summaryrefslogtreecommitdiff
path: root/contrib/ffmpeg/libavcodec/adpcm.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ffmpeg/libavcodec/adpcm.c')
-rw-r--r--contrib/ffmpeg/libavcodec/adpcm.c1370
1 files changed, 1370 insertions, 0 deletions
diff --git a/contrib/ffmpeg/libavcodec/adpcm.c b/contrib/ffmpeg/libavcodec/adpcm.c
new file mode 100644
index 000000000..ec3fe6f6e
--- /dev/null
+++ b/contrib/ffmpeg/libavcodec/adpcm.c
@@ -0,0 +1,1370 @@
+/*
+ * ADPCM codecs
+ * Copyright (c) 2001-2003 The ffmpeg Project
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+#include "avcodec.h"
+#include "bitstream.h"
+
+/**
+ * @file adpcm.c
+ * ADPCM codecs.
+ * First version by Francois Revol (revol@free.fr)
+ * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
+ * by Mike Melanson (melanson@pcisys.net)
+ * CD-ROM XA ADPCM codec by BERO
+ * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
+ *
+ * Features and limitations:
+ *
+ * Reference documents:
+ * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
+ * http://www.geocities.com/SiliconValley/8682/aud3.txt
+ * http://openquicktime.sourceforge.net/plugins.htm
+ * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
+ * http://www.cs.ucla.edu/~leec/mediabench/applications.html
+ * SoX source code http://home.sprynet.com/~cbagwell/sox.html
+ *
+ * CD-ROM XA:
+ * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
+ * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
+ * readstr http://www.geocities.co.jp/Playtown/2004/
+ */
+
+#define BLKSIZE 1024
+
+#define CLAMP_TO_SHORT(value) \
+if (value > 32767) \
+ value = 32767; \
+else if (value < -32768) \
+ value = -32768; \
+
+/* step_table[] and index_table[] are from the ADPCM reference source */
+/* This is the index table: */
+static const int index_table[16] = {
+ -1, -1, -1, -1, 2, 4, 6, 8,
+ -1, -1, -1, -1, 2, 4, 6, 8,
+};
+
+/**
+ * This is the step table. Note that many programs use slight deviations from
+ * this table, but such deviations are negligible:
+ */
+static const int step_table[89] = {
+ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
+ 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
+ 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
+ 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
+ 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
+ 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
+ 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
+ 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
+ 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
+};
+
+/* These are for MS-ADPCM */
+/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
+static const int AdaptationTable[] = {
+ 230, 230, 230, 230, 307, 409, 512, 614,
+ 768, 614, 512, 409, 307, 230, 230, 230
+};
+
+static const int AdaptCoeff1[] = {
+ 256, 512, 0, 192, 240, 460, 392
+};
+
+static const int AdaptCoeff2[] = {
+ 0, -256, 0, 64, 0, -208, -232
+};
+
+/* These are for CD-ROM XA ADPCM */
+static const int xa_adpcm_table[5][2] = {
+ { 0, 0 },
+ { 60, 0 },
+ { 115, -52 },
+ { 98, -55 },
+ { 122, -60 }
+};
+
+static const int ea_adpcm_table[] = {
+ 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
+ 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
+};
+
+static const int ct_adpcm_table[8] = {
+ 0x00E6, 0x00E6, 0x00E6, 0x00E6,
+ 0x0133, 0x0199, 0x0200, 0x0266
+};
+
+// padded to zero where table size is less then 16
+static const int swf_index_tables[4][16] = {
+ /*2*/ { -1, 2 },
+ /*3*/ { -1, -1, 2, 4 },
+ /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
+ /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
+};
+
+static const int yamaha_indexscale[] = {
+ 230, 230, 230, 230, 307, 409, 512, 614,
+ 230, 230, 230, 230, 307, 409, 512, 614
+};
+
+static const int yamaha_difflookup[] = {
+ 1, 3, 5, 7, 9, 11, 13, 15,
+ -1, -3, -5, -7, -9, -11, -13, -15
+};
+
+/* end of tables */
+
+typedef struct ADPCMChannelStatus {
+ int predictor;
+ short int step_index;
+ int step;
+ /* for encoding */
+ int prev_sample;
+
+ /* MS version */
+ short sample1;
+ short sample2;
+ int coeff1;
+ int coeff2;
+ int idelta;
+} ADPCMChannelStatus;
+
+typedef struct ADPCMContext {
+ int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
+ ADPCMChannelStatus status[2];
+ short sample_buffer[32]; /* hold left samples while waiting for right samples */
+
+ /* SWF only */
+ int nb_bits;
+ int nb_samples;
+} ADPCMContext;
+
+/* XXX: implement encoding */
+
+#ifdef CONFIG_ENCODERS
+static int adpcm_encode_init(AVCodecContext *avctx)
+{
+ if (avctx->channels > 2)
+ return -1; /* only stereo or mono =) */
+ switch(avctx->codec->id) {
+ case CODEC_ID_ADPCM_IMA_QT:
+ av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
+ avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
+ return -1;
+ break;
+ case CODEC_ID_ADPCM_IMA_WAV:
+ avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
+ /* and we have 4 bytes per channel overhead */
+ avctx->block_align = BLKSIZE;
+ /* seems frame_size isn't taken into account... have to buffer the samples :-( */
+ break;
+ case CODEC_ID_ADPCM_MS:
+ avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
+ /* and we have 7 bytes per channel overhead */
+ avctx->block_align = BLKSIZE;
+ break;
+ case CODEC_ID_ADPCM_YAMAHA:
+ avctx->frame_size = BLKSIZE * avctx->channels;
+ avctx->block_align = BLKSIZE;
+ break;
+ default:
+ return -1;
+ break;
+ }
+
+ avctx->coded_frame= avcodec_alloc_frame();
+ avctx->coded_frame->key_frame= 1;
+
+ return 0;
+}
+
+static int adpcm_encode_close(AVCodecContext *avctx)
+{
+ av_freep(&avctx->coded_frame);
+
+ return 0;
+}
+
+
+static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
+{
+ int delta = sample - c->prev_sample;
+ int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
+ c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
+ CLAMP_TO_SHORT(c->prev_sample);
+ c->step_index = clip(c->step_index + index_table[nibble], 0, 88);
+ return nibble;
+}
+
+static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
+{
+ int predictor, nibble, bias;
+
+ predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
+
+ nibble= sample - predictor;
+ if(nibble>=0) bias= c->idelta/2;
+ else bias=-c->idelta/2;
+
+ nibble= (nibble + bias) / c->idelta;
+ nibble= clip(nibble, -8, 7)&0x0F;
+
+ predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
+ CLAMP_TO_SHORT(predictor);
+
+ c->sample2 = c->sample1;
+ c->sample1 = predictor;
+
+ c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
+ if (c->idelta < 16) c->idelta = 16;
+
+ return nibble;
+}
+
+static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
+{
+ int nibble, delta;
+
+ if(!c->step) {
+ c->predictor = 0;
+ c->step = 127;
+ }
+
+ delta = sample - c->predictor;
+
+ nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
+
+ c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8);
+ CLAMP_TO_SHORT(c->predictor);
+ c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
+ c->step = clip(c->step, 127, 24567);
+
+ return nibble;
+}
+
+typedef struct TrellisPath {
+ int nibble;
+ int prev;
+} TrellisPath;
+
+typedef struct TrellisNode {
+ uint32_t ssd;
+ int path;
+ int sample1;
+ int sample2;
+ int step;
+} TrellisNode;
+
+static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
+ uint8_t *dst, ADPCMChannelStatus *c, int n)
+{
+#define FREEZE_INTERVAL 128
+ //FIXME 6% faster if frontier is a compile-time constant
+ const int frontier = 1 << avctx->trellis;
+ const int stride = avctx->channels;
+ const int version = avctx->codec->id;
+ const int max_paths = frontier*FREEZE_INTERVAL;
+ TrellisPath paths[max_paths], *p;
+ TrellisNode node_buf[2][frontier];
+ TrellisNode *nodep_buf[2][frontier];
+ TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
+ TrellisNode **nodes_next = nodep_buf[1];
+ int pathn = 0, froze = -1, i, j, k;
+
+ assert(!(max_paths&(max_paths-1)));
+
+ memset(nodep_buf, 0, sizeof(nodep_buf));
+ nodes[0] = &node_buf[1][0];
+ nodes[0]->ssd = 0;
+ nodes[0]->path = 0;
+ nodes[0]->step = c->step_index;
+ nodes[0]->sample1 = c->sample1;
+ nodes[0]->sample2 = c->sample2;
+ if(version == CODEC_ID_ADPCM_IMA_WAV)
+ nodes[0]->sample1 = c->prev_sample;
+ if(version == CODEC_ID_ADPCM_MS)
+ nodes[0]->step = c->idelta;
+ if(version == CODEC_ID_ADPCM_YAMAHA) {
+ if(c->step == 0) {
+ nodes[0]->step = 127;
+ nodes[0]->sample1 = 0;
+ } else {
+ nodes[0]->step = c->step;
+ nodes[0]->sample1 = c->predictor;
+ }
+ }
+
+ for(i=0; i<n; i++) {
+ TrellisNode *t = node_buf[i&1];
+ TrellisNode **u;
+ int sample = samples[i*stride];
+ memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
+ for(j=0; j<frontier && nodes[j]; j++) {
+ // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
+ const int range = (j < frontier/2) ? 1 : 0;
+ const int step = nodes[j]->step;
+ int nidx;
+ if(version == CODEC_ID_ADPCM_MS) {
+ const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
+ const int div = (sample - predictor) / step;
+ const int nmin = clip(div-range, -8, 6);
+ const int nmax = clip(div+range, -7, 7);
+ for(nidx=nmin; nidx<=nmax; nidx++) {
+ const int nibble = nidx & 0xf;
+ int dec_sample = predictor + nidx * step;
+#define STORE_NODE(NAME, STEP_INDEX)\
+ int d;\
+ uint32_t ssd;\
+ CLAMP_TO_SHORT(dec_sample);\
+ d = sample - dec_sample;\
+ ssd = nodes[j]->ssd + d*d;\
+ if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
+ continue;\
+ /* Collapse any two states with the same previous sample value. \
+ * One could also distinguish states by step and by 2nd to last
+ * sample, but the effects of that are negligible. */\
+ for(k=0; k<frontier && nodes_next[k]; k++) {\
+ if(dec_sample == nodes_next[k]->sample1) {\
+ assert(ssd >= nodes_next[k]->ssd);\
+ goto next_##NAME;\
+ }\
+ }\
+ for(k=0; k<frontier; k++) {\
+ if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
+ TrellisNode *u = nodes_next[frontier-1];\
+ if(!u) {\
+ assert(pathn < max_paths);\
+ u = t++;\
+ u->path = pathn++;\
+ }\
+ u->ssd = ssd;\
+ u->step = STEP_INDEX;\
+ u->sample2 = nodes[j]->sample1;\
+ u->sample1 = dec_sample;\
+ paths[u->path].nibble = nibble;\
+ paths[u->path].prev = nodes[j]->path;\
+ memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
+ nodes_next[k] = u;\
+ break;\
+ }\
+ }\
+ next_##NAME:;
+ STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
+ }
+ } else if(version == CODEC_ID_ADPCM_IMA_WAV) {
+#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
+ const int predictor = nodes[j]->sample1;\
+ const int div = (sample - predictor) * 4 / STEP_TABLE;\
+ int nmin = clip(div-range, -7, 6);\
+ int nmax = clip(div+range, -6, 7);\
+ if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
+ if(nmax<0) nmax--;\
+ for(nidx=nmin; nidx<=nmax; nidx++) {\
+ const int nibble = nidx<0 ? 7-nidx : nidx;\
+ int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
+ STORE_NODE(NAME, STEP_INDEX);\
+ }
+ LOOP_NODES(ima, step_table[step], clip(step + index_table[nibble], 0, 88));
+ } else { //CODEC_ID_ADPCM_YAMAHA
+ LOOP_NODES(yamaha, step, clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
+#undef LOOP_NODES
+#undef STORE_NODE
+ }
+ }
+
+ u = nodes;
+ nodes = nodes_next;
+ nodes_next = u;
+
+ // prevent overflow
+ if(nodes[0]->ssd > (1<<28)) {
+ for(j=1; j<frontier && nodes[j]; j++)
+ nodes[j]->ssd -= nodes[0]->ssd;
+ nodes[0]->ssd = 0;
+ }
+
+ // merge old paths to save memory
+ if(i == froze + FREEZE_INTERVAL) {
+ p = &paths[nodes[0]->path];
+ for(k=i; k>froze; k--) {
+ dst[k] = p->nibble;
+ p = &paths[p->prev];
+ }
+ froze = i;
+ pathn = 0;
+ // other nodes might use paths that don't coincide with the frozen one.
+ // checking which nodes do so is too slow, so just kill them all.
+ // this also slightly improves quality, but I don't know why.
+ memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
+ }
+ }
+
+ p = &paths[nodes[0]->path];
+ for(i=n-1; i>froze; i--) {
+ dst[i] = p->nibble;
+ p = &paths[p->prev];
+ }
+
+ c->predictor = nodes[0]->sample1;
+ c->sample1 = nodes[0]->sample1;
+ c->sample2 = nodes[0]->sample2;
+ c->step_index = nodes[0]->step;
+ c->step = nodes[0]->step;
+ c->idelta = nodes[0]->step;
+}
+
+static int adpcm_encode_frame(AVCodecContext *avctx,
+ unsigned char *frame, int buf_size, void *data)
+{
+ int n, i, st;
+ short *samples;
+ unsigned char *dst;
+ ADPCMContext *c = avctx->priv_data;
+
+ dst = frame;
+ samples = (short *)data;
+ st= avctx->channels == 2;
+/* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
+
+ switch(avctx->codec->id) {
+ case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
+ break;
+ case CODEC_ID_ADPCM_IMA_WAV:
+ n = avctx->frame_size / 8;
+ c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
+/* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
+ *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
+ *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
+ *dst++ = (unsigned char)c->status[0].step_index;
+ *dst++ = 0; /* unknown */
+ samples++;
+ if (avctx->channels == 2) {
+ c->status[1].prev_sample = (signed short)samples[1];
+/* c->status[1].step_index = 0; */
+ *dst++ = (c->status[1].prev_sample) & 0xFF;
+ *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
+ *dst++ = (unsigned char)c->status[1].step_index;
+ *dst++ = 0;
+ samples++;
+ }
+
+ /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
+ if(avctx->trellis > 0) {
+ uint8_t buf[2][n*8];
+ adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
+ if(avctx->channels == 2)
+ adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
+ for(i=0; i<n; i++) {
+ *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
+ *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
+ *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
+ *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
+ if (avctx->channels == 2) {
+ *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
+ *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
+ *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
+ *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
+ }
+ }
+ } else
+ for (; n>0; n--) {
+ *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
+ *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
+ dst++;
+ *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
+ *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
+ dst++;
+ *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
+ *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
+ dst++;
+ *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
+ *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
+ dst++;
+ /* right channel */
+ if (avctx->channels == 2) {
+ *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
+ *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
+ dst++;
+ *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
+ *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
+ dst++;
+ *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
+ *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
+ dst++;
+ *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
+ *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
+ dst++;
+ }
+ samples += 8 * avctx->channels;
+ }
+ break;
+ case CODEC_ID_ADPCM_MS:
+ for(i=0; i<avctx->channels; i++){
+ int predictor=0;
+
+ *dst++ = predictor;
+ c->status[i].coeff1 = AdaptCoeff1[predictor];
+ c->status[i].coeff2 = AdaptCoeff2[predictor];
+ }
+ for(i=0; i<avctx->channels; i++){
+ if (c->status[i].idelta < 16)
+ c->status[i].idelta = 16;
+
+ *dst++ = c->status[i].idelta & 0xFF;
+ *dst++ = c->status[i].idelta >> 8;
+ }
+ for(i=0; i<avctx->channels; i++){
+ c->status[i].sample1= *samples++;
+
+ *dst++ = c->status[i].sample1 & 0xFF;
+ *dst++ = c->status[i].sample1 >> 8;
+ }
+ for(i=0; i<avctx->channels; i++){
+ c->status[i].sample2= *samples++;
+
+ *dst++ = c->status[i].sample2 & 0xFF;
+ *dst++ = c->status[i].sample2 >> 8;
+ }
+
+ if(avctx->trellis > 0) {
+ int n = avctx->block_align - 7*avctx->channels;
+ uint8_t buf[2][n];
+ if(avctx->channels == 1) {
+ n *= 2;
+ adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
+ for(i=0; i<n; i+=2)
+ *dst++ = (buf[0][i] << 4) | buf[0][i+1];
+ } else {
+ adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
+ adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
+ for(i=0; i<n; i++)
+ *dst++ = (buf[0][i] << 4) | buf[1][i];
+ }
+ } else
+ for(i=7*avctx->channels; i<avctx->block_align; i++) {
+ int nibble;
+ nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
+ nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
+ *dst++ = nibble;
+ }
+ break;
+ case CODEC_ID_ADPCM_YAMAHA:
+ n = avctx->frame_size / 2;
+ if(avctx->trellis > 0) {
+ uint8_t buf[2][n*2];
+ n *= 2;
+ if(avctx->channels == 1) {
+ adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
+ for(i=0; i<n; i+=2)
+ *dst++ = buf[0][i] | (buf[0][i+1] << 4);
+ } else {
+ adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
+ adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
+ for(i=0; i<n; i++)
+ *dst++ = buf[0][i] | (buf[1][i] << 4);
+ }
+ } else
+ for (; n>0; n--) {
+ for(i = 0; i < avctx->channels; i++) {
+ int nibble;
+ nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
+ nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
+ *dst++ = nibble;
+ }
+ samples += 2 * avctx->channels;
+ }
+ break;
+ default:
+ return -1;
+ }
+ return dst - frame;
+}
+#endif //CONFIG_ENCODERS
+
+static int adpcm_decode_init(AVCodecContext * avctx)
+{
+ ADPCMContext *c = avctx->priv_data;
+
+ c->channel = 0;
+ c->status[0].predictor = c->status[1].predictor = 0;
+ c->status[0].step_index = c->status[1].step_index = 0;
+ c->status[0].step = c->status[1].step = 0;
+
+ switch(avctx->codec->id) {
+ case CODEC_ID_ADPCM_CT:
+ c->status[0].step = c->status[1].step = 511;
+ break;
+ default:
+ break;
+ }
+ return 0;
+}
+
+static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
+{
+ int step_index;
+ int predictor;
+ int sign, delta, diff, step;
+
+ step = step_table[c->step_index];
+ step_index = c->step_index + index_table[(unsigned)nibble];
+ if (step_index < 0) step_index = 0;
+ else if (step_index > 88) step_index = 88;
+
+ sign = nibble & 8;
+ delta = nibble & 7;
+ /* perform direct multiplication instead of series of jumps proposed by
+ * the reference ADPCM implementation since modern CPUs can do the mults
+ * quickly enough */
+ diff = ((2 * delta + 1) * step) >> shift;
+ predictor = c->predictor;
+ if (sign) predictor -= diff;
+ else predictor += diff;
+
+ CLAMP_TO_SHORT(predictor);
+ c->predictor = predictor;
+ c->step_index = step_index;
+
+ return (short)predictor;
+}
+
+static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
+{
+ int predictor;
+
+ predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
+ predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
+ CLAMP_TO_SHORT(predictor);
+
+ c->sample2 = c->sample1;
+ c->sample1 = predictor;
+ c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
+ if (c->idelta < 16) c->idelta = 16;
+
+ return (short)predictor;
+}
+
+static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
+{
+ int predictor;
+ int sign, delta, diff;
+ int new_step;
+
+ sign = nibble & 8;
+ delta = nibble & 7;
+ /* perform direct multiplication instead of series of jumps proposed by
+ * the reference ADPCM implementation since modern CPUs can do the mults
+ * quickly enough */
+ diff = ((2 * delta + 1) * c->step) >> 3;
+ predictor = c->predictor;
+ /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
+ if(sign)
+ predictor = ((predictor * 254) >> 8) - diff;
+ else
+ predictor = ((predictor * 254) >> 8) + diff;
+ /* calculate new step and clamp it to range 511..32767 */
+ new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
+ c->step = new_step;
+ if(c->step < 511)
+ c->step = 511;
+ if(c->step > 32767)
+ c->step = 32767;
+
+ CLAMP_TO_SHORT(predictor);
+ c->predictor = predictor;
+ return (short)predictor;
+}
+
+static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
+{
+ int sign, delta, diff;
+
+ sign = nibble & (1<<(size-1));
+ delta = nibble & ((1<<(size-1))-1);
+ diff = delta << (7 + c->step + shift);
+
+ if (sign)
+ c->predictor -= diff;
+ else
+ c->predictor += diff;
+
+ /* clamp result */
+ if (c->predictor > 16256)
+ c->predictor = 16256;
+ else if (c->predictor < -16384)
+ c->predictor = -16384;
+
+ /* calculate new step */
+ if (delta >= (2*size - 3) && c->step < 3)
+ c->step++;
+ else if (delta == 0 && c->step > 0)
+ c->step--;
+
+ return (short) c->predictor;
+}
+
+static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
+{
+ if(!c->step) {
+ c->predictor = 0;
+ c->step = 127;
+ }
+
+ c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
+ CLAMP_TO_SHORT(c->predictor);
+ c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
+ c->step = clip(c->step, 127, 24567);
+ return c->predictor;
+}
+
+static void xa_decode(short *out, const unsigned char *in,
+ ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
+{
+ int i, j;
+ int shift,filter,f0,f1;
+ int s_1,s_2;
+ int d,s,t;
+
+ for(i=0;i<4;i++) {
+
+ shift = 12 - (in[4+i*2] & 15);
+ filter = in[4+i*2] >> 4;
+ f0 = xa_adpcm_table[filter][0];
+ f1 = xa_adpcm_table[filter][1];
+
+ s_1 = left->sample1;
+ s_2 = left->sample2;
+
+ for(j=0;j<28;j++) {
+ d = in[16+i+j*4];
+
+ t = (signed char)(d<<4)>>4;
+ s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
+ CLAMP_TO_SHORT(s);
+ *out = s;
+ out += inc;
+ s_2 = s_1;
+ s_1 = s;
+ }
+
+ if (inc==2) { /* stereo */
+ left->sample1 = s_1;
+ left->sample2 = s_2;
+ s_1 = right->sample1;
+ s_2 = right->sample2;
+ out = out + 1 - 28*2;
+ }
+
+ shift = 12 - (in[5+i*2] & 15);
+ filter = in[5+i*2] >> 4;
+
+ f0 = xa_adpcm_table[filter][0];
+ f1 = xa_adpcm_table[filter][1];
+
+ for(j=0;j<28;j++) {
+ d = in[16+i+j*4];
+
+ t = (signed char)d >> 4;
+ s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
+ CLAMP_TO_SHORT(s);
+ *out = s;
+ out += inc;
+ s_2 = s_1;
+ s_1 = s;
+ }
+
+ if (inc==2) { /* stereo */
+ right->sample1 = s_1;
+ right->sample2 = s_2;
+ out -= 1;
+ } else {
+ left->sample1 = s_1;
+ left->sample2 = s_2;
+ }
+ }
+}
+
+
+/* DK3 ADPCM support macro */
+#define DK3_GET_NEXT_NIBBLE() \
+ if (decode_top_nibble_next) \
+ { \
+ nibble = (last_byte >> 4) & 0x0F; \
+ decode_top_nibble_next = 0; \
+ } \
+ else \
+ { \
+ last_byte = *src++; \
+ if (src >= buf + buf_size) break; \
+ nibble = last_byte & 0x0F; \
+ decode_top_nibble_next = 1; \
+ }
+
+static int adpcm_decode_frame(AVCodecContext *avctx,
+ void *data, int *data_size,
+ uint8_t *buf, int buf_size)
+{
+ ADPCMContext *c = avctx->priv_data;
+ ADPCMChannelStatus *cs;
+ int n, m, channel, i;
+ int block_predictor[2];
+ short *samples;
+ uint8_t *src;
+ int st; /* stereo */
+
+ /* DK3 ADPCM accounting variables */
+ unsigned char last_byte = 0;
+ unsigned char nibble;
+ int decode_top_nibble_next = 0;
+ int diff_channel;
+
+ /* EA ADPCM state variables */
+ uint32_t samples_in_chunk;
+ int32_t previous_left_sample, previous_right_sample;
+ int32_t current_left_sample, current_right_sample;
+ int32_t next_left_sample, next_right_sample;
+ int32_t coeff1l, coeff2l, coeff1r, coeff2r;
+ uint8_t shift_left, shift_right;
+ int count1, count2;
+
+ if (!buf_size)
+ return 0;
+
+ samples = data;
+ src = buf;
+
+ st = avctx->channels == 2 ? 1 : 0;
+
+ switch(avctx->codec->id) {
+ case CODEC_ID_ADPCM_IMA_QT:
+ n = (buf_size - 2);/* >> 2*avctx->channels;*/
+ channel = c->channel;
+ cs = &(c->status[channel]);
+ /* (pppppp) (piiiiiii) */
+
+ /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
+ cs->predictor = (*src++) << 8;
+ cs->predictor |= (*src & 0x80);
+ cs->predictor &= 0xFF80;
+
+ /* sign extension */
+ if(cs->predictor & 0x8000)
+ cs->predictor -= 0x10000;
+
+ CLAMP_TO_SHORT(cs->predictor);
+
+ cs->step_index = (*src++) & 0x7F;
+
+ if (cs->step_index > 88){
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
+ cs->step_index = 88;
+ }
+
+ cs->step = step_table[cs->step_index];
+
+ if (st && channel)
+ samples++;
+
+ for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
+ *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
+ samples += avctx->channels;
+ *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
+ samples += avctx->channels;
+ src ++;
+ }
+
+ if(st) { /* handle stereo interlacing */
+ c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
+ if(channel == 1) { /* wait for the other packet before outputing anything */
+ return src - buf;
+ }
+ }
+ break;
+ case CODEC_ID_ADPCM_IMA_WAV:
+ if (avctx->block_align != 0 && buf_size > avctx->block_align)
+ buf_size = avctx->block_align;
+
+// samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
+
+ for(i=0; i<avctx->channels; i++){
+ cs = &(c->status[i]);
+ cs->predictor = (int16_t)(src[0] + (src[1]<<8));
+ src+=2;
+
+ // XXX: is this correct ??: *samples++ = cs->predictor;
+
+ cs->step_index = *src++;
+ if (cs->step_index > 88){
+ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
+ cs->step_index = 88;
+ }
+ if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
+ }
+
+ while(src < buf + buf_size){
+ for(m=0; m<4; m++){
+ for(i=0; i<=st; i++)
+ *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
+ for(i=0; i<=st; i++)
+ *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
+ src++;
+ }
+ src += 4*st;
+ }
+ break;
+ case CODEC_ID_ADPCM_4XM:
+ cs = &(c->status[0]);
+ c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
+ if(st){
+ c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
+ }
+ c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
+ if(st){
+ c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
+ }
+ if (cs->step_index < 0) cs->step_index = 0;
+ if (cs->step_index > 88) cs->step_index = 88;
+
+ m= (buf_size - (src - buf))>>st;
+ for(i=0; i<m; i++) {
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
+ if (st)
+ *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
+ if (st)
+ *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
+ }
+
+ src += m<<st;
+
+ break;
+ case CODEC_ID_ADPCM_MS:
+ if (avctx->block_align != 0 && buf_size > avctx->block_align)
+ buf_size = avctx->block_align;
+ n = buf_size - 7 * avctx->channels;
+ if (n < 0)
+ return -1;
+ block_predictor[0] = clip(*src++, 0, 7);
+ block_predictor[1] = 0;
+ if (st)
+ block_predictor[1] = clip(*src++, 0, 7);
+ c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
+ src+=2;
+ if (st){
+ c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
+ src+=2;
+ }
+ c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
+ c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
+ c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
+ c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
+
+ c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
+ src+=2;
+ if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
+ if (st) src+=2;
+ c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
+ src+=2;
+ if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
+ if (st) src+=2;
+
+ *samples++ = c->status[0].sample1;
+ if (st) *samples++ = c->status[1].sample1;
+ *samples++ = c->status[0].sample2;
+ if (st) *samples++ = c->status[1].sample2;
+ for(;n>0;n--) {
+ *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
+ *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
+ src ++;
+ }
+ break;
+ case CODEC_ID_ADPCM_IMA_DK4:
+ if (avctx->block_align != 0 && buf_size > avctx->block_align)
+ buf_size = avctx->block_align;
+
+ c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
+ c->status[0].step_index = src[2];
+ src += 4;
+ *samples++ = c->status[0].predictor;
+ if (st) {
+ c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
+ c->status[1].step_index = src[2];
+ src += 4;
+ *samples++ = c->status[1].predictor;
+ }
+ while (src < buf + buf_size) {
+
+ /* take care of the top nibble (always left or mono channel) */
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0],
+ (src[0] >> 4) & 0x0F, 3);
+
+ /* take care of the bottom nibble, which is right sample for
+ * stereo, or another mono sample */
+ if (st)
+ *samples++ = adpcm_ima_expand_nibble(&c->status[1],
+ src[0] & 0x0F, 3);
+ else
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0],
+ src[0] & 0x0F, 3);
+
+ src++;
+ }
+ break;
+ case CODEC_ID_ADPCM_IMA_DK3:
+ if (avctx->block_align != 0 && buf_size > avctx->block_align)
+ buf_size = avctx->block_align;
+
+ c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
+ c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
+ c->status[0].step_index = src[14];
+ c->status[1].step_index = src[15];
+ /* sign extend the predictors */
+ src += 16;
+ diff_channel = c->status[1].predictor;
+
+ /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
+ * the buffer is consumed */
+ while (1) {
+
+ /* for this algorithm, c->status[0] is the sum channel and
+ * c->status[1] is the diff channel */
+
+ /* process the first predictor of the sum channel */
+ DK3_GET_NEXT_NIBBLE();
+ adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
+
+ /* process the diff channel predictor */
+ DK3_GET_NEXT_NIBBLE();
+ adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
+
+ /* process the first pair of stereo PCM samples */
+ diff_channel = (diff_channel + c->status[1].predictor) / 2;
+ *samples++ = c->status[0].predictor + c->status[1].predictor;
+ *samples++ = c->status[0].predictor - c->status[1].predictor;
+
+ /* process the second predictor of the sum channel */
+ DK3_GET_NEXT_NIBBLE();
+ adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
+
+ /* process the second pair of stereo PCM samples */
+ diff_channel = (diff_channel + c->status[1].predictor) / 2;
+ *samples++ = c->status[0].predictor + c->status[1].predictor;
+ *samples++ = c->status[0].predictor - c->status[1].predictor;
+ }
+ break;
+ case CODEC_ID_ADPCM_IMA_WS:
+ /* no per-block initialization; just start decoding the data */
+ while (src < buf + buf_size) {
+
+ if (st) {
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0],
+ (src[0] >> 4) & 0x0F, 3);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[1],
+ src[0] & 0x0F, 3);
+ } else {
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0],
+ (src[0] >> 4) & 0x0F, 3);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0],
+ src[0] & 0x0F, 3);
+ }
+
+ src++;
+ }
+ break;
+ case CODEC_ID_ADPCM_XA:
+ c->status[0].sample1 = c->status[0].sample2 =
+ c->status[1].sample1 = c->status[1].sample2 = 0;
+ while (buf_size >= 128) {
+ xa_decode(samples, src, &c->status[0], &c->status[1],
+ avctx->channels);
+ src += 128;
+ samples += 28 * 8;
+ buf_size -= 128;
+ }
+ break;
+ case CODEC_ID_ADPCM_EA:
+ samples_in_chunk = LE_32(src);
+ if (samples_in_chunk >= ((buf_size - 12) * 2)) {
+ src += buf_size;
+ break;
+ }
+ src += 4;
+ current_left_sample = (int16_t)LE_16(src);
+ src += 2;
+ previous_left_sample = (int16_t)LE_16(src);
+ src += 2;
+ current_right_sample = (int16_t)LE_16(src);
+ src += 2;
+ previous_right_sample = (int16_t)LE_16(src);
+ src += 2;
+
+ for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
+ coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
+ coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
+ coeff1r = ea_adpcm_table[*src & 0x0F];
+ coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
+ src++;
+
+ shift_left = ((*src >> 4) & 0x0F) + 8;
+ shift_right = (*src & 0x0F) + 8;
+ src++;
+
+ for (count2 = 0; count2 < 28; count2++) {
+ next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
+ next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
+ src++;
+
+ next_left_sample = (next_left_sample +
+ (current_left_sample * coeff1l) +
+ (previous_left_sample * coeff2l) + 0x80) >> 8;
+ next_right_sample = (next_right_sample +
+ (current_right_sample * coeff1r) +
+ (previous_right_sample * coeff2r) + 0x80) >> 8;
+ CLAMP_TO_SHORT(next_left_sample);
+ CLAMP_TO_SHORT(next_right_sample);
+
+ previous_left_sample = current_left_sample;
+ current_left_sample = next_left_sample;
+ previous_right_sample = current_right_sample;
+ current_right_sample = next_right_sample;
+ *samples++ = (unsigned short)current_left_sample;
+ *samples++ = (unsigned short)current_right_sample;
+ }
+ }
+ break;
+ case CODEC_ID_ADPCM_IMA_SMJPEG:
+ c->status[0].predictor = *src;
+ src += 2;
+ c->status[0].step_index = *src++;
+ src++; /* skip another byte before getting to the meat */
+ while (src < buf + buf_size) {
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0],
+ *src & 0x0F, 3);
+ *samples++ = adpcm_ima_expand_nibble(&c->status[0],
+ (*src >> 4) & 0x0F, 3);
+ src++;
+ }
+ break;
+ case CODEC_ID_ADPCM_CT:
+ while (src < buf + buf_size) {
+ if (st) {
+ *samples++ = adpcm_ct_expand_nibble(&c->status[0],
+ (src[0] >> 4) & 0x0F);
+ *samples++ = adpcm_ct_expand_nibble(&c->status[1],
+ src[0] & 0x0F);
+ } else {
+ *samples++ = adpcm_ct_expand_nibble(&c->status[0],
+ (src[0] >> 4) & 0x0F);
+ *samples++ = adpcm_ct_expand_nibble(&c->status[0],
+ src[0] & 0x0F);
+ }
+ src++;
+ }
+ break;
+ case CODEC_ID_ADPCM_SBPRO_4:
+ case CODEC_ID_ADPCM_SBPRO_3:
+ case CODEC_ID_ADPCM_SBPRO_2:
+ if (!c->status[0].step_index) {
+ /* the first byte is a raw sample */
+ *samples++ = 128 * (*src++ - 0x80);
+ if (st)
+ *samples++ = 128 * (*src++ - 0x80);
+ c->status[0].step_index = 1;
+ }
+ if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
+ while (src < buf + buf_size) {
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ (src[0] >> 4) & 0x0F, 4, 0);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
+ src[0] & 0x0F, 4, 0);
+ src++;
+ }
+ } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
+ while (src < buf + buf_size) {
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ (src[0] >> 5) & 0x07, 3, 0);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ (src[0] >> 2) & 0x07, 3, 0);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ src[0] & 0x03, 2, 0);
+ src++;
+ }
+ } else {
+ while (src < buf + buf_size) {
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ (src[0] >> 6) & 0x03, 2, 2);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
+ (src[0] >> 4) & 0x03, 2, 2);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
+ (src[0] >> 2) & 0x03, 2, 2);
+ *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
+ src[0] & 0x03, 2, 2);
+ src++;
+ }
+ }
+ break;
+ case CODEC_ID_ADPCM_SWF:
+ {
+ GetBitContext gb;
+ const int *table;
+ int k0, signmask;
+ int size = buf_size*8;
+
+ init_get_bits(&gb, buf, size);
+
+ // first frame, read bits & inital values
+ if (!c->nb_bits)
+ {
+ c->nb_bits = get_bits(&gb, 2)+2;
+// av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", c->nb_bits);
+ }
+
+ table = swf_index_tables[c->nb_bits-2];
+ k0 = 1 << (c->nb_bits-2);
+ signmask = 1 << (c->nb_bits-1);
+
+ while (get_bits_count(&gb) <= size)
+ {
+ int i;
+
+ c->nb_samples++;
+ // wrap around at every 4096 samples...
+ if ((c->nb_samples & 0xfff) == 1)
+ {
+ for (i = 0; i <= st; i++)
+ {
+ *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
+ c->status[i].step_index = get_bits(&gb, 6);
+ }
+ }
+
+ // similar to IMA adpcm
+ for (i = 0; i <= st; i++)
+ {
+ int delta = get_bits(&gb, c->nb_bits);
+ int step = step_table[c->status[i].step_index];
+ long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
+ int k = k0;
+
+ do {
+ if (delta & k)
+ vpdiff += step;
+ step >>= 1;
+ k >>= 1;
+ } while(k);
+ vpdiff += step;
+
+ if (delta & signmask)
+ c->status[i].predictor -= vpdiff;
+ else
+ c->status[i].predictor += vpdiff;
+
+ c->status[i].step_index += table[delta & (~signmask)];
+
+ c->status[i].step_index = clip(c->status[i].step_index, 0, 88);
+ c->status[i].predictor = clip(c->status[i].predictor, -32768, 32767);
+
+ *samples++ = c->status[i].predictor;
+ }
+ }
+
+// src += get_bits_count(&gb)*8;
+ src += size;
+
+ break;
+ }
+ case CODEC_ID_ADPCM_YAMAHA:
+ while (src < buf + buf_size) {
+ if (st) {
+ *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
+ src[0] & 0x0F);
+ *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
+ (src[0] >> 4) & 0x0F);
+ } else {
+ *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
+ src[0] & 0x0F);
+ *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
+ (src[0] >> 4) & 0x0F);
+ }
+ src++;
+ }
+ break;
+ default:
+ return -1;
+ }
+ *data_size = (uint8_t *)samples - (uint8_t *)data;
+ return src - buf;
+}
+
+
+
+#ifdef CONFIG_ENCODERS
+#define ADPCM_ENCODER(id,name) \
+AVCodec name ## _encoder = { \
+ #name, \
+ CODEC_TYPE_AUDIO, \
+ id, \
+ sizeof(ADPCMContext), \
+ adpcm_encode_init, \
+ adpcm_encode_frame, \
+ adpcm_encode_close, \
+ NULL, \
+};
+#else
+#define ADPCM_ENCODER(id,name)
+#endif
+
+#ifdef CONFIG_DECODERS
+#define ADPCM_DECODER(id,name) \
+AVCodec name ## _decoder = { \
+ #name, \
+ CODEC_TYPE_AUDIO, \
+ id, \
+ sizeof(ADPCMContext), \
+ adpcm_decode_init, \
+ NULL, \
+ NULL, \
+ adpcm_decode_frame, \
+};
+#else
+#define ADPCM_DECODER(id,name)
+#endif
+
+#define ADPCM_CODEC(id, name) \
+ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
+
+ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
+ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
+ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
+ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
+ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
+ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
+ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
+ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
+ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
+ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
+ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
+ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
+ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
+ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
+ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
+ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
+
+#undef ADPCM_CODEC