix_level = surround_levels[get_bits(gbc, 2)];
- }
- skip_bits1(gbc); // skip lfeon
-
- /* read the rest of the bsi. read twice for dual mono mode. */
- i = !(s->channel_mode);
- do {
- skip_bits(gbc, 5); // skip dialog normalization
- if (get_bits1(gbc))
- skip_bits(gbc, 8); //skip compression
- if (get_bits1(gbc))
- skip_bits(gbc, 8); //skip language code
- if (get_bits1(gbc))
- skip_bits(gbc, 7); //skip audio production information
- } while (i--);
-
- skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
-
- /* skip the timecodes (or extra bitstream information for Alternate Syntax)
- TODO: read & use the xbsi1 downmix levels */
- if (get_bits1(gbc))
- skip_bits(gbc, 14); //skip timecode1 / xbsi1
- if (get_bits1(gbc))
- skip_bits(gbc, 14); //skip timecode2 / xbsi2
-
- /* skip additional bitstream info */
- if (get_bits1(gbc)) {
- i = get_bits(gbc, 6);
- do {
- skip_bits(gbc, 8);
- } while(i--);
- }
-
- return 0;
-}
-
-/**
- * Set stereo downmixing coefficients based on frame header info.
- * reference: Section 7.8.2 Downmixing Into Two Channels
- */
-static void set_downmix_coeffs(AC3DecodeContext *s)
-{
- int i;
- float cmix = gain_levels[s->center_mix_level];
- float smix = gain_levels[s->surround_mix_level];
-
- for(i=0; i<s->fbw_channels; i++) {
- s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
- s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
- }
- if(s->channel_mode > 1 && s->channel_mode & 1) {
- s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
- }
- if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
- int nf = s->channel_mode - 2;
- s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
- }
- if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
- int nf = s->channel_mode - 4;
- s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
- }
-}
-
-/**
- * Decode the grouped exponents according to exponent strategy.
- * reference: Section 7.1.3 Exponent Decoding
- */
-static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
- uint8_t absexp, int8_t *dexps)
-{
- int i, j, grp, group_size;
- int dexp[256];
- int expacc, prevexp;
-
- /* unpack groups */
- group_size = exp_strategy + (exp_strategy == EXP_D45);
- for(grp=0,i=0; grp<ngrps; grp++) {
- expacc = get_bits(gbc, 7);
- dexp[i++] = exp_ungroup_tab[expacc][0];
- dexp[i++] = exp_ungroup_tab[expacc][1];
- dexp[i++] = exp_ungroup_tab[expacc][2];
- }
-
- /* convert to absolute exps and expand groups */
- prevexp = absexp;
- for(i=0; i<ngrps*3; i++) {
- prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
- for(j=0; j<group_size; j++) {
- dexps[(i*group_size)+j] = prevexp;
- }
- }
-}
-
-/**
- * Generate transform coefficients for each coupled channel in the coupling
- * range using the coupling coefficients and coupling coordinates.
- * reference: Section 7.4.3 Coupling Coordinate Format
- */
-static void uncouple_channels(AC3DecodeContext *s)
-{
- int i, j, ch, bnd, subbnd;
-
- subbnd = -1;
- i = s->start_freq[CPL_CH];
- for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
- do {
- subbnd++;
- for(j=0; j<12; j++) {
- for(ch=1; ch<=s->fbw_channels; ch++) {
- if(s->channel_in_cpl[ch]) {
- s->transform_coeffs[ch][i] = s->transform_coeffs[CPL_CH][i] * s->cpl_coords[ch][bnd] * 8.0f;
- if (ch == 2 && s->phase_flags[bnd])
- s->transform_coeffs[ch][i] = -s->transform_coeffs[ch][i];
- }
- }
- i++;
- }
- } while(s->cpl_band_struct[subbnd]);
- }
-}
-
-/**
- * Grouped mantissas for 3-level 5-level and 11-level quantization
- */
-typedef struct {
- float b1_mant[3];
- float b2_mant[3];
- float b4_mant[2];
- int b1ptr;
- int b2ptr;
- int b4ptr;
-} mant_groups;
-
-/**
- * Get the transform coefficients for a particular channel
- * reference: Section 7.3 Quantization and Decoding of Mantissas
- */
-static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
-{
- GetBitContext *gbc = &s->gbc;
- int i, gcode, tbap, start, end;
- uint8_t *exps;
- uint8_t *bap;
- float *coeffs;
-
- exps = s->dexps[ch_index];
- bap = s->bap[ch_index];
- coeffs = s->transform_coeffs[ch_index];
- start = s->start_freq[ch_index];
- end = s->end_freq[ch_index];
-
- for (i = start; i < end; i++) {
- tbap = bap[i];
- switch (tbap) {
- case 0:
- coeffs[i] = ((av_random(&s->dith_state) & 0xFFFF) / 65535.0f) - 0.5f;
- break;
-
- case 1:
- if(m->b1ptr > 2) {
- gcode = get_bits(gbc, 5);
- m->b1_mant[0] = b1_mantissas[gcode][0];
- m->b1_mant[1] = b1_mantissas[gcode][1];
- m->b1_mant[2] = b1_mantissas[gcode][2];
- m->b1ptr = 0;
- }
- coeffs[i] = m->b1_mant[m->b1ptr++];
- break;
-
- case 2:
- if(m->b2ptr > 2) {
- gcode = get_bits(gbc, 7);
- m->b2_mant[0] = b2_mantissas[gcode][0];
- m->b2_mant[1] = b2_mantissas[gcode][1];
- m->b2_mant[2] = b2_mantissas[gcode][2];
- m->b2ptr = 0;
- }
- coeffs[i] = m->b2_mant[m->b2ptr++];
- break;
-
- case 3:
- coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
- break;
-
- case 4:
- if(m->b4ptr > 1) {
- gcode = get_bits(gbc, 7);
- m->b4_mant[0] = b4_mantissas[gcode][0];
- m->b4_mant[1] = b4_mantissas[gcode][1];
- m->b4ptr = 0;
- }
- coeffs[i] = m->b4_mant[m->b4ptr++];
- break;
-
- case 5:
- coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
- break;
-
- default:
- /* asymmetric dequantization */
- coeffs[i] = get_sbits(gbc, quantization_tab[tbap]) * scale_factors[quantization_tab[tbap]-1];
- break;
- }
- coeffs[i] *= scale_factors[exps[i]];
- }
-
- return 0;
-}
-
-/**
- * Remove random dithering from coefficients with zero-bit mantissas
- * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
- */
-static void remove_dithering(AC3DecodeContext *s) {
- int ch, i;
- int end=0;
- float *coeffs;
- uint8_t *bap;
-
- for(ch=1; ch<=s->fbw_channels; ch++) {
- if(!s->dither_flag[ch]) {
- coeffs = s->transform_coeffs[ch];
- bap = s->bap[ch];
- if(s->channel_in_cpl[ch])
- end = s->start_freq[CPL_CH];
- else
- end = s->end_freq[ch];
- for(i=0; i<end; i++) {
- if(!bap[i])
- coeffs[i] = 0.0f;
- }
- if(s->channel_in_cpl[ch]) {
- bap = s->bap[CPL_CH];
- for(; i<s->end_freq[CPL_CH]; i++) {
- if(!bap[i])
- coeffs[i] = 0.0f;
- }
- }
- }
- }
-}
-
-/**
- * Get the transform coefficients.
- */
-static int get_transform_coeffs(AC3DecodeContext *s)
-{
- int ch, end;
- int got_cplchan = 0;
- mant_groups m;
-
- m.b1ptr = m.b2ptr = m.b4ptr = 3;
-
- for (ch = 1; ch <= s->channels; ch++) {
- /* transform coefficients for full-bandwidth channel */
- if (get_transform_coeffs_ch(s, ch, &m))
- return -1;
- /* tranform coefficients for coupling channel come right after the
- coefficients for the first coupled channel*/
- if (s->channel_in_cpl[ch]) {
- if (!got_cplchan) {
- if (get_transform_coeffs_ch(s, CPL_CH, &m)) {
- av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
- return -1;
- }
- uncouple_channels(s);
- got_cplchan = 1;
- }
- end = s->end_freq[CPL_CH];
- } else {
- end = s->end_freq[ch];
- }
- do
- s->transform_coeffs[ch][end] = 0;
- while(++end < 256);
- }
-
- /* if any channel doesn't use dithering, zero appropriate coefficients */
- if(!s->dither_all)
- remove_dithering(s);
-
- return 0;
-}
-
-/**
- * Stereo rematrixing.
- * reference: Section 7.5.4 Rematrixing : Decoding Technique
- */
-static void do_rematrixing(AC3DecodeContext *s)
-{
- int bnd, i;
- int end, bndend;
- float tmp0, tmp1;
-
- end = FFMIN(s->end_freq[1], s->end_freq[2]);
-
- for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
- if(s->rematrixing_flags[bnd]) {
- bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
- for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
- tmp0 = s->transform_coeffs[1][i];
- tmp1 = s->transform_coeffs[2][i];
- s->transform_coeffs[1][i] = tmp0 + tmp1;
- s->transform_coeffs[2][i] = tmp0 - tmp1;
- }
- }
- }
-}
-
-/**
- * Perform the 256-point IMDCT
- */
-static void do_imdct_256(AC3DecodeContext *s, int chindex)
-{
- int i, k;
- DECLARE_ALIGNED_16(float, x[128]);
- FFTComplex z[2][64];
- float *o_ptr = s->tmp_output;
-
- for(i=0; i<2; i++) {
- /* de-interleave coefficients */
- for(k=0; k<128; k++) {
- x[k] = s->transform_coeffs[chindex][2*k+i];
- }
-
- /* run standard IMDCT */
- s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct);
-
- /* reverse the post-rotation & reordering from standard IMDCT */
- for(k=0; k<32; k++) {
- z[i][32+k].re = -o_ptr[128+2*k];
- z[i][32+k].im = -o_ptr[2*k];
- z[i][31-k].re = o_ptr[2*k+1];
- z[i][31-k].im = o_ptr[128+2*k+1];
- }
- }
-
- /* apply AC-3 post-rotation & reordering */
- for(k=0; k<64; k++) {
- o_ptr[ 2*k ] = -z[0][ k].im;
- o_ptr[ 2*k+1] = z[0][63-k].re;
- o_ptr[128+2*k ] = -z[0][ k].re;
- o_ptr[128+2*k+1] = z[0][63-k].im;
- o_ptr[256+2*k ] = -z[1][ k].re;
- o_ptr[256+2*k+1] = z[1][63-k].im;
- o_ptr[384+2*k ] = z[1][ k].im;
- o_ptr[384+2*k+1] = -z[1][63-k].re;
- }
-}
-
-/**
- * Inverse MDCT Transform.
- * Convert frequency domain coefficients to time-domain audio samples.
- * reference: Section 7.9.4 Transformation Equations
- */
-static inline void do_imdct(AC3DecodeContext *s)
-{
- int ch;
- int channels;
-
- /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
- channels = s->fbw_channels;
- if(s->output_mode & AC3_OUTPUT_LFEON)
- channels++;
-
- for (ch=1; ch<=channels; ch++) {
- if (s->block_switch[ch]) {
- do_imdct_256(s, ch);
- } else {
- s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output,
- s->transform_coeffs[ch], s->tmp_imdct);
- }
- /* For the first half of the block, apply the window, add the delay
- from the previous block, and send to output */
- s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output,
- s->window, s->delay[ch-1], 0, 256, 1);
- /* For the second half of the block, apply the window and store the
- samples to delay, to be combined with the next block */
- s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256,
- s->window, 256);
- }
-}
-
-/**
- * Downmix the output to mono or stereo.
- */
-static void ac3_downmix(AC3DecodeContext *s)
-{
- int i, j;
- float v0, v1, s0, s1;
-
- for(i=0; i<256; i++) {
- v0 = v1 = s0 = s1 = 0.0f;
- for(j=0; j<s->fbw_channels; j++) {
- v0 += s->output[j][i] * s->downmix_coeffs[j][0];
- v1 += s->output[j][i] * s->downmix_coeffs[j][1];
- s0 += s->downmix_coeffs[j][0];
- s1 += s->downmix_coeffs[j][1];
- }
- v0 /= s0;
- v1 /= s1;
- if(s->output_mode == AC3_CHMODE_MONO) {
- s->output[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
- } else if(s->output_mode == AC3_CHMODE_STEREO) {
- s->output[0][i] = v0;
- s->output[1][i] = v1;
- }
- }
-}
-
-/**
- * Parse an audio block from AC-3 bitstream.
- */
-static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
-{
- int fbw_channels = s->fbw_channels;
- int channel_mode = s->channel_mode;
- int i, bnd, seg, ch;
- GetBitContext *gbc = &s->gbc;
- uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
-
- memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
-
- /* block switch flags */
- for (ch = 1; ch <= fbw_channels; ch++)
- s->block_switch[ch] = get_bits1(gbc);
-
- /* dithering flags */
- s->dither_all = 1;
- for (ch = 1; ch <= fbw_channels; ch++) {
- s->dither_flag[ch] = get_bits1(gbc);
- if(!s->dither_flag[ch])
- s->dither_all = 0;
- }
-
- /* dynamic range */
- i = !(s->channel_mode);
- do {
- if(get_bits1(gbc)) {
- s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
- s->avctx->drc_scale)+1.0;
- } else if(blk == 0) {
- s->dynamic_range[i] = 1.0f;
- }
- } while(i--);
-
- /* coupling strategy */
- if (get_bits1(gbc)) {
- memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
- s->cpl_in_use = get_bits1(gbc);
- if (s->cpl_in_use) {
- /* coupling in use */
- int cpl_begin_freq, cpl_end_freq;
-
- /* determine which channels are coupled */
- for (ch = 1; ch <= fbw_channels; ch++)
- s->channel_in_cpl[ch] = get_bits1(gbc);
-
- /* phase flags in use */
- if (channel_mode == AC3_CHMODE_STEREO)
- s->phase_flags_in_use = get_bits1(gbc);
-
- /* coupling frequency range and band structure */
- cpl_begin_freq = get_bits(gbc, 4);
- cpl_end_freq = get_bits(gbc, 4);
- if (3 + cpl_end_freq - cpl_begin_freq < 0) {
- av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
- return -1;
- }
- s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
- s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
- s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
- for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
- if (get_bits1(gbc)) {
- s->cpl_band_struct[bnd] = 1;
- s->num_cpl_bands--;
- }
- }
- s->cpl_band_struct[s->num_cpl_subbands-1] = 0;
- } else {
- /* coupling not in use */
- for (ch = 1; ch <= fbw_channels; ch++)
- s->channel_in_cpl[ch] = 0;
- }
- }
-
- /* coupling coordinates */
- if (s->cpl_in_use) {
- int cpl_coords_exist = 0;
-
- for (ch = 1; ch <= fbw_channels; ch++) {
- if (s->channel_in_cpl[ch]) {
- if (get_bits1(gbc)) {
- int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
- cpl_coords_exist = 1;
- master_cpl_coord = 3 * get_bits(gbc, 2);
- for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
- cpl_coord_exp = get_bits(gbc, 4);
- cpl_coord_mant = get_bits(gbc, 4);
- if (cpl_coord_exp == 15)
- s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f;
- else
- s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f;
- s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord];
- }
- }
- }
- }
- /* phase flags */
- if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
- for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
- s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
- }
- }
- }
-
- /* stereo rematrixing strategy and band structure */
- if (channel_mode == AC3_CHMODE_STEREO) {
- if (get_bits1(gbc)) {
- s->num_rematrixing_bands = 4;
- if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61)
- s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
- for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
- s->rematrixing_flags[bnd] = get_bits1(gbc);
- }
- }
-
- /* exponent strategies for each channel */
- s->exp_strategy[CPL_CH] = EXP_REUSE;
- s->exp_strategy[s->lfe_ch] = EXP_REUSE;
- for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
- if(ch == s->lfe_ch)
- s->exp_strategy[ch] = get_bits(gbc, 1);
- else
- s->exp_strategy[ch] = get_bits(gbc, 2);
- if(s->exp_strategy[ch] != EXP_REUSE)
- bit_alloc_stages[ch] = 3;
- }
-
- /* channel bandwidth */
- for (ch = 1; ch <= fbw_channels; ch++) {
- s->start_freq[ch] = 0;
- if (s->exp_strategy[ch] != EXP_REUSE) {
- int prev = s->end_freq[ch];
- if (s->channel_in_cpl[ch])
- s->end_freq[ch] = s->start_freq[CPL_CH];
- else {
- int bandwidth_code = get_bits(gbc, 6);
- if (bandwidth_code > 60) {
- av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
- return -1;
- }
- s->end_freq[ch] = bandwidth_code * 3 + 73;
- }
- if(blk > 0 && s->end_freq[ch] != prev)
- memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
- }
- }
- s->start_freq[s->lfe_ch] = 0;
- s->end_freq[s->lfe_ch] = 7;
-
- /* decode exponents for each channel */
- for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
- if (s->exp_strategy[ch] != EXP_REUSE) {
- int group_size, num_groups;
- group_size = 3 << (s->exp_strategy[ch] - 1);
- if(ch == CPL_CH)
- num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size;
- else if(ch == s->lfe_ch)
- num_groups = 2;
- else
- num_groups = (s->end_freq[ch] + group_size - 4) / group_size;
- s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
- decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0],
- &s->dexps[ch][s->start_freq[ch]+!!ch]);
- if(ch != CPL_CH && ch != s->lfe_ch)
- skip_bits(gbc, 2); /* skip gainrng */
- }
- }
-
- /* bit allocation information */
- if (get_bits1(gbc)) {
- s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
- s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
- s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
- s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
- s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
- for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
- }
- }
-
- /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
- if (get_bits1(gbc)) {
- int csnr;
- csnr = (get_bits(gbc, 6) - 15) << 4;
- for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
- s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
- s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
- }
- memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
- }
-
- /* coupling leak information */
- if (s->cpl_in_use && get_bits1(gbc)) {
- s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
- s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
- bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
- }
-
- /* delta bit allocation information */
- if (get_bits1(gbc)) {
- /* delta bit allocation exists (strategy) */
- for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
- s->dba_mode[ch] = get_bits(gbc, 2);
- if (s->dba_mode[ch] == DBA_RESERVED) {
- av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
- return -1;
- }
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
- }
- /* channel delta offset, len and bit allocation */
- for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
- if (s->dba_mode[ch] == DBA_NEW) {
- s->dba_nsegs[ch] = get_bits(gbc, 3);
- for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
- s->dba_offsets[ch][seg] = get_bits(gbc, 5);
- s->dba_lengths[ch][seg] = get_bits(gbc, 4);
- s->dba_values[ch][seg] = get_bits(gbc, 3);
- }
- }
- }
- } else if(blk == 0) {
- for(ch=0; ch<=s->channels; ch++) {
- s->dba_mode[ch] = DBA_NONE;
- }
- }
-
- /* Bit allocation */
- for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
- if(bit_alloc_stages[ch] > 2) {
- /* Exponent mapping into PSD and PSD integration */
- ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
- s->start_freq[ch], s->end_freq[ch],
- s->psd[ch], s->band_psd[ch]);
- }
- if(bit_alloc_stages[ch] > 1) {
- /* Compute excitation function, Compute masking curve, and
- Apply delta bit allocation */
- ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
- s->start_freq[ch], s->end_freq[ch],
- s->fast_gain[ch], (ch == s->lfe_ch),
- s->dba_mode[ch], s->dba_nsegs[ch],
- s->dba_offsets[ch], s->dba_lengths[ch],
- s->dba_values[ch], s->mask[ch]);
- }
- if(bit_alloc_stages[ch] > 0) {
- /* Compute bit allocation */
- ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
- s->start_freq[ch], s->end_freq[ch],
- s->snr_offset[ch],
- s->bit_alloc_params.floor,
- s->bap[ch]);
- }
- }
-
- /* unused dummy data */
- if (get_bits1(gbc)) {
- int skipl = get_bits(gbc, 9);
- while(skipl--)
- skip_bits(gbc, 8);
- }
-
- /* unpack the transform coefficients
- this also uncouples channels if coupling is in use. */
- if (get_transform_coeffs(s)) {
- av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
- return -1;
- }
-
- /* recover coefficients if rematrixing is in use */
- if(s->channel_mode == AC3_CHMODE_STEREO)
- do_rematrixing(s);
-
- /* apply scaling to coefficients (headroom, dynrng) */
- for(ch=1; ch<=s->channels; ch++) {
- float gain = 2.0f * s->mul_bias;
- if(s->channel_mode == AC3_CHMODE_DUALMONO) {
- gain *= s->dynamic_range[ch-1];
- } else {
- gain *= s->dynamic_range[0];
- }
- for(i=0; i<s->end_freq[ch]; i++) {
- s->transform_coeffs[ch][i] *= gain;
- }
- }
-
- do_imdct(s);
-
- /* downmix output if needed */
- if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
- s->fbw_channels == s->out_channels)) {
- ac3_downmix(s);
- }
-
- /* convert float to 16-bit integer */
- for(ch=0; ch<s->out_channels; ch++) {
- for(i=0; i<256; i++) {
- s->output[ch][i] += s->add_bias;
- }
- s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256);
- }
-
- return 0;
-}
-
-/**
- * Decode a single AC-3 frame.
- */
-static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
-{
- AC3DecodeContext *s = avctx->priv_data;
- int16_t *out_samples = (int16_t *)data;
- int i, blk, ch, err;
-
- /* initialize the GetBitContext with the start of valid AC-3 Frame */
- init_get_bits(&s->gbc, buf, buf_size * 8);
-
- /* parse the syncinfo */
- err = ac3_parse_header(s);
- if(err) {
- switch(err) {
- case AC3_PARSE_ERROR_SYNC:
- av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
- break;
- case AC3_PARSE_ERROR_BSID:
- av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
- break;
- case AC3_PARSE_ERROR_SAMPLE_RATE:
- av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
- break;
- case AC3_PARSE_ERROR_FRAME_SIZE:
- av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
- break;
- default:
- av_log(avctx, AV_LOG_ERROR, "invalid header\n");
- break;
- }
- return -1;
- }
-
- /* check that reported frame size fits in input buffer */
- if(s->frame_size > buf_size) {
- av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
- return -1;
- }
-
- /* check for crc mismatch */
- if(avctx->error_resilience >= FF_ER_CAREFUL) {
- if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
- av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
- return -1;
- }
- /* TODO: error concealment */
- }
-
- avctx->sample_rate = s->sample_rate;
- avctx->bit_rate = s->bit_rate;
-
- /* channel config */
- s->out_channels = s->channels;
- if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
- avctx->request_channels < s->channels) {
- s->out_channels = avctx->request_channels;
- s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
- }
- avctx->channels = s->out_channels;
-
- /* set downmixing coefficients if needed */
- if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
- s->fbw_channels == s->out_channels)) {
- set_downmix_coeffs(s);
- }
-
- /* parse the audio blocks */
- for (blk = 0; blk < NB_BLOCKS; blk++) {
- if (ac3_parse_audio_block(s, blk)) {
- av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
- *data_size = 0;
- return s->frame_size;
- }
- for (i = 0; i < 256; i++)
- for (ch = 0; ch < s->out_channels; ch++)
- *(out_samples++) = s->int_output[ch][i];
- }
- *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
- return s->frame_size;
-}
-
-/**
- * Uninitialize the AC-3 decoder.
- */
-static int ac3_decode_end(AVCodecContext *avctx)
-{
- AC3DecodeContext *s = avctx->priv_data;
- ff_mdct_end(&s->imdct_512);
- ff_mdct_end(&s->imdct_256);
-
- return 0;
-}
-
-AVCodec ac3_decoder = {
- .name = "ac3",
- .type = CODEC_TYPE_AUDIO,
- .id = CODEC_ID_AC3,
- .priv_data_size = sizeof (AC3DecodeContext),
- .init = ac3_decode_init,
- .close = ac3_decode_end,
- .decode = ac3_decode_frame,
-};