summaryrefslogtreecommitdiff
path: root/contrib/ffmpeg/libavcodec/flacenc.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ffmpeg/libavcodec/flacenc.c')
-rw-r--r--contrib/ffmpeg/libavcodec/flacenc.c1371
1 files changed, 0 insertions, 1371 deletions
diff --git a/contrib/ffmpeg/libavcodec/flacenc.c b/contrib/ffmpeg/libavcodec/flacenc.c
deleted file mode 100644
index 9dd6c7eb8..000000000
--- a/contrib/ffmpeg/libavcodec/flacenc.c
+++ /dev/null
@@ -1,1371 +0,0 @@
-/**
- * FLAC audio encoder
- * Copyright (c) 2006 Justin Ruggles <jruggle@earthlink.net>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include "avcodec.h"
-#include "bitstream.h"
-#include "crc.h"
-#include "golomb.h"
-#include "lls.h"
-
-#define FLAC_MAX_CH 8
-#define FLAC_MIN_BLOCKSIZE 16
-#define FLAC_MAX_BLOCKSIZE 65535
-
-#define FLAC_SUBFRAME_CONSTANT 0
-#define FLAC_SUBFRAME_VERBATIM 1
-#define FLAC_SUBFRAME_FIXED 8
-#define FLAC_SUBFRAME_LPC 32
-
-#define FLAC_CHMODE_NOT_STEREO 0
-#define FLAC_CHMODE_LEFT_RIGHT 1
-#define FLAC_CHMODE_LEFT_SIDE 8
-#define FLAC_CHMODE_RIGHT_SIDE 9
-#define FLAC_CHMODE_MID_SIDE 10
-
-#define ORDER_METHOD_EST 0
-#define ORDER_METHOD_2LEVEL 1
-#define ORDER_METHOD_4LEVEL 2
-#define ORDER_METHOD_8LEVEL 3
-#define ORDER_METHOD_SEARCH 4
-#define ORDER_METHOD_LOG 5
-
-#define FLAC_STREAMINFO_SIZE 34
-
-#define MIN_LPC_ORDER 1
-#define MAX_LPC_ORDER 32
-#define MAX_FIXED_ORDER 4
-#define MAX_PARTITION_ORDER 8
-#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
-#define MAX_LPC_PRECISION 15
-#define MAX_LPC_SHIFT 15
-#define MAX_RICE_PARAM 14
-
-typedef struct CompressionOptions {
- int compression_level;
- int block_time_ms;
- int use_lpc;
- int lpc_coeff_precision;
- int min_prediction_order;
- int max_prediction_order;
- int prediction_order_method;
- int min_partition_order;
- int max_partition_order;
-} CompressionOptions;
-
-typedef struct RiceContext {
- int porder;
- int params[MAX_PARTITIONS];
-} RiceContext;
-
-typedef struct FlacSubframe {
- int type;
- int type_code;
- int obits;
- int order;
- int32_t coefs[MAX_LPC_ORDER];
- int shift;
- RiceContext rc;
- int32_t samples[FLAC_MAX_BLOCKSIZE];
- int32_t residual[FLAC_MAX_BLOCKSIZE];
-} FlacSubframe;
-
-typedef struct FlacFrame {
- FlacSubframe subframes[FLAC_MAX_CH];
- int blocksize;
- int bs_code[2];
- uint8_t crc8;
- int ch_mode;
-} FlacFrame;
-
-typedef struct FlacEncodeContext {
- PutBitContext pb;
- int channels;
- int ch_code;
- int samplerate;
- int sr_code[2];
- int blocksize;
- int max_framesize;
- uint32_t frame_count;
- FlacFrame frame;
- CompressionOptions options;
- AVCodecContext *avctx;
-} FlacEncodeContext;
-
-static const int flac_samplerates[16] = {
- 0, 0, 0, 0,
- 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
- 0, 0, 0, 0
-};
-
-static const int flac_blocksizes[16] = {
- 0,
- 192,
- 576, 1152, 2304, 4608,
- 0, 0,
- 256, 512, 1024, 2048, 4096, 8192, 16384, 32768
-};
-
-/**
- * Writes streaminfo metadata block to byte array
- */
-static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
-{
- PutBitContext pb;
-
- memset(header, 0, FLAC_STREAMINFO_SIZE);
- init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
-
- /* streaminfo metadata block */
- put_bits(&pb, 16, s->blocksize);
- put_bits(&pb, 16, s->blocksize);
- put_bits(&pb, 24, 0);
- put_bits(&pb, 24, s->max_framesize);
- put_bits(&pb, 20, s->samplerate);
- put_bits(&pb, 3, s->channels-1);
- put_bits(&pb, 5, 15); /* bits per sample - 1 */
- flush_put_bits(&pb);
- /* total samples = 0 */
- /* MD5 signature = 0 */
-}
-
-/**
- * Sets blocksize based on samplerate
- * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
- */
-static int select_blocksize(int samplerate, int block_time_ms)
-{
- int i;
- int target;
- int blocksize;
-
- assert(samplerate > 0);
- blocksize = flac_blocksizes[1];
- target = (samplerate * block_time_ms) / 1000;
- for(i=0; i<16; i++) {
- if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
- blocksize = flac_blocksizes[i];
- }
- }
- return blocksize;
-}
-
-static int flac_encode_init(AVCodecContext *avctx)
-{
- int freq = avctx->sample_rate;
- int channels = avctx->channels;
- FlacEncodeContext *s = avctx->priv_data;
- int i, level;
- uint8_t *streaminfo;
-
- s->avctx = avctx;
-
- if(avctx->sample_fmt != SAMPLE_FMT_S16) {
- return -1;
- }
-
- if(channels < 1 || channels > FLAC_MAX_CH) {
- return -1;
- }
- s->channels = channels;
- s->ch_code = s->channels-1;
-
- /* find samplerate in table */
- if(freq < 1)
- return -1;
- for(i=4; i<12; i++) {
- if(freq == flac_samplerates[i]) {
- s->samplerate = flac_samplerates[i];
- s->sr_code[0] = i;
- s->sr_code[1] = 0;
- break;
- }
- }
- /* if not in table, samplerate is non-standard */
- if(i == 12) {
- if(freq % 1000 == 0 && freq < 255000) {
- s->sr_code[0] = 12;
- s->sr_code[1] = freq / 1000;
- } else if(freq % 10 == 0 && freq < 655350) {
- s->sr_code[0] = 14;
- s->sr_code[1] = freq / 10;
- } else if(freq < 65535) {
- s->sr_code[0] = 13;
- s->sr_code[1] = freq;
- } else {
- return -1;
- }
- s->samplerate = freq;
- }
-
- /* set compression option defaults based on avctx->compression_level */
- if(avctx->compression_level < 0) {
- s->options.compression_level = 5;
- } else {
- s->options.compression_level = avctx->compression_level;
- }
- av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
-
- level= s->options.compression_level;
- if(level > 12) {
- av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
- s->options.compression_level);
- return -1;
- }
-
- s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
- s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
- s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
- s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level];
- s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
- ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
- ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL,
- ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
- ORDER_METHOD_SEARCH})[level];
- s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level];
- s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level];
-
- /* set compression option overrides from AVCodecContext */
- if(avctx->use_lpc >= 0) {
- s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11);
- }
- if(s->options.use_lpc == 1)
- av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
- else if(s->options.use_lpc > 1)
- av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
-
- if(avctx->min_prediction_order >= 0) {
- if(s->options.use_lpc) {
- if(avctx->min_prediction_order < MIN_LPC_ORDER ||
- avctx->min_prediction_order > MAX_LPC_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
- avctx->min_prediction_order);
- return -1;
- }
- } else {
- if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
- avctx->min_prediction_order);
- return -1;
- }
- }
- s->options.min_prediction_order = avctx->min_prediction_order;
- }
- if(avctx->max_prediction_order >= 0) {
- if(s->options.use_lpc) {
- if(avctx->max_prediction_order < MIN_LPC_ORDER ||
- avctx->max_prediction_order > MAX_LPC_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
- avctx->max_prediction_order);
- return -1;
- }
- } else {
- if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
- avctx->max_prediction_order);
- return -1;
- }
- }
- s->options.max_prediction_order = avctx->max_prediction_order;
- }
- if(s->options.max_prediction_order < s->options.min_prediction_order) {
- av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
- s->options.min_prediction_order, s->options.max_prediction_order);
- return -1;
- }
- av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
- s->options.min_prediction_order, s->options.max_prediction_order);
-
- if(avctx->prediction_order_method >= 0) {
- if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
- av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
- avctx->prediction_order_method);
- return -1;
- }
- s->options.prediction_order_method = avctx->prediction_order_method;
- }
- switch(s->options.prediction_order_method) {
- case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
- "estimate"); break;
- case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
- "2-level"); break;
- case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
- "4-level"); break;
- case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
- "8-level"); break;
- case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
- "full search"); break;
- case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
- "log search"); break;
- }
-
- if(avctx->min_partition_order >= 0) {
- if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
- avctx->min_partition_order);
- return -1;
- }
- s->options.min_partition_order = avctx->min_partition_order;
- }
- if(avctx->max_partition_order >= 0) {
- if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
- avctx->max_partition_order);
- return -1;
- }
- s->options.max_partition_order = avctx->max_partition_order;
- }
- if(s->options.max_partition_order < s->options.min_partition_order) {
- av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
- s->options.min_partition_order, s->options.max_partition_order);
- return -1;
- }
- av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
- s->options.min_partition_order, s->options.max_partition_order);
-
- if(avctx->frame_size > 0) {
- if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
- avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
- av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
- avctx->frame_size);
- return -1;
- }
- s->blocksize = avctx->frame_size;
- } else {
- s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms);
- avctx->frame_size = s->blocksize;
- }
- av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize);
-
- /* set LPC precision */
- if(avctx->lpc_coeff_precision > 0) {
- if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
- av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
- avctx->lpc_coeff_precision);
- return -1;
- }
- s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
- } else {
- /* select LPC precision based on block size */
- if( s->blocksize <= 192) s->options.lpc_coeff_precision = 7;
- else if(s->blocksize <= 384) s->options.lpc_coeff_precision = 8;
- else if(s->blocksize <= 576) s->options.lpc_coeff_precision = 9;
- else if(s->blocksize <= 1152) s->options.lpc_coeff_precision = 10;
- else if(s->blocksize <= 2304) s->options.lpc_coeff_precision = 11;
- else if(s->blocksize <= 4608) s->options.lpc_coeff_precision = 12;
- else if(s->blocksize <= 8192) s->options.lpc_coeff_precision = 13;
- else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14;
- else s->options.lpc_coeff_precision = 15;
- }
- av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
- s->options.lpc_coeff_precision);
-
- /* set maximum encoded frame size in verbatim mode */
- if(s->channels == 2) {
- s->max_framesize = 14 + ((s->blocksize * 33 + 7) >> 3);
- } else {
- s->max_framesize = 14 + (s->blocksize * s->channels * 2);
- }
-
- streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
- write_streaminfo(s, streaminfo);
- avctx->extradata = streaminfo;
- avctx->extradata_size = FLAC_STREAMINFO_SIZE;
-
- s->frame_count = 0;
-
- avctx->coded_frame = avcodec_alloc_frame();
- avctx->coded_frame->key_frame = 1;
-
- return 0;
-}
-
-static void init_frame(FlacEncodeContext *s)
-{
- int i, ch;
- FlacFrame *frame;
-
- frame = &s->frame;
-
- for(i=0; i<16; i++) {
- if(s->blocksize == flac_blocksizes[i]) {
- frame->blocksize = flac_blocksizes[i];
- frame->bs_code[0] = i;
- frame->bs_code[1] = 0;
- break;
- }
- }
- if(i == 16) {
- frame->blocksize = s->blocksize;
- if(frame->blocksize <= 256) {
- frame->bs_code[0] = 6;
- frame->bs_code[1] = frame->blocksize-1;
- } else {
- frame->bs_code[0] = 7;
- frame->bs_code[1] = frame->blocksize-1;
- }
- }
-
- for(ch=0; ch<s->channels; ch++) {
- frame->subframes[ch].obits = 16;
- }
-}
-
-/**
- * Copy channel-interleaved input samples into separate subframes
- */
-static void copy_samples(FlacEncodeContext *s, int16_t *samples)
-{
- int i, j, ch;
- FlacFrame *frame;
-
- frame = &s->frame;
- for(i=0,j=0; i<frame->blocksize; i++) {
- for(ch=0; ch<s->channels; ch++,j++) {
- frame->subframes[ch].samples[i] = samples[j];
- }
- }
-}
-
-
-#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
-
-static int find_optimal_param(uint32_t sum, int n)
-{
- int k, k_opt;
- uint32_t nbits[MAX_RICE_PARAM+1];
-
- k_opt = 0;
- nbits[0] = UINT32_MAX;
- for(k=0; k<=MAX_RICE_PARAM; k++) {
- nbits[k] = rice_encode_count(sum, n, k);
- if(nbits[k] < nbits[k_opt]) {
- k_opt = k;
- }
- }
- return k_opt;
-}
-
-static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
- uint32_t *sums, int n, int pred_order)
-{
- int i;
- int k, cnt, part;
- uint32_t all_bits;
-
- part = (1 << porder);
- all_bits = 0;
-
- cnt = (n >> porder) - pred_order;
- for(i=0; i<part; i++) {
- if(i == 1) cnt = (n >> porder);
- k = find_optimal_param(sums[i], cnt);
- rc->params[i] = k;
- all_bits += rice_encode_count(sums[i], cnt, k);
- }
- all_bits += (4 * part);
-
- rc->porder = porder;
-
- return all_bits;
-}
-
-static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
- uint32_t sums[][MAX_PARTITIONS])
-{
- int i, j;
- int parts;
- uint32_t *res, *res_end;
-
- /* sums for highest level */
- parts = (1 << pmax);
- res = &data[pred_order];
- res_end = &data[n >> pmax];
- for(i=0; i<parts; i++) {
- sums[pmax][i] = 0;
- while(res < res_end){
- sums[pmax][i] += *(res++);
- }
- res_end+= n >> pmax;
- }
- /* sums for lower levels */
- for(i=pmax-1; i>=pmin; i--) {
- parts = (1 << i);
- for(j=0; j<parts; j++) {
- sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
- }
- }
-}
-
-static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
- int32_t *data, int n, int pred_order)
-{
- int i;
- uint32_t bits[MAX_PARTITION_ORDER+1];
- int opt_porder;
- RiceContext tmp_rc;
- uint32_t *udata;
- uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
-
- assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
- assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
- assert(pmin <= pmax);
-
- udata = av_malloc(n * sizeof(uint32_t));
- for(i=0; i<n; i++) {
- udata[i] = (2*data[i]) ^ (data[i]>>31);
- }
-
- calc_sums(pmin, pmax, udata, n, pred_order, sums);
-
- opt_porder = pmin;
- bits[pmin] = UINT32_MAX;
- for(i=pmin; i<=pmax; i++) {
- bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
- if(bits[i] <= bits[opt_porder]) {
- opt_porder = i;
- *rc= tmp_rc;
- }
- }
-
- av_freep(&udata);
- return bits[opt_porder];
-}
-
-static int get_max_p_order(int max_porder, int n, int order)
-{
- int porder = FFMIN(max_porder, av_log2(n^(n-1)));
- if(order > 0)
- porder = FFMIN(porder, av_log2(n/order));
- return porder;
-}
-
-static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
- int32_t *data, int n, int pred_order,
- int bps)
-{
- uint32_t bits;
- pmin = get_max_p_order(pmin, n, pred_order);
- pmax = get_max_p_order(pmax, n, pred_order);
- bits = pred_order*bps + 6;
- bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
- return bits;
-}
-
-static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
- int32_t *data, int n, int pred_order,
- int bps, int precision)
-{
- uint32_t bits;
- pmin = get_max_p_order(pmin, n, pred_order);
- pmax = get_max_p_order(pmax, n, pred_order);
- bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
- bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
- return bits;
-}
-
-/**
- * Apply Welch window function to audio block
- */
-static void apply_welch_window(const int32_t *data, int len, double *w_data)
-{
- int i, n2;
- double w;
- double c;
-
- n2 = (len >> 1);
- c = 2.0 / (len - 1.0);
- for(i=0; i<n2; i++) {
- w = c - i - 1.0;
- w = 1.0 - (w * w);
- w_data[i] = data[i] * w;
- w_data[len-1-i] = data[len-1-i] * w;
- }
-}
-
-/**
- * Calculates autocorrelation data from audio samples
- * A Welch window function is applied before calculation.
- */
-static void compute_autocorr(const int32_t *data, int len, int lag,
- double *autoc)
-{
- int i, lag_ptr;
- double tmp[len + lag];
- double *data1= tmp + lag;
-
- apply_welch_window(data, len, data1);
-
- for(i=0; i<lag; i++){
- autoc[i] = 1.0;
- data1[i-lag]= 0.0;
- }
-
- for(i=0; i<len; i++){
- for(lag_ptr= i-lag; lag_ptr<=i; lag_ptr++){
- autoc[i-lag_ptr] += data1[i] * data1[lag_ptr];
- }
- }
-}
-
-/**
- * Levinson-Durbin recursion.
- * Produces LPC coefficients from autocorrelation data.
- */
-static void compute_lpc_coefs(const double *autoc, int max_order,
- double lpc[][MAX_LPC_ORDER], double *ref)
-{
- int i, j, i2;
- double r, err, tmp;
- double lpc_tmp[MAX_LPC_ORDER];
-
- for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
- err = autoc[0];
-
- for(i=0; i<max_order; i++) {
- r = -autoc[i+1];
- for(j=0; j<i; j++) {
- r -= lpc_tmp[j] * autoc[i-j];
- }
- r /= err;
- ref[i] = fabs(r);
-
- err *= 1.0 - (r * r);
-
- i2 = (i >> 1);
- lpc_tmp[i] = r;
- for(j=0; j<i2; j++) {
- tmp = lpc_tmp[j];
- lpc_tmp[j] += r * lpc_tmp[i-1-j];
- lpc_tmp[i-1-j] += r * tmp;
- }
- if(i & 1) {
- lpc_tmp[j] += lpc_tmp[j] * r;
- }
-
- for(j=0; j<=i; j++) {
- lpc[i][j] = -lpc_tmp[j];
- }
- }
-}
-
-/**
- * Quantize LPC coefficients
- */
-static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
- int32_t *lpc_out, int *shift)
-{
- int i;
- double cmax, error;
- int32_t qmax;
- int sh;
-
- /* define maximum levels */
- qmax = (1 << (precision - 1)) - 1;
-
- /* find maximum coefficient value */
- cmax = 0.0;
- for(i=0; i<order; i++) {
- cmax= FFMAX(cmax, fabs(lpc_in[i]));
- }
-
- /* if maximum value quantizes to zero, return all zeros */
- if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
- *shift = 0;
- memset(lpc_out, 0, sizeof(int32_t) * order);
- return;
- }
-
- /* calculate level shift which scales max coeff to available bits */
- sh = MAX_LPC_SHIFT;
- while((cmax * (1 << sh) > qmax) && (sh > 0)) {
- sh--;
- }
-
- /* since negative shift values are unsupported in decoder, scale down
- coefficients instead */
- if(sh == 0 && cmax > qmax) {
- double scale = ((double)qmax) / cmax;
- for(i=0; i<order; i++) {
- lpc_in[i] *= scale;
- }
- }
-
- /* output quantized coefficients and level shift */
- error=0;
- for(i=0; i<order; i++) {
- error += lpc_in[i] * (1 << sh);
- lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
- error -= lpc_out[i];
- }
- *shift = sh;
-}
-
-static int estimate_best_order(double *ref, int max_order)
-{
- int i, est;
-
- est = 1;
- for(i=max_order-1; i>=0; i--) {
- if(ref[i] > 0.10) {
- est = i+1;
- break;
- }
- }
- return est;
-}
-
-/**
- * Calculate LPC coefficients for multiple orders
- */
-static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
- int precision, int32_t coefs[][MAX_LPC_ORDER],
- int *shift, int use_lpc, int omethod)
-{
- double autoc[MAX_LPC_ORDER+1];
- double ref[MAX_LPC_ORDER];
- double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
- int i, j, pass;
- int opt_order;
-
- assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
-
- if(use_lpc == 1){
- compute_autocorr(samples, blocksize, max_order+1, autoc);
-
- compute_lpc_coefs(autoc, max_order, lpc, ref);
- }else{
- LLSModel m[2];
- double var[MAX_LPC_ORDER+1], eval, weight;
-
- for(pass=0; pass<use_lpc-1; pass++){
- av_init_lls(&m[pass&1], max_order);
-
- weight=0;
- for(i=max_order; i<blocksize; i++){
- for(j=0; j<=max_order; j++)
- var[j]= samples[i-j];
-
- if(pass){
- eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
- eval= (512>>pass) + fabs(eval - var[0]);
- for(j=0; j<=max_order; j++)
- var[j]/= sqrt(eval);
- weight += 1/eval;
- }else
- weight++;
-
- av_update_lls(&m[pass&1], var, 1.0);
- }
- av_solve_lls(&m[pass&1], 0.001, 0);
- }
-
- for(i=0; i<max_order; i++){
- for(j=0; j<max_order; j++)
- lpc[i][j]= m[(pass-1)&1].coeff[i][j];
- ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
- }
- for(i=max_order-1; i>0; i--)
- ref[i] = ref[i-1] - ref[i];
- }
- opt_order = max_order;
-
- if(omethod == ORDER_METHOD_EST) {
- opt_order = estimate_best_order(ref, max_order);
- i = opt_order-1;
- quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
- } else {
- for(i=0; i<max_order; i++) {
- quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
- }
- }
-
- return opt_order;
-}
-
-
-static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
-{
- assert(n > 0);
- memcpy(res, smp, n * sizeof(int32_t));
-}
-
-static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
- int order)
-{
- int i;
-
- for(i=0; i<order; i++) {
- res[i] = smp[i];
- }
-
- if(order==0){
- for(i=order; i<n; i++)
- res[i]= smp[i];
- }else if(order==1){
- for(i=order; i<n; i++)
- res[i]= smp[i] - smp[i-1];
- }else if(order==2){
- for(i=order; i<n; i++)
- res[i]= smp[i] - 2*smp[i-1] + smp[i-2];
- }else if(order==3){
- for(i=order; i<n; i++)
- res[i]= smp[i] - 3*smp[i-1] + 3*smp[i-2] - smp[i-3];
- }else{
- for(i=order; i<n; i++)
- res[i]= smp[i] - 4*smp[i-1] + 6*smp[i-2] - 4*smp[i-3] + smp[i-4];
- }
-}
-
-static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
- int order, const int32_t *coefs, int shift)
-{
- int i, j;
- int32_t pred;
-
- for(i=0; i<order; i++) {
- res[i] = smp[i];
- }
- for(i=order; i<n; i++) {
- pred = 0;
- for(j=0; j<order; j++) {
- pred += coefs[j] * smp[i-j-1];
- }
- res[i] = smp[i] - (pred >> shift);
- }
-}
-
-static int encode_residual(FlacEncodeContext *ctx, int ch)
-{
- int i, n;
- int min_order, max_order, opt_order, precision, omethod;
- int min_porder, max_porder;
- FlacFrame *frame;
- FlacSubframe *sub;
- int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
- int shift[MAX_LPC_ORDER];
- int32_t *res, *smp;
-
- frame = &ctx->frame;
- sub = &frame->subframes[ch];
- res = sub->residual;
- smp = sub->samples;
- n = frame->blocksize;
-
- /* CONSTANT */
- for(i=1; i<n; i++) {
- if(smp[i] != smp[0]) break;
- }
- if(i == n) {
- sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
- res[0] = smp[0];
- return sub->obits;
- }
-
- /* VERBATIM */
- if(n < 5) {
- sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
- encode_residual_verbatim(res, smp, n);
- return sub->obits * n;
- }
-
- min_order = ctx->options.min_prediction_order;
- max_order = ctx->options.max_prediction_order;
- min_porder = ctx->options.min_partition_order;
- max_porder = ctx->options.max_partition_order;
- precision = ctx->options.lpc_coeff_precision;
- omethod = ctx->options.prediction_order_method;
-
- /* FIXED */
- if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
- uint32_t bits[MAX_FIXED_ORDER+1];
- if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
- opt_order = 0;
- bits[0] = UINT32_MAX;
- for(i=min_order; i<=max_order; i++) {
- encode_residual_fixed(res, smp, n, i);
- bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
- n, i, sub->obits);
- if(bits[i] < bits[opt_order]) {
- opt_order = i;
- }
- }
- sub->order = opt_order;
- sub->type = FLAC_SUBFRAME_FIXED;
- sub->type_code = sub->type | sub->order;
- if(sub->order != max_order) {
- encode_residual_fixed(res, smp, n, sub->order);
- return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
- sub->order, sub->obits);
- }
- return bits[sub->order];
- }
-
- /* LPC */
- opt_order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift, ctx->options.use_lpc, omethod);
-
- if(omethod == ORDER_METHOD_2LEVEL ||
- omethod == ORDER_METHOD_4LEVEL ||
- omethod == ORDER_METHOD_8LEVEL) {
- int levels = 1 << omethod;
- uint32_t bits[levels];
- int order;
- int opt_index = levels-1;
- opt_order = max_order-1;
- bits[opt_index] = UINT32_MAX;
- for(i=levels-1; i>=0; i--) {
- order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
- if(order < 0) order = 0;
- encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
- bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
- res, n, order+1, sub->obits, precision);
- if(bits[i] < bits[opt_index]) {
- opt_index = i;
- opt_order = order;
- }
- }
- opt_order++;
- } else if(omethod == ORDER_METHOD_SEARCH) {
- // brute-force optimal order search
- uint32_t bits[MAX_LPC_ORDER];
- opt_order = 0;
- bits[0] = UINT32_MAX;
- for(i=min_order-1; i<max_order; i++) {
- encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
- bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
- res, n, i+1, sub->obits, precision);
- if(bits[i] < bits[opt_order]) {
- opt_order = i;
- }
- }
- opt_order++;
- } else if(omethod == ORDER_METHOD_LOG) {
- uint32_t bits[MAX_LPC_ORDER];
- int step;
-
- opt_order= min_order - 1 + (max_order-min_order)/3;
- memset(bits, -1, sizeof(bits));
-
- for(step=16 ;step; step>>=1){
- int last= opt_order;
- for(i=last-step; i<=last+step; i+= step){
- if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
- continue;
- encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
- bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
- res, n, i+1, sub->obits, precision);
- if(bits[i] < bits[opt_order])
- opt_order= i;
- }
- }
- opt_order++;
- }
-
- sub->order = opt_order;
- sub->type = FLAC_SUBFRAME_LPC;
- sub->type_code = sub->type | (sub->order-1);
- sub->shift = shift[sub->order-1];
- for(i=0; i<sub->order; i++) {
- sub->coefs[i] = coefs[sub->order-1][i];
- }
- encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
- return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
- sub->obits, precision);
-}
-
-static int encode_residual_v(FlacEncodeContext *ctx, int ch)
-{
- int i, n;
- FlacFrame *frame;
- FlacSubframe *sub;
- int32_t *res, *smp;
-
- frame = &ctx->frame;
- sub = &frame->subframes[ch];
- res = sub->residual;
- smp = sub->samples;
- n = frame->blocksize;
-
- /* CONSTANT */
- for(i=1; i<n; i++) {
- if(smp[i] != smp[0]) break;
- }
- if(i == n) {
- sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
- res[0] = smp[0];
- return sub->obits;
- }
-
- /* VERBATIM */
- sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
- encode_residual_verbatim(res, smp, n);
- return sub->obits * n;
-}
-
-static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
-{
- int i, best;
- int32_t lt, rt;
- uint64_t sum[4];
- uint64_t score[4];
- int k;
-
- /* calculate sum of 2nd order residual for each channel */
- sum[0] = sum[1] = sum[2] = sum[3] = 0;
- for(i=2; i<n; i++) {
- lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
- rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
- sum[2] += FFABS((lt + rt) >> 1);
- sum[3] += FFABS(lt - rt);
- sum[0] += FFABS(lt);
- sum[1] += FFABS(rt);
- }
- /* estimate bit counts */
- for(i=0; i<4; i++) {
- k = find_optimal_param(2*sum[i], n);
- sum[i] = rice_encode_count(2*sum[i], n, k);
- }
-
- /* calculate score for each mode */
- score[0] = sum[0] + sum[1];
- score[1] = sum[0] + sum[3];
- score[2] = sum[1] + sum[3];
- score[3] = sum[2] + sum[3];
-
- /* return mode with lowest score */
- best = 0;
- for(i=1; i<4; i++) {
- if(score[i] < score[best]) {
- best = i;
- }
- }
- if(best == 0) {
- return FLAC_CHMODE_LEFT_RIGHT;
- } else if(best == 1) {
- return FLAC_CHMODE_LEFT_SIDE;
- } else if(best == 2) {
- return FLAC_CHMODE_RIGHT_SIDE;
- } else {
- return FLAC_CHMODE_MID_SIDE;
- }
-}
-
-/**
- * Perform stereo channel decorrelation
- */
-static void channel_decorrelation(FlacEncodeContext *ctx)
-{
- FlacFrame *frame;
- int32_t *left, *right;
- int i, n;
-
- frame = &ctx->frame;
- n = frame->blocksize;
- left = frame->subframes[0].samples;
- right = frame->subframes[1].samples;
-
- if(ctx->channels != 2) {
- frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
- return;
- }
-
- frame->ch_mode = estimate_stereo_mode(left, right, n);
-
- /* perform decorrelation and adjust bits-per-sample */
- if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
- return;
- }
- if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
- int32_t tmp;
- for(i=0; i<n; i++) {
- tmp = left[i];
- left[i] = (tmp + right[i]) >> 1;
- right[i] = tmp - right[i];
- }
- frame->subframes[1].obits++;
- } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
- for(i=0; i<n; i++) {
- right[i] = left[i] - right[i];
- }
- frame->subframes[1].obits++;
- } else {
- for(i=0; i<n; i++) {
- left[i] -= right[i];
- }
- frame->subframes[0].obits++;
- }
-}
-
-static void put_sbits(PutBitContext *pb, int bits, int32_t val)
-{
- assert(bits >= 0 && bits <= 31);
-
- put_bits(pb, bits, val & ((1<<bits)-1));
-}
-
-static void write_utf8(PutBitContext *pb, uint32_t val)
-{
- uint8_t tmp;
- PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
-}
-
-static void output_frame_header(FlacEncodeContext *s)
-{
- FlacFrame *frame;
- int crc;
-
- frame = &s->frame;
-
- put_bits(&s->pb, 16, 0xFFF8);
- put_bits(&s->pb, 4, frame->bs_code[0]);
- put_bits(&s->pb, 4, s->sr_code[0]);
- if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
- put_bits(&s->pb, 4, s->ch_code);
- } else {
- put_bits(&s->pb, 4, frame->ch_mode);
- }
- put_bits(&s->pb, 3, 4); /* bits-per-sample code */
- put_bits(&s->pb, 1, 0);
- write_utf8(&s->pb, s->frame_count);
- if(frame->bs_code[0] == 6) {
- put_bits(&s->pb, 8, frame->bs_code[1]);
- } else if(frame->bs_code[0] == 7) {
- put_bits(&s->pb, 16, frame->bs_code[1]);
- }
- if(s->sr_code[0] == 12) {
- put_bits(&s->pb, 8, s->sr_code[1]);
- } else if(s->sr_code[0] > 12) {
- put_bits(&s->pb, 16, s->sr_code[1]);
- }
- flush_put_bits(&s->pb);
- crc = av_crc(av_crc07, 0, s->pb.buf, put_bits_count(&s->pb)>>3);
- put_bits(&s->pb, 8, crc);
-}
-
-static void output_subframe_constant(FlacEncodeContext *s, int ch)
-{
- FlacSubframe *sub;
- int32_t res;
-
- sub = &s->frame.subframes[ch];
- res = sub->residual[0];
- put_sbits(&s->pb, sub->obits, res);
-}
-
-static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
-{
- int i;
- FlacFrame *frame;
- FlacSubframe *sub;
- int32_t res;
-
- frame = &s->frame;
- sub = &frame->subframes[ch];
-
- for(i=0; i<frame->blocksize; i++) {
- res = sub->residual[i];
- put_sbits(&s->pb, sub->obits, res);
- }
-}
-
-static void output_residual(FlacEncodeContext *ctx, int ch)
-{
- int i, j, p, n, parts;
- int k, porder, psize, res_cnt;
- FlacFrame *frame;
- FlacSubframe *sub;
- int32_t *res;
-
- frame = &ctx->frame;
- sub = &frame->subframes[ch];
- res = sub->residual;
- n = frame->blocksize;
-
- /* rice-encoded block */
- put_bits(&ctx->pb, 2, 0);
-
- /* partition order */
- porder = sub->rc.porder;
- psize = n >> porder;
- parts = (1 << porder);
- put_bits(&ctx->pb, 4, porder);
- res_cnt = psize - sub->order;
-
- /* residual */
- j = sub->order;
- for(p=0; p<parts; p++) {
- k = sub->rc.params[p];
- put_bits(&ctx->pb, 4, k);
- if(p == 1) res_cnt = psize;
- for(i=0; i<res_cnt && j<n; i++, j++) {
- set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
- }
- }
-}
-
-static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
-{
- int i;
- FlacFrame *frame;
- FlacSubframe *sub;
-
- frame = &ctx->frame;
- sub = &frame->subframes[ch];
-
- /* warm-up samples */
- for(i=0; i<sub->order; i++) {
- put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
- }
-
- /* residual */
- output_residual(ctx, ch);
-}
-
-static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
-{
- int i, cbits;
- FlacFrame *frame;
- FlacSubframe *sub;
-
- frame = &ctx->frame;
- sub = &frame->subframes[ch];
-
- /* warm-up samples */
- for(i=0; i<sub->order; i++) {
- put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
- }
-
- /* LPC coefficients */
- cbits = ctx->options.lpc_coeff_precision;
- put_bits(&ctx->pb, 4, cbits-1);
- put_sbits(&ctx->pb, 5, sub->shift);
- for(i=0; i<sub->order; i++) {
- put_sbits(&ctx->pb, cbits, sub->coefs[i]);
- }
-
- /* residual */
- output_residual(ctx, ch);
-}
-
-static void output_subframes(FlacEncodeContext *s)
-{
- FlacFrame *frame;
- FlacSubframe *sub;
- int ch;
-
- frame = &s->frame;
-
- for(ch=0; ch<s->channels; ch++) {
- sub = &frame->subframes[ch];
-
- /* subframe header */
- put_bits(&s->pb, 1, 0);
- put_bits(&s->pb, 6, sub->type_code);
- put_bits(&s->pb, 1, 0); /* no wasted bits */
-
- /* subframe */
- if(sub->type == FLAC_SUBFRAME_CONSTANT) {
- output_subframe_constant(s, ch);
- } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
- output_subframe_verbatim(s, ch);
- } else if(sub->type == FLAC_SUBFRAME_FIXED) {
- output_subframe_fixed(s, ch);
- } else if(sub->type == FLAC_SUBFRAME_LPC) {
- output_subframe_lpc(s, ch);
- }
- }
-}
-
-static void output_frame_footer(FlacEncodeContext *s)
-{
- int crc;
- flush_put_bits(&s->pb);
- crc = bswap_16(av_crc(av_crc8005, 0, s->pb.buf, put_bits_count(&s->pb)>>3));
- put_bits(&s->pb, 16, crc);
- flush_put_bits(&s->pb);
-}
-
-static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
- int buf_size, void *data)
-{
- int ch;
- FlacEncodeContext *s;
- int16_t *samples = data;
- int out_bytes;
-
- s = avctx->priv_data;
-
- s->blocksize = avctx->frame_size;
- init_frame(s);
-
- copy_samples(s, samples);
-
- channel_decorrelation(s);
-
- for(ch=0; ch<s->channels; ch++) {
- encode_residual(s, ch);
- }
- init_put_bits(&s->pb, frame, buf_size);
- output_frame_header(s);
- output_subframes(s);
- output_frame_footer(s);
- out_bytes = put_bits_count(&s->pb) >> 3;
-
- if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
- /* frame too large. use verbatim mode */
- for(ch=0; ch<s->channels; ch++) {
- encode_residual_v(s, ch);
- }
- init_put_bits(&s->pb, frame, buf_size);
- output_frame_header(s);
- output_subframes(s);
- output_frame_footer(s);
- out_bytes = put_bits_count(&s->pb) >> 3;
-
- if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
- /* still too large. must be an error. */
- av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
- return -1;
- }
- }
-
- s->frame_count++;
- return out_bytes;
-}
-
-static int flac_encode_close(AVCodecContext *avctx)
-{
- av_freep(&avctx->extradata);
- avctx->extradata_size = 0;
- av_freep(&avctx->coded_frame);
- return 0;
-}
-
-AVCodec flac_encoder = {
- "flac",
- CODEC_TYPE_AUDIO,
- CODEC_ID_FLAC,
- sizeof(FlacEncodeContext),
- flac_encode_init,
- flac_encode_frame,
- flac_encode_close,
- NULL,
- .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
-};