summaryrefslogtreecommitdiff
path: root/contrib/ffmpeg/libavcodec/cook.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ffmpeg/libavcodec/cook.c')
-rw-r--r--contrib/ffmpeg/libavcodec/cook.c1147
1 files changed, 1147 insertions, 0 deletions
diff --git a/contrib/ffmpeg/libavcodec/cook.c b/contrib/ffmpeg/libavcodec/cook.c
new file mode 100644
index 000000000..32b1081cc
--- /dev/null
+++ b/contrib/ffmpeg/libavcodec/cook.c
@@ -0,0 +1,1147 @@
+/*
+ * COOK compatible decoder
+ * Copyright (c) 2003 Sascha Sommer
+ * Copyright (c) 2005 Benjamin Larsson
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ */
+
+/**
+ * @file cook.c
+ * Cook compatible decoder.
+ * This decoder handles RealNetworks, RealAudio G2 data.
+ * Cook is identified by the codec name cook in RM files.
+ *
+ * To use this decoder, a calling application must supply the extradata
+ * bytes provided from the RM container; 8+ bytes for mono streams and
+ * 16+ for stereo streams (maybe more).
+ *
+ * Codec technicalities (all this assume a buffer length of 1024):
+ * Cook works with several different techniques to achieve its compression.
+ * In the timedomain the buffer is divided into 8 pieces and quantized. If
+ * two neighboring pieces have different quantization index a smooth
+ * quantization curve is used to get a smooth overlap between the different
+ * pieces.
+ * To get to the transformdomain Cook uses a modulated lapped transform.
+ * The transform domain has 50 subbands with 20 elements each. This
+ * means only a maximum of 50*20=1000 coefficients are used out of the 1024
+ * available.
+ */
+
+#include <math.h>
+#include <stddef.h>
+#include <stdio.h>
+
+#include "avcodec.h"
+#include "bitstream.h"
+#include "dsputil.h"
+#include "common.h"
+#include "bytestream.h"
+#include "random.h"
+
+#include "cookdata.h"
+
+/* the different Cook versions */
+#define MONO 0x1000001
+#define STEREO 0x1000002
+#define JOINT_STEREO 0x1000003
+#define MC_COOK 0x2000000 //multichannel Cook, not supported
+
+#define SUBBAND_SIZE 20
+//#define COOKDEBUG
+
+typedef struct {
+ int *now;
+ int *previous;
+} cook_gains;
+
+typedef struct {
+ GetBitContext gb;
+ /* stream data */
+ int nb_channels;
+ int joint_stereo;
+ int bit_rate;
+ int sample_rate;
+ int samples_per_channel;
+ int samples_per_frame;
+ int subbands;
+ int log2_numvector_size;
+ int numvector_size; //1 << log2_numvector_size;
+ int js_subband_start;
+ int total_subbands;
+ int num_vectors;
+ int bits_per_subpacket;
+ int cookversion;
+ /* states */
+ AVRandomState random_state;
+
+ /* transform data */
+ MDCTContext mdct_ctx;
+ DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]); /* temporary storage for imlt */
+ float* mlt_window;
+
+ /* gain buffers */
+ cook_gains gains1;
+ cook_gains gains2;
+ int gain_1[9];
+ int gain_2[9];
+ int gain_3[9];
+ int gain_4[9];
+
+ /* VLC data */
+ int js_vlc_bits;
+ VLC envelope_quant_index[13];
+ VLC sqvh[7]; //scalar quantization
+ VLC ccpl; //channel coupling
+
+ /* generatable tables and related variables */
+ int gain_size_factor;
+ float gain_table[23];
+ float pow2tab[127];
+ float rootpow2tab[127];
+
+ /* data buffers */
+
+ uint8_t* decoded_bytes_buffer;
+ DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
+ float mono_previous_buffer1[1024];
+ float mono_previous_buffer2[1024];
+ float decode_buffer_1[1024];
+ float decode_buffer_2[1024];
+} COOKContext;
+
+/* debug functions */
+
+#ifdef COOKDEBUG
+static void dump_float_table(float* table, int size, int delimiter) {
+ int i=0;
+ av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
+ for (i=0 ; i<size ; i++) {
+ av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
+ if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
+ }
+}
+
+static void dump_int_table(int* table, int size, int delimiter) {
+ int i=0;
+ av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
+ for (i=0 ; i<size ; i++) {
+ av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
+ if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
+ }
+}
+
+static void dump_short_table(short* table, int size, int delimiter) {
+ int i=0;
+ av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
+ for (i=0 ; i<size ; i++) {
+ av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
+ if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
+ }
+}
+
+#endif
+
+/*************** init functions ***************/
+
+/* table generator */
+static void init_pow2table(COOKContext *q){
+ int i;
+ q->pow2tab[63] = 1.0;
+ for (i=1 ; i<64 ; i++){
+ q->pow2tab[63+i]=(float)((uint64_t)1<<i);
+ q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
+ }
+}
+
+/* table generator */
+static void init_rootpow2table(COOKContext *q){
+ int i;
+ q->rootpow2tab[63] = 1.0;
+ for (i=1 ; i<64 ; i++){
+ q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
+ q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
+ }
+}
+
+/* table generator */
+static void init_gain_table(COOKContext *q) {
+ int i;
+ q->gain_size_factor = q->samples_per_channel/8;
+ for (i=0 ; i<23 ; i++) {
+ q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
+ (1.0/(double)q->gain_size_factor));
+ }
+}
+
+
+static int init_cook_vlc_tables(COOKContext *q) {
+ int i, result;
+
+ result = 0;
+ for (i=0 ; i<13 ; i++) {
+ result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
+ envelope_quant_index_huffbits[i], 1, 1,
+ envelope_quant_index_huffcodes[i], 2, 2, 0);
+ }
+ av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
+ for (i=0 ; i<7 ; i++) {
+ result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
+ cvh_huffbits[i], 1, 1,
+ cvh_huffcodes[i], 2, 2, 0);
+ }
+
+ if (q->nb_channels==2 && q->joint_stereo==1){
+ result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
+ ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
+ ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
+ av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
+ }
+
+ av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
+ return result;
+}
+
+static int init_cook_mlt(COOKContext *q) {
+ int j;
+ float alpha;
+ int mlt_size = q->samples_per_channel;
+
+ if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
+ return -1;
+
+ /* Initialize the MLT window: simple sine window. */
+ alpha = M_PI / (2.0 * (float)mlt_size);
+ for(j=0 ; j<mlt_size ; j++)
+ q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);
+
+ /* Initialize the MDCT. */
+ if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
+ av_free(q->mlt_window);
+ return -1;
+ }
+ av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
+ av_log2(mlt_size)+1);
+
+ return 0;
+}
+
+/*************** init functions end ***********/
+
+/**
+ * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
+ * Why? No idea, some checksum/error detection method maybe.
+ *
+ * Out buffer size: extra bytes are needed to cope with
+ * padding/missalignment.
+ * Subpackets passed to the decoder can contain two, consecutive
+ * half-subpackets, of identical but arbitrary size.
+ * 1234 1234 1234 1234 extraA extraB
+ * Case 1: AAAA BBBB 0 0
+ * Case 2: AAAA ABBB BB-- 3 3
+ * Case 3: AAAA AABB BBBB 2 2
+ * Case 4: AAAA AAAB BBBB BB-- 1 5
+ *
+ * Nice way to waste CPU cycles.
+ *
+ * @param inbuffer pointer to byte array of indata
+ * @param out pointer to byte array of outdata
+ * @param bytes number of bytes
+ */
+#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
+#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
+
+static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
+ int i, off;
+ uint32_t c;
+ uint32_t* buf;
+ uint32_t* obuf = (uint32_t*) out;
+ /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
+ * I'm too lazy though, should be something like
+ * for(i=0 ; i<bitamount/64 ; i++)
+ * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
+ * Buffer alignment needs to be checked. */
+
+ off = (int)((long)inbuffer & 3);
+ buf = (uint32_t*) (inbuffer - off);
+ c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
+ bytes += 3 + off;
+ for (i = 0; i < bytes/4; i++)
+ obuf[i] = c ^ buf[i];
+
+ return off;
+}
+
+/**
+ * Cook uninit
+ */
+
+static int cook_decode_close(AVCodecContext *avctx)
+{
+ int i;
+ COOKContext *q = avctx->priv_data;
+ av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
+
+ /* Free allocated memory buffers. */
+ av_free(q->mlt_window);
+ av_free(q->decoded_bytes_buffer);
+
+ /* Free the transform. */
+ ff_mdct_end(&q->mdct_ctx);
+
+ /* Free the VLC tables. */
+ for (i=0 ; i<13 ; i++) {
+ free_vlc(&q->envelope_quant_index[i]);
+ }
+ for (i=0 ; i<7 ; i++) {
+ free_vlc(&q->sqvh[i]);
+ }
+ if(q->nb_channels==2 && q->joint_stereo==1 ){
+ free_vlc(&q->ccpl);
+ }
+
+ av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
+
+ return 0;
+}
+
+/**
+ * Fill the gain array for the timedomain quantization.
+ *
+ * @param q pointer to the COOKContext
+ * @param gaininfo[9] array of gain indices
+ */
+
+static void decode_gain_info(GetBitContext *gb, int *gaininfo)
+{
+ int i, n;
+
+ while (get_bits1(gb)) {}
+ n = get_bits_count(gb) - 1; //amount of elements*2 to update
+
+ i = 0;
+ while (n--) {
+ int index = get_bits(gb, 3);
+ int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
+
+ while (i <= index) gaininfo[i++] = gain;
+ }
+ while (i <= 8) gaininfo[i++] = 0;
+}
+
+/**
+ * Create the quant index table needed for the envelope.
+ *
+ * @param q pointer to the COOKContext
+ * @param quant_index_table pointer to the array
+ */
+
+static void decode_envelope(COOKContext *q, int* quant_index_table) {
+ int i,j, vlc_index;
+ int bitbias;
+
+ bitbias = get_bits_count(&q->gb);
+ quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
+
+ for (i=1 ; i < q->total_subbands ; i++){
+ vlc_index=i;
+ if (i >= q->js_subband_start * 2) {
+ vlc_index-=q->js_subband_start;
+ } else {
+ vlc_index/=2;
+ if(vlc_index < 1) vlc_index = 1;
+ }
+ if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
+
+ j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
+ q->envelope_quant_index[vlc_index-1].bits,2);
+ quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
+ }
+}
+
+/**
+ * Calculate the category and category_index vector.
+ *
+ * @param q pointer to the COOKContext
+ * @param quant_index_table pointer to the array
+ * @param category pointer to the category array
+ * @param category_index pointer to the category_index array
+ */
+
+static void categorize(COOKContext *q, int* quant_index_table,
+ int* category, int* category_index){
+ int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
+ int exp_index2[102];
+ int exp_index1[102];
+
+ int tmp_categorize_array1[128];
+ int tmp_categorize_array1_idx=0;
+ int tmp_categorize_array2[128];
+ int tmp_categorize_array2_idx=0;
+ int category_index_size=0;
+
+ bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
+
+ if(bits_left > q->samples_per_channel) {
+ bits_left = q->samples_per_channel +
+ ((bits_left - q->samples_per_channel)*5)/8;
+ //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
+ }
+
+ memset(&exp_index1,0,102*sizeof(int));
+ memset(&exp_index2,0,102*sizeof(int));
+ memset(&tmp_categorize_array1,0,128*sizeof(int));
+ memset(&tmp_categorize_array2,0,128*sizeof(int));
+
+ bias=-32;
+
+ /* Estimate bias. */
+ for (i=32 ; i>0 ; i=i/2){
+ num_bits = 0;
+ index = 0;
+ for (j=q->total_subbands ; j>0 ; j--){
+ exp_idx = (i - quant_index_table[index] + bias) / 2;
+ if (exp_idx<0){
+ exp_idx=0;
+ } else if(exp_idx >7) {
+ exp_idx=7;
+ }
+ index++;
+ num_bits+=expbits_tab[exp_idx];
+ }
+ if(num_bits >= bits_left - 32){
+ bias+=i;
+ }
+ }
+
+ /* Calculate total number of bits. */
+ num_bits=0;
+ for (i=0 ; i<q->total_subbands ; i++) {
+ exp_idx = (bias - quant_index_table[i]) / 2;
+ if (exp_idx<0) {
+ exp_idx=0;
+ } else if(exp_idx >7) {
+ exp_idx=7;
+ }
+ num_bits += expbits_tab[exp_idx];
+ exp_index1[i] = exp_idx;
+ exp_index2[i] = exp_idx;
+ }
+ tmpbias = bias = num_bits;
+
+ for (j = 1 ; j < q->numvector_size ; j++) {
+ if (tmpbias + bias > 2*bits_left) { /* ---> */
+ int max = -999999;
+ index=-1;
+ for (i=0 ; i<q->total_subbands ; i++){
+ if (exp_index1[i] < 7) {
+ v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
+ if ( v >= max) {
+ max = v;
+ index = i;
+ }
+ }
+ }
+ if(index==-1)break;
+ tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
+ tmpbias -= expbits_tab[exp_index1[index]] -
+ expbits_tab[exp_index1[index]+1];
+ ++exp_index1[index];
+ } else { /* <--- */
+ int min = 999999;
+ index=-1;
+ for (i=0 ; i<q->total_subbands ; i++){
+ if(exp_index2[i] > 0){
+ v = (-2*exp_index2[i])-quant_index_table[i];
+ if ( v < min) {
+ min = v;
+ index = i;
+ }
+ }
+ }
+ if(index == -1)break;
+ tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
+ tmpbias -= expbits_tab[exp_index2[index]] -
+ expbits_tab[exp_index2[index]-1];
+ --exp_index2[index];
+ }
+ }
+
+ for(i=0 ; i<q->total_subbands ; i++)
+ category[i] = exp_index2[i];
+
+ /* Concatenate the two arrays. */
+ for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
+ category_index[category_index_size++] = tmp_categorize_array2[i];
+
+ for(i=0;i<tmp_categorize_array1_idx;i++)
+ category_index[category_index_size++ ] = tmp_categorize_array1[i];
+
+ /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
+ should fill the remaining bytes. */
+ for(i=category_index_size;i<q->numvector_size;i++)
+ category_index[i]=0;
+
+}
+
+
+/**
+ * Expand the category vector.
+ *
+ * @param q pointer to the COOKContext
+ * @param category pointer to the category array
+ * @param category_index pointer to the category_index array
+ */
+
+static void inline expand_category(COOKContext *q, int* category,
+ int* category_index){
+ int i;
+ for(i=0 ; i<q->num_vectors ; i++){
+ ++category[category_index[i]];
+ }
+}
+
+/**
+ * The real requantization of the mltcoefs
+ *
+ * @param q pointer to the COOKContext
+ * @param index index
+ * @param quant_index quantisation index
+ * @param subband_coef_index array of indexes to quant_centroid_tab
+ * @param subband_coef_sign signs of coefficients
+ * @param mlt_p pointer into the mlt buffer
+ */
+
+static void scalar_dequant(COOKContext *q, int index, int quant_index,
+ int* subband_coef_index, int* subband_coef_sign,
+ float* mlt_p){
+ int i;
+ float f1;
+
+ for(i=0 ; i<SUBBAND_SIZE ; i++) {
+ if (subband_coef_index[i]) {
+ f1 = quant_centroid_tab[index][subband_coef_index[i]];
+ if (subband_coef_sign[i]) f1 = -f1;
+ } else {
+ /* noise coding if subband_coef_index[i] == 0 */
+ f1 = dither_tab[index];
+ if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
+ }
+ mlt_p[i] = f1 * q->rootpow2tab[quant_index+63];
+ }
+}
+/**
+ * Unpack the subband_coef_index and subband_coef_sign vectors.
+ *
+ * @param q pointer to the COOKContext
+ * @param category pointer to the category array
+ * @param subband_coef_index array of indexes to quant_centroid_tab
+ * @param subband_coef_sign signs of coefficients
+ */
+
+static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
+ int* subband_coef_sign) {
+ int i,j;
+ int vlc, vd ,tmp, result;
+ int ub;
+ int cb;
+
+ vd = vd_tab[category];
+ result = 0;
+ for(i=0 ; i<vpr_tab[category] ; i++){
+ ub = get_bits_count(&q->gb);
+ vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
+ cb = get_bits_count(&q->gb);
+ if (q->bits_per_subpacket < get_bits_count(&q->gb)){
+ vlc = 0;
+ result = 1;
+ }
+ for(j=vd-1 ; j>=0 ; j--){
+ tmp = (vlc * invradix_tab[category])/0x100000;
+ subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
+ vlc = tmp;
+ }
+ for(j=0 ; j<vd ; j++){
+ if (subband_coef_index[i*vd + j]) {
+ if(get_bits_count(&q->gb) < q->bits_per_subpacket){
+ subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
+ } else {
+ result=1;
+ subband_coef_sign[i*vd+j]=0;
+ }
+ } else {
+ subband_coef_sign[i*vd+j]=0;
+ }
+ }
+ }
+ return result;
+}
+
+
+/**
+ * Fill the mlt_buffer with mlt coefficients.
+ *
+ * @param q pointer to the COOKContext
+ * @param category pointer to the category array
+ * @param quant_index_table pointer to the array
+ * @param mlt_buffer pointer to mlt coefficients
+ */
+
+
+static void decode_vectors(COOKContext* q, int* category,
+ int *quant_index_table, float* mlt_buffer){
+ /* A zero in this table means that the subband coefficient is
+ random noise coded. */
+ int subband_coef_index[SUBBAND_SIZE];
+ /* A zero in this table means that the subband coefficient is a
+ positive multiplicator. */
+ int subband_coef_sign[SUBBAND_SIZE];
+ int band, j;
+ int index=0;
+
+ for(band=0 ; band<q->total_subbands ; band++){
+ index = category[band];
+ if(category[band] < 7){
+ if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
+ index=7;
+ for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
+ }
+ }
+ if(index==7) {
+ memset(subband_coef_index, 0, sizeof(subband_coef_index));
+ memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
+ }
+ scalar_dequant(q, index, quant_index_table[band],
+ subband_coef_index, subband_coef_sign,
+ &mlt_buffer[band * 20]);
+ }
+
+ if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
+ return;
+ } /* FIXME: should this be removed, or moved into loop above? */
+}
+
+
+/**
+ * function for decoding mono data
+ *
+ * @param q pointer to the COOKContext
+ * @param mlt_buffer1 pointer to left channel mlt coefficients
+ * @param mlt_buffer2 pointer to right channel mlt coefficients
+ */
+
+static void mono_decode(COOKContext *q, float* mlt_buffer) {
+
+ int category_index[128];
+ int quant_index_table[102];
+ int category[128];
+
+ memset(&category, 0, 128*sizeof(int));
+ memset(&category_index, 0, 128*sizeof(int));
+
+ decode_envelope(q, quant_index_table);
+ q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
+ categorize(q, quant_index_table, category, category_index);
+ expand_category(q, category, category_index);
+ decode_vectors(q, category, quant_index_table, mlt_buffer);
+}
+
+
+/**
+ * the actual requantization of the timedomain samples
+ *
+ * @param q pointer to the COOKContext
+ * @param buffer pointer to the timedomain buffer
+ * @param gain_index index for the block multiplier
+ * @param gain_index_next index for the next block multiplier
+ */
+
+static void interpolate(COOKContext *q, float* buffer,
+ int gain_index, int gain_index_next){
+ int i;
+ float fc1, fc2;
+ fc1 = q->pow2tab[gain_index+63];
+
+ if(gain_index == gain_index_next){ //static gain
+ for(i=0 ; i<q->gain_size_factor ; i++){
+ buffer[i]*=fc1;
+ }
+ return;
+ } else { //smooth gain
+ fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
+ for(i=0 ; i<q->gain_size_factor ; i++){
+ buffer[i]*=fc1;
+ fc1*=fc2;
+ }
+ return;
+ }
+}
+
+
+/**
+ * The modulated lapped transform, this takes transform coefficients
+ * and transforms them into timedomain samples.
+ * Apply transform window, overlap buffers, apply gain profile
+ * and buffer management.
+ *
+ * @param q pointer to the COOKContext
+ * @param inbuffer pointer to the mltcoefficients
+ * @param gains_ptr current and previous gains
+ * @param previous_buffer pointer to the previous buffer to be used for overlapping
+ */
+
+static void imlt_gain(COOKContext *q, float *inbuffer,
+ cook_gains *gains_ptr, float* previous_buffer)
+{
+ const float fc = q->pow2tab[gains_ptr->previous[0] + 63];
+ float *buffer0 = q->mono_mdct_output;
+ float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
+ int i;
+
+ /* Inverse modified discrete cosine transform */
+ q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
+ inbuffer, q->mdct_tmp);
+
+ /* The weird thing here, is that the two halves of the time domain
+ * buffer are swapped. Also, the newest data, that we save away for
+ * next frame, has the wrong sign. Hence the subtraction below.
+ * Almost sounds like a complex conjugate/reverse data/FFT effect.
+ */
+
+ /* Apply window and overlap */
+ for(i = 0; i < q->samples_per_channel; i++){
+ buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
+ previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
+ }
+
+ /* Apply gain profile */
+ for (i = 0; i < 8; i++) {
+ if (gains_ptr->now[i] || gains_ptr->now[i + 1])
+ interpolate(q, &buffer1[q->gain_size_factor * i],
+ gains_ptr->now[i], gains_ptr->now[i + 1]);
+ }
+
+ /* Save away the current to be previous block. */
+ memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
+}
+
+
+/**
+ * function for getting the jointstereo coupling information
+ *
+ * @param q pointer to the COOKContext
+ * @param decouple_tab decoupling array
+ *
+ */
+
+static void decouple_info(COOKContext *q, int* decouple_tab){
+ int length, i;
+
+ if(get_bits1(&q->gb)) {
+ if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
+
+ length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
+ for (i=0 ; i<length ; i++) {
+ decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
+ }
+ return;
+ }
+
+ if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
+
+ length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
+ for (i=0 ; i<length ; i++) {
+ decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
+ }
+ return;
+}
+
+
+/**
+ * function for decoding joint stereo data
+ *
+ * @param q pointer to the COOKContext
+ * @param mlt_buffer1 pointer to left channel mlt coefficients
+ * @param mlt_buffer2 pointer to right channel mlt coefficients
+ */
+
+static void joint_decode(COOKContext *q, float* mlt_buffer1,
+ float* mlt_buffer2) {
+ int i,j;
+ int decouple_tab[SUBBAND_SIZE];
+ float decode_buffer[1060];
+ int idx, cpl_tmp,tmp_idx;
+ float f1,f2;
+ float* cplscale;
+
+ memset(decouple_tab, 0, sizeof(decouple_tab));
+ memset(decode_buffer, 0, sizeof(decode_buffer));
+
+ /* Make sure the buffers are zeroed out. */
+ memset(mlt_buffer1,0, 1024*sizeof(float));
+ memset(mlt_buffer2,0, 1024*sizeof(float));
+ decouple_info(q, decouple_tab);
+ mono_decode(q, decode_buffer);
+
+ /* The two channels are stored interleaved in decode_buffer. */
+ for (i=0 ; i<q->js_subband_start ; i++) {
+ for (j=0 ; j<SUBBAND_SIZE ; j++) {
+ mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
+ mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
+ }
+ }
+
+ /* When we reach js_subband_start (the higher frequencies)
+ the coefficients are stored in a coupling scheme. */
+ idx = (1 << q->js_vlc_bits) - 1;
+ for (i=q->js_subband_start ; i<q->subbands ; i++) {
+ cpl_tmp = cplband[i];
+ idx -=decouple_tab[cpl_tmp];
+ cplscale = (float*)cplscales[q->js_vlc_bits-2]; //choose decoupler table
+ f1 = cplscale[decouple_tab[cpl_tmp]];
+ f2 = cplscale[idx-1];
+ for (j=0 ; j<SUBBAND_SIZE ; j++) {
+ tmp_idx = ((q->js_subband_start + i)*20)+j;
+ mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
+ mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
+ }
+ idx = (1 << q->js_vlc_bits) - 1;
+ }
+}
+
+/**
+ * First part of subpacket decoding:
+ * decode raw stream bytes and read gain info.
+ *
+ * @param q pointer to the COOKContext
+ * @param inbuffer pointer to raw stream data
+ * @param gain_ptr array of current/prev gain pointers
+ */
+
+static inline void
+decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer,
+ cook_gains *gains_ptr)
+{
+ int offset;
+
+ offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
+ q->bits_per_subpacket/8);
+ init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
+ q->bits_per_subpacket);
+ decode_gain_info(&q->gb, gains_ptr->now);
+
+ /* Swap current and previous gains */
+ FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
+}
+
+/**
+ * Final part of subpacket decoding:
+ * Apply modulated lapped transform, gain compensation,
+ * clip and convert to integer.
+ *
+ * @param q pointer to the COOKContext
+ * @param decode_buffer pointer to the mlt coefficients
+ * @param gain_ptr array of current/prev gain pointers
+ * @param previous_buffer pointer to the previous buffer to be used for overlapping
+ * @param out pointer to the output buffer
+ * @param chan 0: left or single channel, 1: right channel
+ */
+
+static inline void
+mlt_compensate_output(COOKContext *q, float *decode_buffer,
+ cook_gains *gains, float *previous_buffer,
+ int16_t *out, int chan)
+{
+ float *output = q->mono_mdct_output + q->samples_per_channel;
+ int j;
+
+ imlt_gain(q, decode_buffer, gains, previous_buffer);
+
+ /* Clip and convert floats to 16 bits.
+ */
+ for (j = 0; j < q->samples_per_channel; j++) {
+ out[chan + q->nb_channels * j] =
+ av_clip(lrintf(output[j]), -32768, 32767);
+ }
+}
+
+
+/**
+ * Cook subpacket decoding. This function returns one decoded subpacket,
+ * usually 1024 samples per channel.
+ *
+ * @param q pointer to the COOKContext
+ * @param inbuffer pointer to the inbuffer
+ * @param sub_packet_size subpacket size
+ * @param outbuffer pointer to the outbuffer
+ */
+
+
+static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
+ int sub_packet_size, int16_t *outbuffer) {
+ /* packet dump */
+// for (i=0 ; i<sub_packet_size ; i++) {
+// av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
+// }
+// av_log(NULL, AV_LOG_ERROR, "\n");
+
+ decode_bytes_and_gain(q, inbuffer, &q->gains1);
+
+ if (q->joint_stereo) {
+ joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
+ } else {
+ mono_decode(q, q->decode_buffer_1);
+
+ if (q->nb_channels == 2) {
+ decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
+ mono_decode(q, q->decode_buffer_2);
+ }
+ }
+
+ mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
+ q->mono_previous_buffer1, outbuffer, 0);
+
+ if (q->nb_channels == 2) {
+ if (q->joint_stereo) {
+ mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
+ q->mono_previous_buffer2, outbuffer, 1);
+ } else {
+ mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
+ q->mono_previous_buffer2, outbuffer, 1);
+ }
+ }
+ return q->samples_per_frame * sizeof(int16_t);
+}
+
+
+/**
+ * Cook frame decoding
+ *
+ * @param avctx pointer to the AVCodecContext
+ */
+
+static int cook_decode_frame(AVCodecContext *avctx,
+ void *data, int *data_size,
+ uint8_t *buf, int buf_size) {
+ COOKContext *q = avctx->priv_data;
+
+ if (buf_size < avctx->block_align)
+ return buf_size;
+
+ *data_size = decode_subpacket(q, buf, avctx->block_align, data);
+
+ /* Discard the first two frames: no valid audio. */
+ if (avctx->frame_number < 2) *data_size = 0;
+
+ return avctx->block_align;
+}
+
+#ifdef COOKDEBUG
+static void dump_cook_context(COOKContext *q)
+{
+ //int i=0;
+#define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
+ av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
+ av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
+ if (q->cookversion > STEREO) {
+ PRINT("js_subband_start",q->js_subband_start);
+ PRINT("js_vlc_bits",q->js_vlc_bits);
+ }
+ av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
+ PRINT("nb_channels",q->nb_channels);
+ PRINT("bit_rate",q->bit_rate);
+ PRINT("sample_rate",q->sample_rate);
+ PRINT("samples_per_channel",q->samples_per_channel);
+ PRINT("samples_per_frame",q->samples_per_frame);
+ PRINT("subbands",q->subbands);
+ PRINT("random_state",q->random_state);
+ PRINT("js_subband_start",q->js_subband_start);
+ PRINT("log2_numvector_size",q->log2_numvector_size);
+ PRINT("numvector_size",q->numvector_size);
+ PRINT("total_subbands",q->total_subbands);
+}
+#endif
+
+/**
+ * Cook initialization
+ *
+ * @param avctx pointer to the AVCodecContext
+ */
+
+static int cook_decode_init(AVCodecContext *avctx)
+{
+ COOKContext *q = avctx->priv_data;
+ uint8_t *edata_ptr = avctx->extradata;
+
+ /* Take care of the codec specific extradata. */
+ if (avctx->extradata_size <= 0) {
+ av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
+ return -1;
+ } else {
+ /* 8 for mono, 16 for stereo, ? for multichannel
+ Swap to right endianness so we don't need to care later on. */
+ av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
+ if (avctx->extradata_size >= 8){
+ q->cookversion = bytestream_get_be32(&edata_ptr);
+ q->samples_per_frame = bytestream_get_be16(&edata_ptr);
+ q->subbands = bytestream_get_be16(&edata_ptr);
+ }
+ if (avctx->extradata_size >= 16){
+ bytestream_get_be32(&edata_ptr); //Unknown unused
+ q->js_subband_start = bytestream_get_be16(&edata_ptr);
+ q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
+ }
+ }
+
+ /* Take data from the AVCodecContext (RM container). */
+ q->sample_rate = avctx->sample_rate;
+ q->nb_channels = avctx->channels;
+ q->bit_rate = avctx->bit_rate;
+
+ /* Initialize RNG. */
+ av_init_random(1, &q->random_state);
+
+ /* Initialize extradata related variables. */
+ q->samples_per_channel = q->samples_per_frame / q->nb_channels;
+ q->bits_per_subpacket = avctx->block_align * 8;
+
+ /* Initialize default data states. */
+ q->log2_numvector_size = 5;
+ q->total_subbands = q->subbands;
+
+ /* Initialize version-dependent variables */
+ av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
+ q->joint_stereo = 0;
+ switch (q->cookversion) {
+ case MONO:
+ if (q->nb_channels != 1) {
+ av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
+ return -1;
+ }
+ av_log(avctx,AV_LOG_DEBUG,"MONO\n");
+ break;
+ case STEREO:
+ if (q->nb_channels != 1) {
+ q->bits_per_subpacket = q->bits_per_subpacket/2;
+ }
+ av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
+ break;
+ case JOINT_STEREO:
+ if (q->nb_channels != 2) {
+ av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
+ return -1;
+ }
+ av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
+ if (avctx->extradata_size >= 16){
+ q->total_subbands = q->subbands + q->js_subband_start;
+ q->joint_stereo = 1;
+ }
+ if (q->samples_per_channel > 256) {
+ q->log2_numvector_size = 6;
+ }
+ if (q->samples_per_channel > 512) {
+ q->log2_numvector_size = 7;
+ }
+ break;
+ case MC_COOK:
+ av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
+ return -1;
+ break;
+ default:
+ av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
+ return -1;
+ break;
+ }
+
+ /* Initialize variable relations */
+ q->numvector_size = (1 << q->log2_numvector_size);
+
+ /* Generate tables */
+ init_rootpow2table(q);
+ init_pow2table(q);
+ init_gain_table(q);
+
+ if (init_cook_vlc_tables(q) != 0)
+ return -1;
+
+
+ if(avctx->block_align >= UINT_MAX/2)
+ return -1;
+
+ /* Pad the databuffer with:
+ DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
+ FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
+ if (q->nb_channels==2 && q->joint_stereo==0) {
+ q->decoded_bytes_buffer =
+ av_mallocz(avctx->block_align/2
+ + DECODE_BYTES_PAD2(avctx->block_align/2)
+ + FF_INPUT_BUFFER_PADDING_SIZE);
+ } else {
+ q->decoded_bytes_buffer =
+ av_mallocz(avctx->block_align
+ + DECODE_BYTES_PAD1(avctx->block_align)
+ + FF_INPUT_BUFFER_PADDING_SIZE);
+ }
+ if (q->decoded_bytes_buffer == NULL)
+ return -1;
+
+ q->gains1.now = q->gain_1;
+ q->gains1.previous = q->gain_2;
+ q->gains2.now = q->gain_3;
+ q->gains2.previous = q->gain_4;
+
+ /* Initialize transform. */
+ if ( init_cook_mlt(q) != 0 )
+ return -1;
+
+ /* Try to catch some obviously faulty streams, othervise it might be exploitable */
+ if (q->total_subbands > 53) {
+ av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
+ return -1;
+ }
+ if (q->subbands > 50) {
+ av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
+ return -1;
+ }
+ if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
+ } else {
+ av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
+ return -1;
+ }
+ if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
+ av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
+ return -1;
+ }
+
+#ifdef COOKDEBUG
+ dump_cook_context(q);
+#endif
+ return 0;
+}
+
+
+AVCodec cook_decoder =
+{
+ .name = "cook",
+ .type = CODEC_TYPE_AUDIO,
+ .id = CODEC_ID_COOK,
+ .priv_data_size = sizeof(COOKContext),
+ .init = cook_decode_init,
+ .close = cook_decode_close,
+ .decode = cook_decode_frame,
+};