diff options
Diffstat (limited to 'contrib/ffmpeg/libavcodec/ac3enc.c')
-rw-r--r-- | contrib/ffmpeg/libavcodec/ac3enc.c | 1371 |
1 files changed, 0 insertions, 1371 deletions
diff --git a/contrib/ffmpeg/libavcodec/ac3enc.c b/contrib/ffmpeg/libavcodec/ac3enc.c deleted file mode 100644 index 5161b61e4..000000000 --- a/contrib/ffmpeg/libavcodec/ac3enc.c +++ /dev/null @@ -1,1371 +0,0 @@ -/* - * The simplest AC3 encoder - * Copyright (c) 2000 Fabrice Bellard. - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file ac3enc.c - * The simplest AC3 encoder. - */ -//#define DEBUG -//#define DEBUG_BITALLOC -#include "avcodec.h" -#include "bitstream.h" -#include "crc.h" -#include "ac3.h" - -typedef struct AC3EncodeContext { - PutBitContext pb; - int nb_channels; - int nb_all_channels; - int lfe_channel; - int bit_rate; - unsigned int sample_rate; - unsigned int bsid; - unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */ - unsigned int frame_size; /* current frame size in words */ - unsigned int bits_written; - unsigned int samples_written; - int halfratecod; - unsigned int frmsizecod; - unsigned int fscod; /* frequency */ - unsigned int acmod; - int lfe; - unsigned int bsmod; - short last_samples[AC3_MAX_CHANNELS][256]; - unsigned int chbwcod[AC3_MAX_CHANNELS]; - int nb_coefs[AC3_MAX_CHANNELS]; - - /* bitrate allocation control */ - int sgaincod, sdecaycod, fdecaycod, dbkneecod, floorcod; - AC3BitAllocParameters bit_alloc; - int csnroffst; - int fgaincod[AC3_MAX_CHANNELS]; - int fsnroffst[AC3_MAX_CHANNELS]; - /* mantissa encoding */ - int mant1_cnt, mant2_cnt, mant4_cnt; -} AC3EncodeContext; - -static int16_t costab[64]; -static int16_t sintab[64]; -static int16_t fft_rev[512]; -static int16_t xcos1[128]; -static int16_t xsin1[128]; - -#define MDCT_NBITS 9 -#define N (1 << MDCT_NBITS) - -/* new exponents are sent if their Norm 1 exceed this number */ -#define EXP_DIFF_THRESHOLD 1000 - -static void fft_init(int ln); - -static inline int16_t fix15(float a) -{ - int v; - v = (int)(a * (float)(1 << 15)); - if (v < -32767) - v = -32767; - else if (v > 32767) - v = 32767; - return v; -} - -typedef struct IComplex { - short re,im; -} IComplex; - -static void fft_init(int ln) -{ - int i, j, m, n; - float alpha; - - n = 1 << ln; - - for(i=0;i<(n/2);i++) { - alpha = 2 * M_PI * (float)i / (float)n; - costab[i] = fix15(cos(alpha)); - sintab[i] = fix15(sin(alpha)); - } - - for(i=0;i<n;i++) { - m=0; - for(j=0;j<ln;j++) { - m |= ((i >> j) & 1) << (ln-j-1); - } - fft_rev[i]=m; - } -} - -/* butter fly op */ -#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ -{\ - int ax, ay, bx, by;\ - bx=pre1;\ - by=pim1;\ - ax=qre1;\ - ay=qim1;\ - pre = (bx + ax) >> 1;\ - pim = (by + ay) >> 1;\ - qre = (bx - ax) >> 1;\ - qim = (by - ay) >> 1;\ -} - -#define MUL16(a,b) ((a) * (b)) - -#define CMUL(pre, pim, are, aim, bre, bim) \ -{\ - pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\ - pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\ -} - - -/* do a 2^n point complex fft on 2^ln points. */ -static void fft(IComplex *z, int ln) -{ - int j, l, np, np2; - int nblocks, nloops; - register IComplex *p,*q; - int tmp_re, tmp_im; - - np = 1 << ln; - - /* reverse */ - for(j=0;j<np;j++) { - int k; - IComplex tmp; - k = fft_rev[j]; - if (k < j) { - tmp = z[k]; - z[k] = z[j]; - z[j] = tmp; - } - } - - /* pass 0 */ - - p=&z[0]; - j=(np >> 1); - do { - BF(p[0].re, p[0].im, p[1].re, p[1].im, - p[0].re, p[0].im, p[1].re, p[1].im); - p+=2; - } while (--j != 0); - - /* pass 1 */ - - p=&z[0]; - j=np >> 2; - do { - BF(p[0].re, p[0].im, p[2].re, p[2].im, - p[0].re, p[0].im, p[2].re, p[2].im); - BF(p[1].re, p[1].im, p[3].re, p[3].im, - p[1].re, p[1].im, p[3].im, -p[3].re); - p+=4; - } while (--j != 0); - - /* pass 2 .. ln-1 */ - - nblocks = np >> 3; - nloops = 1 << 2; - np2 = np >> 1; - do { - p = z; - q = z + nloops; - for (j = 0; j < nblocks; ++j) { - - BF(p->re, p->im, q->re, q->im, - p->re, p->im, q->re, q->im); - - p++; - q++; - for(l = nblocks; l < np2; l += nblocks) { - CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im); - BF(p->re, p->im, q->re, q->im, - p->re, p->im, tmp_re, tmp_im); - p++; - q++; - } - p += nloops; - q += nloops; - } - nblocks = nblocks >> 1; - nloops = nloops << 1; - } while (nblocks != 0); -} - -/* do a 512 point mdct */ -static void mdct512(int32_t *out, int16_t *in) -{ - int i, re, im, re1, im1; - int16_t rot[N]; - IComplex x[N/4]; - - /* shift to simplify computations */ - for(i=0;i<N/4;i++) - rot[i] = -in[i + 3*N/4]; - for(i=N/4;i<N;i++) - rot[i] = in[i - N/4]; - - /* pre rotation */ - for(i=0;i<N/4;i++) { - re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1; - im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1; - CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]); - } - - fft(x, MDCT_NBITS - 2); - - /* post rotation */ - for(i=0;i<N/4;i++) { - re = x[i].re; - im = x[i].im; - CMUL(re1, im1, re, im, xsin1[i], xcos1[i]); - out[2*i] = im1; - out[N/2-1-2*i] = re1; - } -} - -/* XXX: use another norm ? */ -static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n) -{ - int sum, i; - sum = 0; - for(i=0;i<n;i++) { - sum += abs(exp1[i] - exp2[i]); - } - return sum; -} - -static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], - uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], - int ch, int is_lfe) -{ - int i, j; - int exp_diff; - - /* estimate if the exponent variation & decide if they should be - reused in the next frame */ - exp_strategy[0][ch] = EXP_NEW; - for(i=1;i<NB_BLOCKS;i++) { - exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2); -#ifdef DEBUG - av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff); -#endif - if (exp_diff > EXP_DIFF_THRESHOLD) - exp_strategy[i][ch] = EXP_NEW; - else - exp_strategy[i][ch] = EXP_REUSE; - } - if (is_lfe) - return; - - /* now select the encoding strategy type : if exponents are often - recoded, we use a coarse encoding */ - i = 0; - while (i < NB_BLOCKS) { - j = i + 1; - while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) - j++; - switch(j - i) { - case 1: - exp_strategy[i][ch] = EXP_D45; - break; - case 2: - case 3: - exp_strategy[i][ch] = EXP_D25; - break; - default: - exp_strategy[i][ch] = EXP_D15; - break; - } - i = j; - } -} - -/* set exp[i] to min(exp[i], exp1[i]) */ -static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n) -{ - int i; - - for(i=0;i<n;i++) { - if (exp1[i] < exp[i]) - exp[i] = exp1[i]; - } -} - -/* update the exponents so that they are the ones the decoder will - decode. Return the number of bits used to code the exponents */ -static int encode_exp(uint8_t encoded_exp[N/2], - uint8_t exp[N/2], - int nb_exps, - int exp_strategy) -{ - int group_size, nb_groups, i, j, k, exp_min; - uint8_t exp1[N/2]; - - switch(exp_strategy) { - case EXP_D15: - group_size = 1; - break; - case EXP_D25: - group_size = 2; - break; - default: - case EXP_D45: - group_size = 4; - break; - } - nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3; - - /* for each group, compute the minimum exponent */ - exp1[0] = exp[0]; /* DC exponent is handled separately */ - k = 1; - for(i=1;i<=nb_groups;i++) { - exp_min = exp[k]; - assert(exp_min >= 0 && exp_min <= 24); - for(j=1;j<group_size;j++) { - if (exp[k+j] < exp_min) - exp_min = exp[k+j]; - } - exp1[i] = exp_min; - k += group_size; - } - - /* constraint for DC exponent */ - if (exp1[0] > 15) - exp1[0] = 15; - - /* Decrease the delta between each groups to within 2 - * so that they can be differentially encoded */ - for (i=1;i<=nb_groups;i++) - exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2); - for (i=nb_groups-1;i>=0;i--) - exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2); - - /* now we have the exponent values the decoder will see */ - encoded_exp[0] = exp1[0]; - k = 1; - for(i=1;i<=nb_groups;i++) { - for(j=0;j<group_size;j++) { - encoded_exp[k+j] = exp1[i]; - } - k += group_size; - } - -#if defined(DEBUG) - av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy); - for(i=0;i<=nb_groups * group_size;i++) { - av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]); - } - av_log(NULL, AV_LOG_DEBUG, "\n"); -#endif - - return 4 + (nb_groups / 3) * 7; -} - -/* return the size in bits taken by the mantissa */ -static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs) -{ - int bits, mant, i; - - bits = 0; - for(i=0;i<nb_coefs;i++) { - mant = m[i]; - switch(mant) { - case 0: - /* nothing */ - break; - case 1: - /* 3 mantissa in 5 bits */ - if (s->mant1_cnt == 0) - bits += 5; - if (++s->mant1_cnt == 3) - s->mant1_cnt = 0; - break; - case 2: - /* 3 mantissa in 7 bits */ - if (s->mant2_cnt == 0) - bits += 7; - if (++s->mant2_cnt == 3) - s->mant2_cnt = 0; - break; - case 3: - bits += 3; - break; - case 4: - /* 2 mantissa in 7 bits */ - if (s->mant4_cnt == 0) - bits += 7; - if (++s->mant4_cnt == 2) - s->mant4_cnt = 0; - break; - case 14: - bits += 14; - break; - case 15: - bits += 16; - break; - default: - bits += mant - 1; - break; - } - } - return bits; -} - - -static void bit_alloc_masking(AC3EncodeContext *s, - uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], - uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], - int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], - int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50]) -{ - int blk, ch; - int16_t bndpsd[NB_BLOCKS][AC3_MAX_CHANNELS][50]; - - for(blk=0; blk<NB_BLOCKS; blk++) { - for(ch=0;ch<s->nb_all_channels;ch++) { - if(exp_strategy[blk][ch] == EXP_REUSE) { - memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t)); - memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t)); - } else { - ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0, - s->nb_coefs[ch], - psd[blk][ch], bndpsd[blk][ch]); - ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, bndpsd[blk][ch], - 0, s->nb_coefs[ch], - ff_fgaintab[s->fgaincod[ch]], - ch == s->lfe_channel, - 2, 0, NULL, NULL, NULL, - mask[blk][ch]); - } - } - } -} - -static int bit_alloc(AC3EncodeContext *s, - int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50], - int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], - uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], - int frame_bits, int csnroffst, int fsnroffst) -{ - int i, ch; - int snroffset; - - snroffset = (((csnroffst - 15) << 4) + fsnroffst) << 2; - - /* compute size */ - for(i=0;i<NB_BLOCKS;i++) { - s->mant1_cnt = 0; - s->mant2_cnt = 0; - s->mant4_cnt = 0; - for(ch=0;ch<s->nb_all_channels;ch++) { - ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0, - s->nb_coefs[ch], snroffset, - s->bit_alloc.floor, bap[i][ch]); - frame_bits += compute_mantissa_size(s, bap[i][ch], - s->nb_coefs[ch]); - } - } -#if 0 - printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n", - csnroffst, fsnroffst, frame_bits, - 16 * s->frame_size - ((frame_bits + 7) & ~7)); -#endif - return 16 * s->frame_size - frame_bits; -} - -#define SNR_INC1 4 - -static int compute_bit_allocation(AC3EncodeContext *s, - uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], - uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], - uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], - int frame_bits) -{ - int i, ch; - int csnroffst, fsnroffst; - uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; - int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; - int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50]; - static int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 }; - - /* init default parameters */ - s->sdecaycod = 2; - s->fdecaycod = 1; - s->sgaincod = 1; - s->dbkneecod = 2; - s->floorcod = 4; - for(ch=0;ch<s->nb_all_channels;ch++) - s->fgaincod[ch] = 4; - - /* compute real values */ - s->bit_alloc.fscod = s->fscod; - s->bit_alloc.halfratecod = s->halfratecod; - s->bit_alloc.sdecay = ff_sdecaytab[s->sdecaycod] >> s->halfratecod; - s->bit_alloc.fdecay = ff_fdecaytab[s->fdecaycod] >> s->halfratecod; - s->bit_alloc.sgain = ff_sgaintab[s->sgaincod]; - s->bit_alloc.dbknee = ff_dbkneetab[s->dbkneecod]; - s->bit_alloc.floor = ff_floortab[s->floorcod]; - - /* header size */ - frame_bits += 65; - // if (s->acmod == 2) - // frame_bits += 2; - frame_bits += frame_bits_inc[s->acmod]; - - /* audio blocks */ - for(i=0;i<NB_BLOCKS;i++) { - frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */ - if (s->acmod == 2) { - frame_bits++; /* rematstr */ - if(i==0) frame_bits += 4; - } - frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */ - if (s->lfe) - frame_bits++; /* lfeexpstr */ - for(ch=0;ch<s->nb_channels;ch++) { - if (exp_strategy[i][ch] != EXP_REUSE) - frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */ - } - frame_bits++; /* baie */ - frame_bits++; /* snr */ - frame_bits += 2; /* delta / skip */ - } - frame_bits++; /* cplinu for block 0 */ - /* bit alloc info */ - /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */ - /* csnroffset[6] */ - /* (fsnoffset[4] + fgaincod[4]) * c */ - frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3); - - /* auxdatae, crcrsv */ - frame_bits += 2; - - /* CRC */ - frame_bits += 16; - - /* calculate psd and masking curve before doing bit allocation */ - bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask); - - /* now the big work begins : do the bit allocation. Modify the snr - offset until we can pack everything in the requested frame size */ - - csnroffst = s->csnroffst; - while (csnroffst >= 0 && - bit_alloc(s, mask, psd, bap, frame_bits, csnroffst, 0) < 0) - csnroffst -= SNR_INC1; - if (csnroffst < 0) { - av_log(NULL, AV_LOG_ERROR, "Bit allocation failed, try increasing the bitrate, -ab 384 for example!\n"); - return -1; - } - while ((csnroffst + SNR_INC1) <= 63 && - bit_alloc(s, mask, psd, bap1, frame_bits, - csnroffst + SNR_INC1, 0) >= 0) { - csnroffst += SNR_INC1; - memcpy(bap, bap1, sizeof(bap1)); - } - while ((csnroffst + 1) <= 63 && - bit_alloc(s, mask, psd, bap1, frame_bits, csnroffst + 1, 0) >= 0) { - csnroffst++; - memcpy(bap, bap1, sizeof(bap1)); - } - - fsnroffst = 0; - while ((fsnroffst + SNR_INC1) <= 15 && - bit_alloc(s, mask, psd, bap1, frame_bits, - csnroffst, fsnroffst + SNR_INC1) >= 0) { - fsnroffst += SNR_INC1; - memcpy(bap, bap1, sizeof(bap1)); - } - while ((fsnroffst + 1) <= 15 && - bit_alloc(s, mask, psd, bap1, frame_bits, - csnroffst, fsnroffst + 1) >= 0) { - fsnroffst++; - memcpy(bap, bap1, sizeof(bap1)); - } - - s->csnroffst = csnroffst; - for(ch=0;ch<s->nb_all_channels;ch++) - s->fsnroffst[ch] = fsnroffst; -#if defined(DEBUG_BITALLOC) - { - int j; - - for(i=0;i<6;i++) { - for(ch=0;ch<s->nb_all_channels;ch++) { - printf("Block #%d Ch%d:\n", i, ch); - printf("bap="); - for(j=0;j<s->nb_coefs[ch];j++) { - printf("%d ",bap[i][ch][j]); - } - printf("\n"); - } - } - } -#endif - return 0; -} - -static int AC3_encode_init(AVCodecContext *avctx) -{ - int freq = avctx->sample_rate; - int bitrate = avctx->bit_rate; - int channels = avctx->channels; - AC3EncodeContext *s = avctx->priv_data; - int i, j, ch; - float alpha; - static const uint8_t acmod_defs[6] = { - 0x01, /* C */ - 0x02, /* L R */ - 0x03, /* L C R */ - 0x06, /* L R SL SR */ - 0x07, /* L C R SL SR */ - 0x07, /* L C R SL SR (+LFE) */ - }; - - avctx->frame_size = AC3_FRAME_SIZE; - - ac3_common_init(); - - /* number of channels */ - if (channels < 1 || channels > 6) - return -1; - s->acmod = acmod_defs[channels - 1]; - s->lfe = (channels == 6) ? 1 : 0; - s->nb_all_channels = channels; - s->nb_channels = channels > 5 ? 5 : channels; - s->lfe_channel = s->lfe ? 5 : -1; - - /* frequency */ - for(i=0;i<3;i++) { - for(j=0;j<3;j++) - if ((ff_ac3_freqs[j] >> i) == freq) - goto found; - } - return -1; - found: - s->sample_rate = freq; - s->halfratecod = i; - s->fscod = j; - s->bsid = 8 + s->halfratecod; - s->bsmod = 0; /* complete main audio service */ - - /* bitrate & frame size */ - bitrate /= 1000; - for(i=0;i<19;i++) { - if ((ff_ac3_bitratetab[i] >> s->halfratecod) == bitrate) - break; - } - if (i == 19) - return -1; - s->bit_rate = bitrate; - s->frmsizecod = i << 1; - s->frame_size_min = ff_ac3_frame_sizes[s->frmsizecod][s->fscod]; - s->bits_written = 0; - s->samples_written = 0; - s->frame_size = s->frame_size_min; - - /* bit allocation init */ - for(ch=0;ch<s->nb_channels;ch++) { - /* bandwidth for each channel */ - /* XXX: should compute the bandwidth according to the frame - size, so that we avoid anoying high freq artefacts */ - s->chbwcod[ch] = 50; /* sample bandwidth as mpeg audio layer 2 table 0 */ - s->nb_coefs[ch] = ((s->chbwcod[ch] + 12) * 3) + 37; - } - if (s->lfe) { - s->nb_coefs[s->lfe_channel] = 7; /* fixed */ - } - /* initial snr offset */ - s->csnroffst = 40; - - /* mdct init */ - fft_init(MDCT_NBITS - 2); - for(i=0;i<N/4;i++) { - alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N; - xcos1[i] = fix15(-cos(alpha)); - xsin1[i] = fix15(-sin(alpha)); - } - - avctx->coded_frame= avcodec_alloc_frame(); - avctx->coded_frame->key_frame= 1; - - return 0; -} - -/* output the AC3 frame header */ -static void output_frame_header(AC3EncodeContext *s, unsigned char *frame) -{ - init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); - - put_bits(&s->pb, 16, 0x0b77); /* frame header */ - put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ - put_bits(&s->pb, 2, s->fscod); - put_bits(&s->pb, 6, s->frmsizecod + (s->frame_size - s->frame_size_min)); - put_bits(&s->pb, 5, s->bsid); - put_bits(&s->pb, 3, s->bsmod); - put_bits(&s->pb, 3, s->acmod); - if ((s->acmod & 0x01) && s->acmod != 0x01) - put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */ - if (s->acmod & 0x04) - put_bits(&s->pb, 2, 1); /* XXX -6 dB */ - if (s->acmod == 0x02) - put_bits(&s->pb, 2, 0); /* surround not indicated */ - put_bits(&s->pb, 1, s->lfe); /* LFE */ - put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */ - put_bits(&s->pb, 1, 0); /* no compression control word */ - put_bits(&s->pb, 1, 0); /* no lang code */ - put_bits(&s->pb, 1, 0); /* no audio production info */ - put_bits(&s->pb, 1, 0); /* no copyright */ - put_bits(&s->pb, 1, 1); /* original bitstream */ - put_bits(&s->pb, 1, 0); /* no time code 1 */ - put_bits(&s->pb, 1, 0); /* no time code 2 */ - put_bits(&s->pb, 1, 0); /* no addtional bit stream info */ -} - -/* symetric quantization on 'levels' levels */ -static inline int sym_quant(int c, int e, int levels) -{ - int v; - - if (c >= 0) { - v = (levels * (c << e)) >> 24; - v = (v + 1) >> 1; - v = (levels >> 1) + v; - } else { - v = (levels * ((-c) << e)) >> 24; - v = (v + 1) >> 1; - v = (levels >> 1) - v; - } - assert (v >= 0 && v < levels); - return v; -} - -/* asymetric quantization on 2^qbits levels */ -static inline int asym_quant(int c, int e, int qbits) -{ - int lshift, m, v; - - lshift = e + qbits - 24; - if (lshift >= 0) - v = c << lshift; - else - v = c >> (-lshift); - /* rounding */ - v = (v + 1) >> 1; - m = (1 << (qbits-1)); - if (v >= m) - v = m - 1; - assert(v >= -m); - return v & ((1 << qbits)-1); -} - -/* Output one audio block. There are NB_BLOCKS audio blocks in one AC3 - frame */ -static void output_audio_block(AC3EncodeContext *s, - uint8_t exp_strategy[AC3_MAX_CHANNELS], - uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2], - uint8_t bap[AC3_MAX_CHANNELS][N/2], - int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2], - int8_t global_exp[AC3_MAX_CHANNELS], - int block_num) -{ - int ch, nb_groups, group_size, i, baie, rbnd; - uint8_t *p; - uint16_t qmant[AC3_MAX_CHANNELS][N/2]; - int exp0, exp1; - int mant1_cnt, mant2_cnt, mant4_cnt; - uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; - int delta0, delta1, delta2; - - for(ch=0;ch<s->nb_channels;ch++) - put_bits(&s->pb, 1, 0); /* 512 point MDCT */ - for(ch=0;ch<s->nb_channels;ch++) - put_bits(&s->pb, 1, 1); /* no dither */ - put_bits(&s->pb, 1, 0); /* no dynamic range */ - if (block_num == 0) { - /* for block 0, even if no coupling, we must say it. This is a - waste of bit :-) */ - put_bits(&s->pb, 1, 1); /* coupling strategy present */ - put_bits(&s->pb, 1, 0); /* no coupling strategy */ - } else { - put_bits(&s->pb, 1, 0); /* no new coupling strategy */ - } - - if (s->acmod == 2) - { - if(block_num==0) - { - /* first block must define rematrixing (rematstr) */ - put_bits(&s->pb, 1, 1); - - /* dummy rematrixing rematflg(1:4)=0 */ - for (rbnd=0;rbnd<4;rbnd++) - put_bits(&s->pb, 1, 0); - } - else - { - /* no matrixing (but should be used in the future) */ - put_bits(&s->pb, 1, 0); - } - } - -#if defined(DEBUG) - { - static int count = 0; - av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++); - } -#endif - /* exponent strategy */ - for(ch=0;ch<s->nb_channels;ch++) { - put_bits(&s->pb, 2, exp_strategy[ch]); - } - - if (s->lfe) { - put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]); - } - - for(ch=0;ch<s->nb_channels;ch++) { - if (exp_strategy[ch] != EXP_REUSE) - put_bits(&s->pb, 6, s->chbwcod[ch]); - } - - /* exponents */ - for (ch = 0; ch < s->nb_all_channels; ch++) { - switch(exp_strategy[ch]) { - case EXP_REUSE: - continue; - case EXP_D15: - group_size = 1; - break; - case EXP_D25: - group_size = 2; - break; - default: - case EXP_D45: - group_size = 4; - break; - } - nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size); - p = encoded_exp[ch]; - - /* first exponent */ - exp1 = *p++; - put_bits(&s->pb, 4, exp1); - - /* next ones are delta encoded */ - for(i=0;i<nb_groups;i++) { - /* merge three delta in one code */ - exp0 = exp1; - exp1 = p[0]; - p += group_size; - delta0 = exp1 - exp0 + 2; - - exp0 = exp1; - exp1 = p[0]; - p += group_size; - delta1 = exp1 - exp0 + 2; - - exp0 = exp1; - exp1 = p[0]; - p += group_size; - delta2 = exp1 - exp0 + 2; - - put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2); - } - - if (ch != s->lfe_channel) - put_bits(&s->pb, 2, 0); /* no gain range info */ - } - - /* bit allocation info */ - baie = (block_num == 0); - put_bits(&s->pb, 1, baie); - if (baie) { - put_bits(&s->pb, 2, s->sdecaycod); - put_bits(&s->pb, 2, s->fdecaycod); - put_bits(&s->pb, 2, s->sgaincod); - put_bits(&s->pb, 2, s->dbkneecod); - put_bits(&s->pb, 3, s->floorcod); - } - - /* snr offset */ - put_bits(&s->pb, 1, baie); /* always present with bai */ - if (baie) { - put_bits(&s->pb, 6, s->csnroffst); - for(ch=0;ch<s->nb_all_channels;ch++) { - put_bits(&s->pb, 4, s->fsnroffst[ch]); - put_bits(&s->pb, 3, s->fgaincod[ch]); - } - } - - put_bits(&s->pb, 1, 0); /* no delta bit allocation */ - put_bits(&s->pb, 1, 0); /* no data to skip */ - - /* mantissa encoding : we use two passes to handle the grouping. A - one pass method may be faster, but it would necessitate to - modify the output stream. */ - - /* first pass: quantize */ - mant1_cnt = mant2_cnt = mant4_cnt = 0; - qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL; - - for (ch = 0; ch < s->nb_all_channels; ch++) { - int b, c, e, v; - - for(i=0;i<s->nb_coefs[ch];i++) { - c = mdct_coefs[ch][i]; - e = encoded_exp[ch][i] - global_exp[ch]; - b = bap[ch][i]; - switch(b) { - case 0: - v = 0; - break; - case 1: - v = sym_quant(c, e, 3); - switch(mant1_cnt) { - case 0: - qmant1_ptr = &qmant[ch][i]; - v = 9 * v; - mant1_cnt = 1; - break; - case 1: - *qmant1_ptr += 3 * v; - mant1_cnt = 2; - v = 128; - break; - default: - *qmant1_ptr += v; - mant1_cnt = 0; - v = 128; - break; - } - break; - case 2: - v = sym_quant(c, e, 5); - switch(mant2_cnt) { - case 0: - qmant2_ptr = &qmant[ch][i]; - v = 25 * v; - mant2_cnt = 1; - break; - case 1: - *qmant2_ptr += 5 * v; - mant2_cnt = 2; - v = 128; - break; - default: - *qmant2_ptr += v; - mant2_cnt = 0; - v = 128; - break; - } - break; - case 3: - v = sym_quant(c, e, 7); - break; - case 4: - v = sym_quant(c, e, 11); - switch(mant4_cnt) { - case 0: - qmant4_ptr = &qmant[ch][i]; - v = 11 * v; - mant4_cnt = 1; - break; - default: - *qmant4_ptr += v; - mant4_cnt = 0; - v = 128; - break; - } - break; - case 5: - v = sym_quant(c, e, 15); - break; - case 14: - v = asym_quant(c, e, 14); - break; - case 15: - v = asym_quant(c, e, 16); - break; - default: - v = asym_quant(c, e, b - 1); - break; - } - qmant[ch][i] = v; - } - } - - /* second pass : output the values */ - for (ch = 0; ch < s->nb_all_channels; ch++) { - int b, q; - - for(i=0;i<s->nb_coefs[ch];i++) { - q = qmant[ch][i]; - b = bap[ch][i]; - switch(b) { - case 0: - break; - case 1: - if (q != 128) - put_bits(&s->pb, 5, q); - break; - case 2: - if (q != 128) - put_bits(&s->pb, 7, q); - break; - case 3: - put_bits(&s->pb, 3, q); - break; - case 4: - if (q != 128) - put_bits(&s->pb, 7, q); - break; - case 14: - put_bits(&s->pb, 14, q); - break; - case 15: - put_bits(&s->pb, 16, q); - break; - default: - put_bits(&s->pb, b - 1, q); - break; - } - } - } -} - -#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) - -static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) -{ - unsigned int c; - - c = 0; - while (a) { - if (a & 1) - c ^= b; - a = a >> 1; - b = b << 1; - if (b & (1 << 16)) - b ^= poly; - } - return c; -} - -static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) -{ - unsigned int r; - r = 1; - while (n) { - if (n & 1) - r = mul_poly(r, a, poly); - a = mul_poly(a, a, poly); - n >>= 1; - } - return r; -} - - -/* compute log2(max(abs(tab[]))) */ -static int log2_tab(int16_t *tab, int n) -{ - int i, v; - - v = 0; - for(i=0;i<n;i++) { - v |= abs(tab[i]); - } - return av_log2(v); -} - -static void lshift_tab(int16_t *tab, int n, int lshift) -{ - int i; - - if (lshift > 0) { - for(i=0;i<n;i++) { - tab[i] <<= lshift; - } - } else if (lshift < 0) { - lshift = -lshift; - for(i=0;i<n;i++) { - tab[i] >>= lshift; - } - } -} - -/* fill the end of the frame and compute the two crcs */ -static int output_frame_end(AC3EncodeContext *s) -{ - int frame_size, frame_size_58, n, crc1, crc2, crc_inv; - uint8_t *frame; - - frame_size = s->frame_size; /* frame size in words */ - /* align to 8 bits */ - flush_put_bits(&s->pb); - /* add zero bytes to reach the frame size */ - frame = s->pb.buf; - n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2; - assert(n >= 0); - if(n>0) - memset(pbBufPtr(&s->pb), 0, n); - - /* Now we must compute both crcs : this is not so easy for crc1 - because it is at the beginning of the data... */ - frame_size_58 = (frame_size >> 1) + (frame_size >> 3); - crc1 = bswap_16(av_crc(av_crc8005, 0, frame + 4, 2 * frame_size_58 - 4)); - /* XXX: could precompute crc_inv */ - crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY); - crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); - frame[2] = crc1 >> 8; - frame[3] = crc1; - - crc2 = bswap_16(av_crc(av_crc8005, 0, frame + 2 * frame_size_58, (frame_size - frame_size_58) * 2 - 2)); - frame[2*frame_size - 2] = crc2 >> 8; - frame[2*frame_size - 1] = crc2; - - // printf("n=%d frame_size=%d\n", n, frame_size); - return frame_size * 2; -} - -static int AC3_encode_frame(AVCodecContext *avctx, - unsigned char *frame, int buf_size, void *data) -{ - AC3EncodeContext *s = avctx->priv_data; - int16_t *samples = data; - int i, j, k, v, ch; - int16_t input_samples[N]; - int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; - uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; - uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS]; - uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; - uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; - int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS]; - int frame_bits; - - frame_bits = 0; - for(ch=0;ch<s->nb_all_channels;ch++) { - /* fixed mdct to the six sub blocks & exponent computation */ - for(i=0;i<NB_BLOCKS;i++) { - int16_t *sptr; - int sinc; - - /* compute input samples */ - memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t)); - sinc = s->nb_all_channels; - sptr = samples + (sinc * (N/2) * i) + ch; - for(j=0;j<N/2;j++) { - v = *sptr; - input_samples[j + N/2] = v; - s->last_samples[ch][j] = v; - sptr += sinc; - } - - /* apply the MDCT window */ - for(j=0;j<N/2;j++) { - input_samples[j] = MUL16(input_samples[j], - ff_ac3_window[j]) >> 15; - input_samples[N-j-1] = MUL16(input_samples[N-j-1], - ff_ac3_window[j]) >> 15; - } - - /* Normalize the samples to use the maximum available - precision */ - v = 14 - log2_tab(input_samples, N); - if (v < 0) - v = 0; - exp_samples[i][ch] = v - 9; - lshift_tab(input_samples, N, v); - - /* do the MDCT */ - mdct512(mdct_coef[i][ch], input_samples); - - /* compute "exponents". We take into account the - normalization there */ - for(j=0;j<N/2;j++) { - int e; - v = abs(mdct_coef[i][ch][j]); - if (v == 0) - e = 24; - else { - e = 23 - av_log2(v) + exp_samples[i][ch]; - if (e >= 24) { - e = 24; - mdct_coef[i][ch][j] = 0; - } - } - exp[i][ch][j] = e; - } - } - - compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel); - - /* compute the exponents as the decoder will see them. The - EXP_REUSE case must be handled carefully : we select the - min of the exponents */ - i = 0; - while (i < NB_BLOCKS) { - j = i + 1; - while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) { - exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]); - j++; - } - frame_bits += encode_exp(encoded_exp[i][ch], - exp[i][ch], s->nb_coefs[ch], - exp_strategy[i][ch]); - /* copy encoded exponents for reuse case */ - for(k=i+1;k<j;k++) { - memcpy(encoded_exp[k][ch], encoded_exp[i][ch], - s->nb_coefs[ch] * sizeof(uint8_t)); - } - i = j; - } - } - - /* adjust for fractional frame sizes */ - while(s->bits_written >= s->bit_rate*1000 && s->samples_written >= s->sample_rate) { - s->bits_written -= s->bit_rate*1000; - s->samples_written -= s->sample_rate; - } - s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate*1000); - s->bits_written += s->frame_size * 16; - s->samples_written += AC3_FRAME_SIZE; - - compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits); - /* everything is known... let's output the frame */ - output_frame_header(s, frame); - - for(i=0;i<NB_BLOCKS;i++) { - output_audio_block(s, exp_strategy[i], encoded_exp[i], - bap[i], mdct_coef[i], exp_samples[i], i); - } - return output_frame_end(s); -} - -static int AC3_encode_close(AVCodecContext *avctx) -{ - av_freep(&avctx->coded_frame); - return 0; -} - -#if 0 -/*************************************************************************/ -/* TEST */ - -#define FN (N/4) - -void fft_test(void) -{ - IComplex in[FN], in1[FN]; - int k, n, i; - float sum_re, sum_im, a; - - /* FFT test */ - - for(i=0;i<FN;i++) { - in[i].re = random() % 65535 - 32767; - in[i].im = random() % 65535 - 32767; - in1[i] = in[i]; - } - fft(in, 7); - - /* do it by hand */ - for(k=0;k<FN;k++) { - sum_re = 0; - sum_im = 0; - for(n=0;n<FN;n++) { - a = -2 * M_PI * (n * k) / FN; - sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); - sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); - } - printf("%3d: %6d,%6d %6.0f,%6.0f\n", - k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); - } -} - -void mdct_test(void) -{ - int16_t input[N]; - int32_t output[N/2]; - float input1[N]; - float output1[N/2]; - float s, a, err, e, emax; - int i, k, n; - - for(i=0;i<N;i++) { - input[i] = (random() % 65535 - 32767) * 9 / 10; - input1[i] = input[i]; - } - - mdct512(output, input); - - /* do it by hand */ - for(k=0;k<N/2;k++) { - s = 0; - for(n=0;n<N;n++) { - a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N)); - s += input1[n] * cos(a); - } - output1[k] = -2 * s / N; - } - - err = 0; - emax = 0; - for(i=0;i<N/2;i++) { - printf("%3d: %7d %7.0f\n", i, output[i], output1[i]); - e = output[i] - output1[i]; - if (e > emax) - emax = e; - err += e * e; - } - printf("err2=%f emax=%f\n", err / (N/2), emax); -} - -void test_ac3(void) -{ - AC3EncodeContext ctx; - unsigned char frame[AC3_MAX_CODED_FRAME_SIZE]; - short samples[AC3_FRAME_SIZE]; - int ret, i; - - AC3_encode_init(&ctx, 44100, 64000, 1); - - fft_test(); - mdct_test(); - - for(i=0;i<AC3_FRAME_SIZE;i++) - samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000); - ret = AC3_encode_frame(&ctx, frame, samples); - printf("ret=%d\n", ret); -} -#endif - -AVCodec ac3_encoder = { - "ac3", - CODEC_TYPE_AUDIO, - CODEC_ID_AC3, - sizeof(AC3EncodeContext), - AC3_encode_init, - AC3_encode_frame, - AC3_encode_close, - NULL, -}; |