summaryrefslogtreecommitdiff
path: root/contrib/ffmpeg/libavcodec/mpegaudiodec.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ffmpeg/libavcodec/mpegaudiodec.c')
-rw-r--r--contrib/ffmpeg/libavcodec/mpegaudiodec.c2879
1 files changed, 2879 insertions, 0 deletions
diff --git a/contrib/ffmpeg/libavcodec/mpegaudiodec.c b/contrib/ffmpeg/libavcodec/mpegaudiodec.c
new file mode 100644
index 000000000..54bcee3b0
--- /dev/null
+++ b/contrib/ffmpeg/libavcodec/mpegaudiodec.c
@@ -0,0 +1,2879 @@
+/*
+ * MPEG Audio decoder
+ * Copyright (c) 2001, 2002 Fabrice Bellard.
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file mpegaudiodec.c
+ * MPEG Audio decoder.
+ */
+
+//#define DEBUG
+#include "avcodec.h"
+#include "bitstream.h"
+#include "dsputil.h"
+
+/*
+ * TODO:
+ * - in low precision mode, use more 16 bit multiplies in synth filter
+ * - test lsf / mpeg25 extensively.
+ */
+
+/* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
+ audio decoder */
+#ifdef CONFIG_MPEGAUDIO_HP
+# define USE_HIGHPRECISION
+#endif
+
+#include "mpegaudio.h"
+
+#include "mathops.h"
+
+#define FRAC_ONE (1 << FRAC_BITS)
+
+#define FIX(a) ((int)((a) * FRAC_ONE))
+/* WARNING: only correct for posititive numbers */
+#define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
+#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
+
+#define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
+
+/****************/
+
+#define HEADER_SIZE 4
+#define BACKSTEP_SIZE 512
+#define EXTRABYTES 24
+
+struct GranuleDef;
+
+typedef struct MPADecodeContext {
+ DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]);
+ int last_buf_size;
+ int frame_size;
+ /* next header (used in free format parsing) */
+ uint32_t free_format_next_header;
+ int error_protection;
+ int layer;
+ int sample_rate;
+ int sample_rate_index; /* between 0 and 8 */
+ int bit_rate;
+ GetBitContext gb;
+ GetBitContext in_gb;
+ int nb_channels;
+ int mode;
+ int mode_ext;
+ int lsf;
+ MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
+ int synth_buf_offset[MPA_MAX_CHANNELS];
+ int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
+ int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
+#ifdef DEBUG
+ int frame_count;
+#endif
+ void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
+ int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
+ int dither_state;
+ int error_resilience;
+} MPADecodeContext;
+
+/**
+ * Context for MP3On4 decoder
+ */
+typedef struct MP3On4DecodeContext {
+ int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
+ int chan_cfg; ///< channel config number
+ MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
+} MP3On4DecodeContext;
+
+/* layer 3 "granule" */
+typedef struct GranuleDef {
+ uint8_t scfsi;
+ int part2_3_length;
+ int big_values;
+ int global_gain;
+ int scalefac_compress;
+ uint8_t block_type;
+ uint8_t switch_point;
+ int table_select[3];
+ int subblock_gain[3];
+ uint8_t scalefac_scale;
+ uint8_t count1table_select;
+ int region_size[3]; /* number of huffman codes in each region */
+ int preflag;
+ int short_start, long_end; /* long/short band indexes */
+ uint8_t scale_factors[40];
+ int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
+} GranuleDef;
+
+#define MODE_EXT_MS_STEREO 2
+#define MODE_EXT_I_STEREO 1
+
+/* layer 3 huffman tables */
+typedef struct HuffTable {
+ int xsize;
+ const uint8_t *bits;
+ const uint16_t *codes;
+} HuffTable;
+
+#include "mpegaudiodectab.h"
+
+static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
+static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
+
+/* vlc structure for decoding layer 3 huffman tables */
+static VLC huff_vlc[16];
+static VLC huff_quad_vlc[2];
+/* computed from band_size_long */
+static uint16_t band_index_long[9][23];
+/* XXX: free when all decoders are closed */
+#define TABLE_4_3_SIZE (8191 + 16)*4
+static int8_t *table_4_3_exp;
+static uint32_t *table_4_3_value;
+static uint32_t exp_table[512];
+static uint32_t expval_table[512][16];
+/* intensity stereo coef table */
+static int32_t is_table[2][16];
+static int32_t is_table_lsf[2][2][16];
+static int32_t csa_table[8][4];
+static float csa_table_float[8][4];
+static int32_t mdct_win[8][36];
+
+/* lower 2 bits: modulo 3, higher bits: shift */
+static uint16_t scale_factor_modshift[64];
+/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
+static int32_t scale_factor_mult[15][3];
+/* mult table for layer 2 group quantization */
+
+#define SCALE_GEN(v) \
+{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
+
+static const int32_t scale_factor_mult2[3][3] = {
+ SCALE_GEN(4.0 / 3.0), /* 3 steps */
+ SCALE_GEN(4.0 / 5.0), /* 5 steps */
+ SCALE_GEN(4.0 / 9.0), /* 9 steps */
+};
+
+static MPA_INT window[512] __attribute__((aligned(16)));
+
+/* layer 1 unscaling */
+/* n = number of bits of the mantissa minus 1 */
+static inline int l1_unscale(int n, int mant, int scale_factor)
+{
+ int shift, mod;
+ int64_t val;
+
+ shift = scale_factor_modshift[scale_factor];
+ mod = shift & 3;
+ shift >>= 2;
+ val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
+ shift += n;
+ /* NOTE: at this point, 1 <= shift >= 21 + 15 */
+ return (int)((val + (1LL << (shift - 1))) >> shift);
+}
+
+static inline int l2_unscale_group(int steps, int mant, int scale_factor)
+{
+ int shift, mod, val;
+
+ shift = scale_factor_modshift[scale_factor];
+ mod = shift & 3;
+ shift >>= 2;
+
+ val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
+ /* NOTE: at this point, 0 <= shift <= 21 */
+ if (shift > 0)
+ val = (val + (1 << (shift - 1))) >> shift;
+ return val;
+}
+
+/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
+static inline int l3_unscale(int value, int exponent)
+{
+ unsigned int m;
+ int e;
+
+ e = table_4_3_exp [4*value + (exponent&3)];
+ m = table_4_3_value[4*value + (exponent&3)];
+ e -= (exponent >> 2);
+ assert(e>=1);
+ if (e > 31)
+ return 0;
+ m = (m + (1 << (e-1))) >> e;
+
+ return m;
+}
+
+/* all integer n^(4/3) computation code */
+#define DEV_ORDER 13
+
+#define POW_FRAC_BITS 24
+#define POW_FRAC_ONE (1 << POW_FRAC_BITS)
+#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
+#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
+
+static int dev_4_3_coefs[DEV_ORDER];
+
+#if 0 /* unused */
+static int pow_mult3[3] = {
+ POW_FIX(1.0),
+ POW_FIX(1.25992104989487316476),
+ POW_FIX(1.58740105196819947474),
+};
+#endif
+
+static void int_pow_init(void)
+{
+ int i, a;
+
+ a = POW_FIX(1.0);
+ for(i=0;i<DEV_ORDER;i++) {
+ a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
+ dev_4_3_coefs[i] = a;
+ }
+}
+
+#if 0 /* unused, remove? */
+/* return the mantissa and the binary exponent */
+static int int_pow(int i, int *exp_ptr)
+{
+ int e, er, eq, j;
+ int a, a1;
+
+ /* renormalize */
+ a = i;
+ e = POW_FRAC_BITS;
+ while (a < (1 << (POW_FRAC_BITS - 1))) {
+ a = a << 1;
+ e--;
+ }
+ a -= (1 << POW_FRAC_BITS);
+ a1 = 0;
+ for(j = DEV_ORDER - 1; j >= 0; j--)
+ a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
+ a = (1 << POW_FRAC_BITS) + a1;
+ /* exponent compute (exact) */
+ e = e * 4;
+ er = e % 3;
+ eq = e / 3;
+ a = POW_MULL(a, pow_mult3[er]);
+ while (a >= 2 * POW_FRAC_ONE) {
+ a = a >> 1;
+ eq++;
+ }
+ /* convert to float */
+ while (a < POW_FRAC_ONE) {
+ a = a << 1;
+ eq--;
+ }
+ /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
+#if POW_FRAC_BITS > FRAC_BITS
+ a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
+ /* correct overflow */
+ if (a >= 2 * (1 << FRAC_BITS)) {
+ a = a >> 1;
+ eq++;
+ }
+#endif
+ *exp_ptr = eq;
+ return a;
+}
+#endif
+
+static int decode_init(AVCodecContext * avctx)
+{
+ MPADecodeContext *s = avctx->priv_data;
+ static int init=0;
+ int i, j, k;
+
+#if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
+ avctx->sample_fmt= SAMPLE_FMT_S32;
+#else
+ avctx->sample_fmt= SAMPLE_FMT_S16;
+#endif
+ s->error_resilience= avctx->error_resilience;
+
+ if(avctx->antialias_algo != FF_AA_FLOAT)
+ s->compute_antialias= compute_antialias_integer;
+ else
+ s->compute_antialias= compute_antialias_float;
+
+ if (!init && !avctx->parse_only) {
+ /* scale factors table for layer 1/2 */
+ for(i=0;i<64;i++) {
+ int shift, mod;
+ /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
+ shift = (i / 3);
+ mod = i % 3;
+ scale_factor_modshift[i] = mod | (shift << 2);
+ }
+
+ /* scale factor multiply for layer 1 */
+ for(i=0;i<15;i++) {
+ int n, norm;
+ n = i + 2;
+ norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
+ scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
+ scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
+ scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
+ dprintf("%d: norm=%x s=%x %x %x\n",
+ i, norm,
+ scale_factor_mult[i][0],
+ scale_factor_mult[i][1],
+ scale_factor_mult[i][2]);
+ }
+
+ ff_mpa_synth_init(window);
+
+ /* huffman decode tables */
+ for(i=1;i<16;i++) {
+ const HuffTable *h = &mpa_huff_tables[i];
+ int xsize, x, y;
+ unsigned int n;
+ uint8_t tmp_bits [512];
+ uint16_t tmp_codes[512];
+
+ memset(tmp_bits , 0, sizeof(tmp_bits ));
+ memset(tmp_codes, 0, sizeof(tmp_codes));
+
+ xsize = h->xsize;
+ n = xsize * xsize;
+
+ j = 0;
+ for(x=0;x<xsize;x++) {
+ for(y=0;y<xsize;y++){
+ tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
+ tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
+ }
+ }
+
+ /* XXX: fail test */
+ init_vlc(&huff_vlc[i], 7, 512,
+ tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
+ }
+ for(i=0;i<2;i++) {
+ init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
+ mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
+ }
+
+ for(i=0;i<9;i++) {
+ k = 0;
+ for(j=0;j<22;j++) {
+ band_index_long[i][j] = k;
+ k += band_size_long[i][j];
+ }
+ band_index_long[i][22] = k;
+ }
+
+ /* compute n ^ (4/3) and store it in mantissa/exp format */
+ table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
+ if(!table_4_3_exp)
+ return -1;
+ table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
+ if(!table_4_3_value)
+ return -1;
+
+ int_pow_init();
+ for(i=1;i<TABLE_4_3_SIZE;i++) {
+ double f, fm;
+ int e, m;
+ f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
+ fm = frexp(f, &e);
+ m = (uint32_t)(fm*(1LL<<31) + 0.5);
+ e+= FRAC_BITS - 31 + 5 - 100;
+
+ /* normalized to FRAC_BITS */
+ table_4_3_value[i] = m;
+// av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
+ table_4_3_exp[i] = -e;
+ }
+ for(i=0; i<512*16; i++){
+ int exponent= (i>>4);
+ double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
+ expval_table[exponent][i&15]= llrint(f);
+ if((i&15)==1)
+ exp_table[exponent]= llrint(f);
+ }
+
+ for(i=0;i<7;i++) {
+ float f;
+ int v;
+ if (i != 6) {
+ f = tan((double)i * M_PI / 12.0);
+ v = FIXR(f / (1.0 + f));
+ } else {
+ v = FIXR(1.0);
+ }
+ is_table[0][i] = v;
+ is_table[1][6 - i] = v;
+ }
+ /* invalid values */
+ for(i=7;i<16;i++)
+ is_table[0][i] = is_table[1][i] = 0.0;
+
+ for(i=0;i<16;i++) {
+ double f;
+ int e, k;
+
+ for(j=0;j<2;j++) {
+ e = -(j + 1) * ((i + 1) >> 1);
+ f = pow(2.0, e / 4.0);
+ k = i & 1;
+ is_table_lsf[j][k ^ 1][i] = FIXR(f);
+ is_table_lsf[j][k][i] = FIXR(1.0);
+ dprintf("is_table_lsf %d %d: %x %x\n",
+ i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
+ }
+ }
+
+ for(i=0;i<8;i++) {
+ float ci, cs, ca;
+ ci = ci_table[i];
+ cs = 1.0 / sqrt(1.0 + ci * ci);
+ ca = cs * ci;
+ csa_table[i][0] = FIXHR(cs/4);
+ csa_table[i][1] = FIXHR(ca/4);
+ csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
+ csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
+ csa_table_float[i][0] = cs;
+ csa_table_float[i][1] = ca;
+ csa_table_float[i][2] = ca + cs;
+ csa_table_float[i][3] = ca - cs;
+// printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
+// av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
+ }
+
+ /* compute mdct windows */
+ for(i=0;i<36;i++) {
+ for(j=0; j<4; j++){
+ double d;
+
+ if(j==2 && i%3 != 1)
+ continue;
+
+ d= sin(M_PI * (i + 0.5) / 36.0);
+ if(j==1){
+ if (i>=30) d= 0;
+ else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
+ else if(i>=18) d= 1;
+ }else if(j==3){
+ if (i< 6) d= 0;
+ else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
+ else if(i< 18) d= 1;
+ }
+ //merge last stage of imdct into the window coefficients
+ d*= 0.5 / cos(M_PI*(2*i + 19)/72);
+
+ if(j==2)
+ mdct_win[j][i/3] = FIXHR((d / (1<<5)));
+ else
+ mdct_win[j][i ] = FIXHR((d / (1<<5)));
+// av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
+ }
+ }
+
+ /* NOTE: we do frequency inversion adter the MDCT by changing
+ the sign of the right window coefs */
+ for(j=0;j<4;j++) {
+ for(i=0;i<36;i+=2) {
+ mdct_win[j + 4][i] = mdct_win[j][i];
+ mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
+ }
+ }
+
+#if defined(DEBUG)
+ for(j=0;j<8;j++) {
+ av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
+ for(i=0;i<36;i++)
+ av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
+ av_log(avctx, AV_LOG_DEBUG, "\n");
+ }
+#endif
+ init = 1;
+ }
+
+#ifdef DEBUG
+ s->frame_count = 0;
+#endif
+ if (avctx->codec_id == CODEC_ID_MP3ADU)
+ s->adu_mode = 1;
+ return 0;
+}
+
+/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
+
+/* cos(i*pi/64) */
+
+#define COS0_0 FIXHR(0.50060299823519630134/2)
+#define COS0_1 FIXHR(0.50547095989754365998/2)
+#define COS0_2 FIXHR(0.51544730992262454697/2)
+#define COS0_3 FIXHR(0.53104259108978417447/2)
+#define COS0_4 FIXHR(0.55310389603444452782/2)
+#define COS0_5 FIXHR(0.58293496820613387367/2)
+#define COS0_6 FIXHR(0.62250412303566481615/2)
+#define COS0_7 FIXHR(0.67480834145500574602/2)
+#define COS0_8 FIXHR(0.74453627100229844977/2)
+#define COS0_9 FIXHR(0.83934964541552703873/2)
+#define COS0_10 FIXHR(0.97256823786196069369/2)
+#define COS0_11 FIXHR(1.16943993343288495515/4)
+#define COS0_12 FIXHR(1.48416461631416627724/4)
+#define COS0_13 FIXHR(2.05778100995341155085/8)
+#define COS0_14 FIXHR(3.40760841846871878570/8)
+#define COS0_15 FIXHR(10.19000812354805681150/32)
+
+#define COS1_0 FIXHR(0.50241928618815570551/2)
+#define COS1_1 FIXHR(0.52249861493968888062/2)
+#define COS1_2 FIXHR(0.56694403481635770368/2)
+#define COS1_3 FIXHR(0.64682178335999012954/2)
+#define COS1_4 FIXHR(0.78815462345125022473/2)
+#define COS1_5 FIXHR(1.06067768599034747134/4)
+#define COS1_6 FIXHR(1.72244709823833392782/4)
+#define COS1_7 FIXHR(5.10114861868916385802/16)
+
+#define COS2_0 FIXHR(0.50979557910415916894/2)
+#define COS2_1 FIXHR(0.60134488693504528054/2)
+#define COS2_2 FIXHR(0.89997622313641570463/2)
+#define COS2_3 FIXHR(2.56291544774150617881/8)
+
+#define COS3_0 FIXHR(0.54119610014619698439/2)
+#define COS3_1 FIXHR(1.30656296487637652785/4)
+
+#define COS4_0 FIXHR(0.70710678118654752439/2)
+
+/* butterfly operator */
+#define BF(a, b, c, s)\
+{\
+ tmp0 = tab[a] + tab[b];\
+ tmp1 = tab[a] - tab[b];\
+ tab[a] = tmp0;\
+ tab[b] = MULH(tmp1<<(s), c);\
+}
+
+#define BF1(a, b, c, d)\
+{\
+ BF(a, b, COS4_0, 1);\
+ BF(c, d,-COS4_0, 1);\
+ tab[c] += tab[d];\
+}
+
+#define BF2(a, b, c, d)\
+{\
+ BF(a, b, COS4_0, 1);\
+ BF(c, d,-COS4_0, 1);\
+ tab[c] += tab[d];\
+ tab[a] += tab[c];\
+ tab[c] += tab[b];\
+ tab[b] += tab[d];\
+}
+
+#define ADD(a, b) tab[a] += tab[b]
+
+/* DCT32 without 1/sqrt(2) coef zero scaling. */
+static void dct32(int32_t *out, int32_t *tab)
+{
+ int tmp0, tmp1;
+
+ /* pass 1 */
+ BF( 0, 31, COS0_0 , 1);
+ BF(15, 16, COS0_15, 5);
+ /* pass 2 */
+ BF( 0, 15, COS1_0 , 1);
+ BF(16, 31,-COS1_0 , 1);
+ /* pass 1 */
+ BF( 7, 24, COS0_7 , 1);
+ BF( 8, 23, COS0_8 , 1);
+ /* pass 2 */
+ BF( 7, 8, COS1_7 , 4);
+ BF(23, 24,-COS1_7 , 4);
+ /* pass 3 */
+ BF( 0, 7, COS2_0 , 1);
+ BF( 8, 15,-COS2_0 , 1);
+ BF(16, 23, COS2_0 , 1);
+ BF(24, 31,-COS2_0 , 1);
+ /* pass 1 */
+ BF( 3, 28, COS0_3 , 1);
+ BF(12, 19, COS0_12, 2);
+ /* pass 2 */
+ BF( 3, 12, COS1_3 , 1);
+ BF(19, 28,-COS1_3 , 1);
+ /* pass 1 */
+ BF( 4, 27, COS0_4 , 1);
+ BF(11, 20, COS0_11, 2);
+ /* pass 2 */
+ BF( 4, 11, COS1_4 , 1);
+ BF(20, 27,-COS1_4 , 1);
+ /* pass 3 */
+ BF( 3, 4, COS2_3 , 3);
+ BF(11, 12,-COS2_3 , 3);
+ BF(19, 20, COS2_3 , 3);
+ BF(27, 28,-COS2_3 , 3);
+ /* pass 4 */
+ BF( 0, 3, COS3_0 , 1);
+ BF( 4, 7,-COS3_0 , 1);
+ BF( 8, 11, COS3_0 , 1);
+ BF(12, 15,-COS3_0 , 1);
+ BF(16, 19, COS3_0 , 1);
+ BF(20, 23,-COS3_0 , 1);
+ BF(24, 27, COS3_0 , 1);
+ BF(28, 31,-COS3_0 , 1);
+
+
+
+ /* pass 1 */
+ BF( 1, 30, COS0_1 , 1);
+ BF(14, 17, COS0_14, 3);
+ /* pass 2 */
+ BF( 1, 14, COS1_1 , 1);
+ BF(17, 30,-COS1_1 , 1);
+ /* pass 1 */
+ BF( 6, 25, COS0_6 , 1);
+ BF( 9, 22, COS0_9 , 1);
+ /* pass 2 */
+ BF( 6, 9, COS1_6 , 2);
+ BF(22, 25,-COS1_6 , 2);
+ /* pass 3 */
+ BF( 1, 6, COS2_1 , 1);
+ BF( 9, 14,-COS2_1 , 1);
+ BF(17, 22, COS2_1 , 1);
+ BF(25, 30,-COS2_1 , 1);
+
+ /* pass 1 */
+ BF( 2, 29, COS0_2 , 1);
+ BF(13, 18, COS0_13, 3);
+ /* pass 2 */
+ BF( 2, 13, COS1_2 , 1);
+ BF(18, 29,-COS1_2 , 1);
+ /* pass 1 */
+ BF( 5, 26, COS0_5 , 1);
+ BF(10, 21, COS0_10, 1);
+ /* pass 2 */
+ BF( 5, 10, COS1_5 , 2);
+ BF(21, 26,-COS1_5 , 2);
+ /* pass 3 */
+ BF( 2, 5, COS2_2 , 1);
+ BF(10, 13,-COS2_2 , 1);
+ BF(18, 21, COS2_2 , 1);
+ BF(26, 29,-COS2_2 , 1);
+ /* pass 4 */
+ BF( 1, 2, COS3_1 , 2);
+ BF( 5, 6,-COS3_1 , 2);
+ BF( 9, 10, COS3_1 , 2);
+ BF(13, 14,-COS3_1 , 2);
+ BF(17, 18, COS3_1 , 2);
+ BF(21, 22,-COS3_1 , 2);
+ BF(25, 26, COS3_1 , 2);
+ BF(29, 30,-COS3_1 , 2);
+
+ /* pass 5 */
+ BF1( 0, 1, 2, 3);
+ BF2( 4, 5, 6, 7);
+ BF1( 8, 9, 10, 11);
+ BF2(12, 13, 14, 15);
+ BF1(16, 17, 18, 19);
+ BF2(20, 21, 22, 23);
+ BF1(24, 25, 26, 27);
+ BF2(28, 29, 30, 31);
+
+ /* pass 6 */
+
+ ADD( 8, 12);
+ ADD(12, 10);
+ ADD(10, 14);
+ ADD(14, 9);
+ ADD( 9, 13);
+ ADD(13, 11);
+ ADD(11, 15);
+
+ out[ 0] = tab[0];
+ out[16] = tab[1];
+ out[ 8] = tab[2];
+ out[24] = tab[3];
+ out[ 4] = tab[4];
+ out[20] = tab[5];
+ out[12] = tab[6];
+ out[28] = tab[7];
+ out[ 2] = tab[8];
+ out[18] = tab[9];
+ out[10] = tab[10];
+ out[26] = tab[11];
+ out[ 6] = tab[12];
+ out[22] = tab[13];
+ out[14] = tab[14];
+ out[30] = tab[15];
+
+ ADD(24, 28);
+ ADD(28, 26);
+ ADD(26, 30);
+ ADD(30, 25);
+ ADD(25, 29);
+ ADD(29, 27);
+ ADD(27, 31);
+
+ out[ 1] = tab[16] + tab[24];
+ out[17] = tab[17] + tab[25];
+ out[ 9] = tab[18] + tab[26];
+ out[25] = tab[19] + tab[27];
+ out[ 5] = tab[20] + tab[28];
+ out[21] = tab[21] + tab[29];
+ out[13] = tab[22] + tab[30];
+ out[29] = tab[23] + tab[31];
+ out[ 3] = tab[24] + tab[20];
+ out[19] = tab[25] + tab[21];
+ out[11] = tab[26] + tab[22];
+ out[27] = tab[27] + tab[23];
+ out[ 7] = tab[28] + tab[18];
+ out[23] = tab[29] + tab[19];
+ out[15] = tab[30] + tab[17];
+ out[31] = tab[31];
+}
+
+#if FRAC_BITS <= 15
+
+static inline int round_sample(int *sum)
+{
+ int sum1;
+ sum1 = (*sum) >> OUT_SHIFT;
+ *sum &= (1<<OUT_SHIFT)-1;
+ if (sum1 < OUT_MIN)
+ sum1 = OUT_MIN;
+ else if (sum1 > OUT_MAX)
+ sum1 = OUT_MAX;
+ return sum1;
+}
+
+/* signed 16x16 -> 32 multiply add accumulate */
+#define MACS(rt, ra, rb) MAC16(rt, ra, rb)
+
+/* signed 16x16 -> 32 multiply */
+#define MULS(ra, rb) MUL16(ra, rb)
+
+#else
+
+static inline int round_sample(int64_t *sum)
+{
+ int sum1;
+ sum1 = (int)((*sum) >> OUT_SHIFT);
+ *sum &= (1<<OUT_SHIFT)-1;
+ if (sum1 < OUT_MIN)
+ sum1 = OUT_MIN;
+ else if (sum1 > OUT_MAX)
+ sum1 = OUT_MAX;
+ return sum1;
+}
+
+# define MULS(ra, rb) MUL64(ra, rb)
+#endif
+
+#define SUM8(sum, op, w, p) \
+{ \
+ sum op MULS((w)[0 * 64], p[0 * 64]);\
+ sum op MULS((w)[1 * 64], p[1 * 64]);\
+ sum op MULS((w)[2 * 64], p[2 * 64]);\
+ sum op MULS((w)[3 * 64], p[3 * 64]);\
+ sum op MULS((w)[4 * 64], p[4 * 64]);\
+ sum op MULS((w)[5 * 64], p[5 * 64]);\
+ sum op MULS((w)[6 * 64], p[6 * 64]);\
+ sum op MULS((w)[7 * 64], p[7 * 64]);\
+}
+
+#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
+{ \
+ int tmp;\
+ tmp = p[0 * 64];\
+ sum1 op1 MULS((w1)[0 * 64], tmp);\
+ sum2 op2 MULS((w2)[0 * 64], tmp);\
+ tmp = p[1 * 64];\
+ sum1 op1 MULS((w1)[1 * 64], tmp);\
+ sum2 op2 MULS((w2)[1 * 64], tmp);\
+ tmp = p[2 * 64];\
+ sum1 op1 MULS((w1)[2 * 64], tmp);\
+ sum2 op2 MULS((w2)[2 * 64], tmp);\
+ tmp = p[3 * 64];\
+ sum1 op1 MULS((w1)[3 * 64], tmp);\
+ sum2 op2 MULS((w2)[3 * 64], tmp);\
+ tmp = p[4 * 64];\
+ sum1 op1 MULS((w1)[4 * 64], tmp);\
+ sum2 op2 MULS((w2)[4 * 64], tmp);\
+ tmp = p[5 * 64];\
+ sum1 op1 MULS((w1)[5 * 64], tmp);\
+ sum2 op2 MULS((w2)[5 * 64], tmp);\
+ tmp = p[6 * 64];\
+ sum1 op1 MULS((w1)[6 * 64], tmp);\
+ sum2 op2 MULS((w2)[6 * 64], tmp);\
+ tmp = p[7 * 64];\
+ sum1 op1 MULS((w1)[7 * 64], tmp);\
+ sum2 op2 MULS((w2)[7 * 64], tmp);\
+}
+
+void ff_mpa_synth_init(MPA_INT *window)
+{
+ int i;
+
+ /* max = 18760, max sum over all 16 coefs : 44736 */
+ for(i=0;i<257;i++) {
+ int v;
+ v = mpa_enwindow[i];
+#if WFRAC_BITS < 16
+ v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
+#endif
+ window[i] = v;
+ if ((i & 63) != 0)
+ v = -v;
+ if (i != 0)
+ window[512 - i] = v;
+ }
+}
+
+/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
+ 32 samples. */
+/* XXX: optimize by avoiding ring buffer usage */
+void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
+ MPA_INT *window, int *dither_state,
+ OUT_INT *samples, int incr,
+ int32_t sb_samples[SBLIMIT])
+{
+ int32_t tmp[32];
+ register MPA_INT *synth_buf;
+ register const MPA_INT *w, *w2, *p;
+ int j, offset, v;
+ OUT_INT *samples2;
+#if FRAC_BITS <= 15
+ int sum, sum2;
+#else
+ int64_t sum, sum2;
+#endif
+
+ dct32(tmp, sb_samples);
+
+ offset = *synth_buf_offset;
+ synth_buf = synth_buf_ptr + offset;
+
+ for(j=0;j<32;j++) {
+ v = tmp[j];
+#if FRAC_BITS <= 15
+ /* NOTE: can cause a loss in precision if very high amplitude
+ sound */
+ if (v > 32767)
+ v = 32767;
+ else if (v < -32768)
+ v = -32768;
+#endif
+ synth_buf[j] = v;
+ }
+ /* copy to avoid wrap */
+ memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
+
+ samples2 = samples + 31 * incr;
+ w = window;
+ w2 = window + 31;
+
+ sum = *dither_state;
+ p = synth_buf + 16;
+ SUM8(sum, +=, w, p);
+ p = synth_buf + 48;
+ SUM8(sum, -=, w + 32, p);
+ *samples = round_sample(&sum);
+ samples += incr;
+ w++;
+
+ /* we calculate two samples at the same time to avoid one memory
+ access per two sample */
+ for(j=1;j<16;j++) {
+ sum2 = 0;
+ p = synth_buf + 16 + j;
+ SUM8P2(sum, +=, sum2, -=, w, w2, p);
+ p = synth_buf + 48 - j;
+ SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
+
+ *samples = round_sample(&sum);
+ samples += incr;
+ sum += sum2;
+ *samples2 = round_sample(&sum);
+ samples2 -= incr;
+ w++;
+ w2--;
+ }
+
+ p = synth_buf + 32;
+ SUM8(sum, -=, w + 32, p);
+ *samples = round_sample(&sum);
+ *dither_state= sum;
+
+ offset = (offset - 32) & 511;
+ *synth_buf_offset = offset;
+}
+
+#define C3 FIXHR(0.86602540378443864676/2)
+
+/* 0.5 / cos(pi*(2*i+1)/36) */
+static const int icos36[9] = {
+ FIXR(0.50190991877167369479),
+ FIXR(0.51763809020504152469), //0
+ FIXR(0.55168895948124587824),
+ FIXR(0.61038729438072803416),
+ FIXR(0.70710678118654752439), //1
+ FIXR(0.87172339781054900991),
+ FIXR(1.18310079157624925896),
+ FIXR(1.93185165257813657349), //2
+ FIXR(5.73685662283492756461),
+};
+
+/* 0.5 / cos(pi*(2*i+1)/36) */
+static const int icos36h[9] = {
+ FIXHR(0.50190991877167369479/2),
+ FIXHR(0.51763809020504152469/2), //0
+ FIXHR(0.55168895948124587824/2),
+ FIXHR(0.61038729438072803416/2),
+ FIXHR(0.70710678118654752439/2), //1
+ FIXHR(0.87172339781054900991/2),
+ FIXHR(1.18310079157624925896/4),
+ FIXHR(1.93185165257813657349/4), //2
+// FIXHR(5.73685662283492756461),
+};
+
+/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
+ cases. */
+static void imdct12(int *out, int *in)
+{
+ int in0, in1, in2, in3, in4, in5, t1, t2;
+
+ in0= in[0*3];
+ in1= in[1*3] + in[0*3];
+ in2= in[2*3] + in[1*3];
+ in3= in[3*3] + in[2*3];
+ in4= in[4*3] + in[3*3];
+ in5= in[5*3] + in[4*3];
+ in5 += in3;
+ in3 += in1;
+
+ in2= MULH(2*in2, C3);
+ in3= MULH(4*in3, C3);
+
+ t1 = in0 - in4;
+ t2 = MULH(2*(in1 - in5), icos36h[4]);
+
+ out[ 7]=
+ out[10]= t1 + t2;
+ out[ 1]=
+ out[ 4]= t1 - t2;
+
+ in0 += in4>>1;
+ in4 = in0 + in2;
+ in5 += 2*in1;
+ in1 = MULH(in5 + in3, icos36h[1]);
+ out[ 8]=
+ out[ 9]= in4 + in1;
+ out[ 2]=
+ out[ 3]= in4 - in1;
+
+ in0 -= in2;
+ in5 = MULH(2*(in5 - in3), icos36h[7]);
+ out[ 0]=
+ out[ 5]= in0 - in5;
+ out[ 6]=
+ out[11]= in0 + in5;
+}
+
+/* cos(pi*i/18) */
+#define C1 FIXHR(0.98480775301220805936/2)
+#define C2 FIXHR(0.93969262078590838405/2)
+#define C3 FIXHR(0.86602540378443864676/2)
+#define C4 FIXHR(0.76604444311897803520/2)
+#define C5 FIXHR(0.64278760968653932632/2)
+#define C6 FIXHR(0.5/2)
+#define C7 FIXHR(0.34202014332566873304/2)
+#define C8 FIXHR(0.17364817766693034885/2)
+
+
+/* using Lee like decomposition followed by hand coded 9 points DCT */
+static void imdct36(int *out, int *buf, int *in, int *win)
+{
+ int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
+ int tmp[18], *tmp1, *in1;
+
+ for(i=17;i>=1;i--)
+ in[i] += in[i-1];
+ for(i=17;i>=3;i-=2)
+ in[i] += in[i-2];
+
+ for(j=0;j<2;j++) {
+ tmp1 = tmp + j;
+ in1 = in + j;
+#if 0
+//more accurate but slower
+ int64_t t0, t1, t2, t3;
+ t2 = in1[2*4] + in1[2*8] - in1[2*2];
+
+ t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
+ t1 = in1[2*0] - in1[2*6];
+ tmp1[ 6] = t1 - (t2>>1);
+ tmp1[16] = t1 + t2;
+
+ t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
+ t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
+ t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
+
+ tmp1[10] = (t3 - t0 - t2) >> 32;
+ tmp1[ 2] = (t3 + t0 + t1) >> 32;
+ tmp1[14] = (t3 + t2 - t1) >> 32;
+
+ tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
+ t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
+ t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
+ t0 = MUL64(2*in1[2*3], C3);
+
+ t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
+
+ tmp1[ 0] = (t2 + t3 + t0) >> 32;
+ tmp1[12] = (t2 + t1 - t0) >> 32;
+ tmp1[ 8] = (t3 - t1 - t0) >> 32;
+#else
+ t2 = in1[2*4] + in1[2*8] - in1[2*2];
+
+ t3 = in1[2*0] + (in1[2*6]>>1);
+ t1 = in1[2*0] - in1[2*6];
+ tmp1[ 6] = t1 - (t2>>1);
+ tmp1[16] = t1 + t2;
+
+ t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
+ t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
+ t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
+
+ tmp1[10] = t3 - t0 - t2;
+ tmp1[ 2] = t3 + t0 + t1;
+ tmp1[14] = t3 + t2 - t1;
+
+ tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
+ t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
+ t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
+ t0 = MULH(2*in1[2*3], C3);
+
+ t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
+
+ tmp1[ 0] = t2 + t3 + t0;
+ tmp1[12] = t2 + t1 - t0;
+ tmp1[ 8] = t3 - t1 - t0;
+#endif
+ }
+
+ i = 0;
+ for(j=0;j<4;j++) {
+ t0 = tmp[i];
+ t1 = tmp[i + 2];
+ s0 = t1 + t0;
+ s2 = t1 - t0;
+
+ t2 = tmp[i + 1];
+ t3 = tmp[i + 3];
+ s1 = MULH(2*(t3 + t2), icos36h[j]);
+ s3 = MULL(t3 - t2, icos36[8 - j]);
+
+ t0 = s0 + s1;
+ t1 = s0 - s1;
+ out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
+ out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
+ buf[9 + j] = MULH(t0, win[18 + 9 + j]);
+ buf[8 - j] = MULH(t0, win[18 + 8 - j]);
+
+ t0 = s2 + s3;
+ t1 = s2 - s3;
+ out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
+ out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
+ buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
+ buf[ + j] = MULH(t0, win[18 + j]);
+ i += 4;
+ }
+
+ s0 = tmp[16];
+ s1 = MULH(2*tmp[17], icos36h[4]);
+ t0 = s0 + s1;
+ t1 = s0 - s1;
+ out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
+ out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
+ buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
+ buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
+}
+
+/* header decoding. MUST check the header before because no
+ consistency check is done there. Return 1 if free format found and
+ that the frame size must be computed externally */
+static int decode_header(MPADecodeContext *s, uint32_t header)
+{
+ int sample_rate, frame_size, mpeg25, padding;
+ int sample_rate_index, bitrate_index;
+ if (header & (1<<20)) {
+ s->lsf = (header & (1<<19)) ? 0 : 1;
+ mpeg25 = 0;
+ } else {
+ s->lsf = 1;
+ mpeg25 = 1;
+ }
+
+ s->layer = 4 - ((header >> 17) & 3);
+ /* extract frequency */
+ sample_rate_index = (header >> 10) & 3;
+ sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
+ sample_rate_index += 3 * (s->lsf + mpeg25);
+ s->sample_rate_index = sample_rate_index;
+ s->error_protection = ((header >> 16) & 1) ^ 1;
+ s->sample_rate = sample_rate;
+
+ bitrate_index = (header >> 12) & 0xf;
+ padding = (header >> 9) & 1;
+ //extension = (header >> 8) & 1;
+ s->mode = (header >> 6) & 3;
+ s->mode_ext = (header >> 4) & 3;
+ //copyright = (header >> 3) & 1;
+ //original = (header >> 2) & 1;
+ //emphasis = header & 3;
+
+ if (s->mode == MPA_MONO)
+ s->nb_channels = 1;
+ else
+ s->nb_channels = 2;
+
+ if (bitrate_index != 0) {
+ frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
+ s->bit_rate = frame_size * 1000;
+ switch(s->layer) {
+ case 1:
+ frame_size = (frame_size * 12000) / sample_rate;
+ frame_size = (frame_size + padding) * 4;
+ break;
+ case 2:
+ frame_size = (frame_size * 144000) / sample_rate;
+ frame_size += padding;
+ break;
+ default:
+ case 3:
+ frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
+ frame_size += padding;
+ break;
+ }
+ s->frame_size = frame_size;
+ } else {
+ /* if no frame size computed, signal it */
+ return 1;
+ }
+
+#if defined(DEBUG)
+ dprintf("layer%d, %d Hz, %d kbits/s, ",
+ s->layer, s->sample_rate, s->bit_rate);
+ if (s->nb_channels == 2) {
+ if (s->layer == 3) {
+ if (s->mode_ext & MODE_EXT_MS_STEREO)
+ dprintf("ms-");
+ if (s->mode_ext & MODE_EXT_I_STEREO)
+ dprintf("i-");
+ }
+ dprintf("stereo");
+ } else {
+ dprintf("mono");
+ }
+ dprintf("\n");
+#endif
+ return 0;
+}
+
+/* useful helper to get mpeg audio stream infos. Return -1 if error in
+ header, otherwise the coded frame size in bytes */
+int mpa_decode_header(AVCodecContext *avctx, uint32_t head, int *sample_rate)
+{
+ MPADecodeContext s1, *s = &s1;
+
+ if (ff_mpa_check_header(head) != 0)
+ return -1;
+
+ if (decode_header(s, head) != 0) {
+ return -1;
+ }
+
+ switch(s->layer) {
+ case 1:
+ avctx->frame_size = 384;
+ break;
+ case 2:
+ avctx->frame_size = 1152;
+ break;
+ default:
+ case 3:
+ if (s->lsf)
+ avctx->frame_size = 576;
+ else
+ avctx->frame_size = 1152;
+ break;
+ }
+
+ *sample_rate = s->sample_rate;
+ avctx->channels = s->nb_channels;
+ avctx->bit_rate = s->bit_rate;
+ avctx->sub_id = s->layer;
+ return s->frame_size;
+}
+
+/* return the number of decoded frames */
+static int mp_decode_layer1(MPADecodeContext *s)
+{
+ int bound, i, v, n, ch, j, mant;
+ uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
+ uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
+
+ if (s->mode == MPA_JSTEREO)
+ bound = (s->mode_ext + 1) * 4;
+ else
+ bound = SBLIMIT;
+
+ /* allocation bits */
+ for(i=0;i<bound;i++) {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ allocation[ch][i] = get_bits(&s->gb, 4);
+ }
+ }
+ for(i=bound;i<SBLIMIT;i++) {
+ allocation[0][i] = get_bits(&s->gb, 4);
+ }
+
+ /* scale factors */
+ for(i=0;i<bound;i++) {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ if (allocation[ch][i])
+ scale_factors[ch][i] = get_bits(&s->gb, 6);
+ }
+ }
+ for(i=bound;i<SBLIMIT;i++) {
+ if (allocation[0][i]) {
+ scale_factors[0][i] = get_bits(&s->gb, 6);
+ scale_factors[1][i] = get_bits(&s->gb, 6);
+ }
+ }
+
+ /* compute samples */
+ for(j=0;j<12;j++) {
+ for(i=0;i<bound;i++) {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ n = allocation[ch][i];
+ if (n) {
+ mant = get_bits(&s->gb, n + 1);
+ v = l1_unscale(n, mant, scale_factors[ch][i]);
+ } else {
+ v = 0;
+ }
+ s->sb_samples[ch][j][i] = v;
+ }
+ }
+ for(i=bound;i<SBLIMIT;i++) {
+ n = allocation[0][i];
+ if (n) {
+ mant = get_bits(&s->gb, n + 1);
+ v = l1_unscale(n, mant, scale_factors[0][i]);
+ s->sb_samples[0][j][i] = v;
+ v = l1_unscale(n, mant, scale_factors[1][i]);
+ s->sb_samples[1][j][i] = v;
+ } else {
+ s->sb_samples[0][j][i] = 0;
+ s->sb_samples[1][j][i] = 0;
+ }
+ }
+ }
+ return 12;
+}
+
+/* bitrate is in kb/s */
+int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
+{
+ int ch_bitrate, table;
+
+ ch_bitrate = bitrate / nb_channels;
+ if (!lsf) {
+ if ((freq == 48000 && ch_bitrate >= 56) ||
+ (ch_bitrate >= 56 && ch_bitrate <= 80))
+ table = 0;
+ else if (freq != 48000 && ch_bitrate >= 96)
+ table = 1;
+ else if (freq != 32000 && ch_bitrate <= 48)
+ table = 2;
+ else
+ table = 3;
+ } else {
+ table = 4;
+ }
+ return table;
+}
+
+static int mp_decode_layer2(MPADecodeContext *s)
+{
+ int sblimit; /* number of used subbands */
+ const unsigned char *alloc_table;
+ int table, bit_alloc_bits, i, j, ch, bound, v;
+ unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
+ unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
+ unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
+ int scale, qindex, bits, steps, k, l, m, b;
+
+ /* select decoding table */
+ table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
+ s->sample_rate, s->lsf);
+ sblimit = sblimit_table[table];
+ alloc_table = alloc_tables[table];
+
+ if (s->mode == MPA_JSTEREO)
+ bound = (s->mode_ext + 1) * 4;
+ else
+ bound = sblimit;
+
+ dprintf("bound=%d sblimit=%d\n", bound, sblimit);
+
+ /* sanity check */
+ if( bound > sblimit ) bound = sblimit;
+
+ /* parse bit allocation */
+ j = 0;
+ for(i=0;i<bound;i++) {
+ bit_alloc_bits = alloc_table[j];
+ for(ch=0;ch<s->nb_channels;ch++) {
+ bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
+ }
+ j += 1 << bit_alloc_bits;
+ }
+ for(i=bound;i<sblimit;i++) {
+ bit_alloc_bits = alloc_table[j];
+ v = get_bits(&s->gb, bit_alloc_bits);
+ bit_alloc[0][i] = v;
+ bit_alloc[1][i] = v;
+ j += 1 << bit_alloc_bits;
+ }
+
+#ifdef DEBUG
+ {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ for(i=0;i<sblimit;i++)
+ dprintf(" %d", bit_alloc[ch][i]);
+ dprintf("\n");
+ }
+ }
+#endif
+
+ /* scale codes */
+ for(i=0;i<sblimit;i++) {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ if (bit_alloc[ch][i])
+ scale_code[ch][i] = get_bits(&s->gb, 2);
+ }
+ }
+
+ /* scale factors */
+ for(i=0;i<sblimit;i++) {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ if (bit_alloc[ch][i]) {
+ sf = scale_factors[ch][i];
+ switch(scale_code[ch][i]) {
+ default:
+ case 0:
+ sf[0] = get_bits(&s->gb, 6);
+ sf[1] = get_bits(&s->gb, 6);
+ sf[2] = get_bits(&s->gb, 6);
+ break;
+ case 2:
+ sf[0] = get_bits(&s->gb, 6);
+ sf[1] = sf[0];
+ sf[2] = sf[0];
+ break;
+ case 1:
+ sf[0] = get_bits(&s->gb, 6);
+ sf[2] = get_bits(&s->gb, 6);
+ sf[1] = sf[0];
+ break;
+ case 3:
+ sf[0] = get_bits(&s->gb, 6);
+ sf[2] = get_bits(&s->gb, 6);
+ sf[1] = sf[2];
+ break;
+ }
+ }
+ }
+ }
+
+#ifdef DEBUG
+ for(ch=0;ch<s->nb_channels;ch++) {
+ for(i=0;i<sblimit;i++) {
+ if (bit_alloc[ch][i]) {
+ sf = scale_factors[ch][i];
+ dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
+ } else {
+ dprintf(" -");
+ }
+ }
+ dprintf("\n");
+ }
+#endif
+
+ /* samples */
+ for(k=0;k<3;k++) {
+ for(l=0;l<12;l+=3) {
+ j = 0;
+ for(i=0;i<bound;i++) {
+ bit_alloc_bits = alloc_table[j];
+ for(ch=0;ch<s->nb_channels;ch++) {
+ b = bit_alloc[ch][i];
+ if (b) {
+ scale = scale_factors[ch][i][k];
+ qindex = alloc_table[j+b];
+ bits = quant_bits[qindex];
+ if (bits < 0) {
+ /* 3 values at the same time */
+ v = get_bits(&s->gb, -bits);
+ steps = quant_steps[qindex];
+ s->sb_samples[ch][k * 12 + l + 0][i] =
+ l2_unscale_group(steps, v % steps, scale);
+ v = v / steps;
+ s->sb_samples[ch][k * 12 + l + 1][i] =
+ l2_unscale_group(steps, v % steps, scale);
+ v = v / steps;
+ s->sb_samples[ch][k * 12 + l + 2][i] =
+ l2_unscale_group(steps, v, scale);
+ } else {
+ for(m=0;m<3;m++) {
+ v = get_bits(&s->gb, bits);
+ v = l1_unscale(bits - 1, v, scale);
+ s->sb_samples[ch][k * 12 + l + m][i] = v;
+ }
+ }
+ } else {
+ s->sb_samples[ch][k * 12 + l + 0][i] = 0;
+ s->sb_samples[ch][k * 12 + l + 1][i] = 0;
+ s->sb_samples[ch][k * 12 + l + 2][i] = 0;
+ }
+ }
+ /* next subband in alloc table */
+ j += 1 << bit_alloc_bits;
+ }
+ /* XXX: find a way to avoid this duplication of code */
+ for(i=bound;i<sblimit;i++) {
+ bit_alloc_bits = alloc_table[j];
+ b = bit_alloc[0][i];
+ if (b) {
+ int mant, scale0, scale1;
+ scale0 = scale_factors[0][i][k];
+ scale1 = scale_factors[1][i][k];
+ qindex = alloc_table[j+b];
+ bits = quant_bits[qindex];
+ if (bits < 0) {
+ /* 3 values at the same time */
+ v = get_bits(&s->gb, -bits);
+ steps = quant_steps[qindex];
+ mant = v % steps;
+ v = v / steps;
+ s->sb_samples[0][k * 12 + l + 0][i] =
+ l2_unscale_group(steps, mant, scale0);
+ s->sb_samples[1][k * 12 + l + 0][i] =
+ l2_unscale_group(steps, mant, scale1);
+ mant = v % steps;
+ v = v / steps;
+ s->sb_samples[0][k * 12 + l + 1][i] =
+ l2_unscale_group(steps, mant, scale0);
+ s->sb_samples[1][k * 12 + l + 1][i] =
+ l2_unscale_group(steps, mant, scale1);
+ s->sb_samples[0][k * 12 + l + 2][i] =
+ l2_unscale_group(steps, v, scale0);
+ s->sb_samples[1][k * 12 + l + 2][i] =
+ l2_unscale_group(steps, v, scale1);
+ } else {
+ for(m=0;m<3;m++) {
+ mant = get_bits(&s->gb, bits);
+ s->sb_samples[0][k * 12 + l + m][i] =
+ l1_unscale(bits - 1, mant, scale0);
+ s->sb_samples[1][k * 12 + l + m][i] =
+ l1_unscale(bits - 1, mant, scale1);
+ }
+ }
+ } else {
+ s->sb_samples[0][k * 12 + l + 0][i] = 0;
+ s->sb_samples[0][k * 12 + l + 1][i] = 0;
+ s->sb_samples[0][k * 12 + l + 2][i] = 0;
+ s->sb_samples[1][k * 12 + l + 0][i] = 0;
+ s->sb_samples[1][k * 12 + l + 1][i] = 0;
+ s->sb_samples[1][k * 12 + l + 2][i] = 0;
+ }
+ /* next subband in alloc table */
+ j += 1 << bit_alloc_bits;
+ }
+ /* fill remaining samples to zero */
+ for(i=sblimit;i<SBLIMIT;i++) {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ s->sb_samples[ch][k * 12 + l + 0][i] = 0;
+ s->sb_samples[ch][k * 12 + l + 1][i] = 0;
+ s->sb_samples[ch][k * 12 + l + 2][i] = 0;
+ }
+ }
+ }
+ }
+ return 3 * 12;
+}
+
+static inline void lsf_sf_expand(int *slen,
+ int sf, int n1, int n2, int n3)
+{
+ if (n3) {
+ slen[3] = sf % n3;
+ sf /= n3;
+ } else {
+ slen[3] = 0;
+ }
+ if (n2) {
+ slen[2] = sf % n2;
+ sf /= n2;
+ } else {
+ slen[2] = 0;
+ }
+ slen[1] = sf % n1;
+ sf /= n1;
+ slen[0] = sf;
+}
+
+static void exponents_from_scale_factors(MPADecodeContext *s,
+ GranuleDef *g,
+ int16_t *exponents)
+{
+ const uint8_t *bstab, *pretab;
+ int len, i, j, k, l, v0, shift, gain, gains[3];
+ int16_t *exp_ptr;
+
+ exp_ptr = exponents;
+ gain = g->global_gain - 210;
+ shift = g->scalefac_scale + 1;
+
+ bstab = band_size_long[s->sample_rate_index];
+ pretab = mpa_pretab[g->preflag];
+ for(i=0;i<g->long_end;i++) {
+ v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
+ len = bstab[i];
+ for(j=len;j>0;j--)
+ *exp_ptr++ = v0;
+ }
+
+ if (g->short_start < 13) {
+ bstab = band_size_short[s->sample_rate_index];
+ gains[0] = gain - (g->subblock_gain[0] << 3);
+ gains[1] = gain - (g->subblock_gain[1] << 3);
+ gains[2] = gain - (g->subblock_gain[2] << 3);
+ k = g->long_end;
+ for(i=g->short_start;i<13;i++) {
+ len = bstab[i];
+ for(l=0;l<3;l++) {
+ v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
+ for(j=len;j>0;j--)
+ *exp_ptr++ = v0;
+ }
+ }
+ }
+}
+
+/* handle n = 0 too */
+static inline int get_bitsz(GetBitContext *s, int n)
+{
+ if (n == 0)
+ return 0;
+ else
+ return get_bits(s, n);
+}
+
+static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
+ int16_t *exponents, int end_pos2)
+{
+ int s_index;
+ int i;
+ int last_pos, bits_left;
+ VLC *vlc;
+ int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
+
+ /* low frequencies (called big values) */
+ s_index = 0;
+ for(i=0;i<3;i++) {
+ int j, k, l, linbits;
+ j = g->region_size[i];
+ if (j == 0)
+ continue;
+ /* select vlc table */
+ k = g->table_select[i];
+ l = mpa_huff_data[k][0];
+ linbits = mpa_huff_data[k][1];
+ vlc = &huff_vlc[l];
+
+ if(!l){
+ memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
+ s_index += 2*j;
+ continue;
+ }
+
+ /* read huffcode and compute each couple */
+ for(;j>0;j--) {
+ int exponent, x, y, v;
+ int pos= get_bits_count(&s->gb);
+
+ if (pos >= end_pos){
+// av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
+ if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
+ s->gb= s->in_gb;
+ s->in_gb.buffer=NULL;
+ assert((get_bits_count(&s->gb) & 7) == 0);
+ skip_bits_long(&s->gb, pos - end_pos);
+ end_pos2=
+ end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
+ pos= get_bits_count(&s->gb);
+ }
+// av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
+ if(pos >= end_pos)
+ break;
+ }
+ y = get_vlc2(&s->gb, vlc->table, 7, 3);
+
+ if(!y){
+ g->sb_hybrid[s_index ] =
+ g->sb_hybrid[s_index+1] = 0;
+ s_index += 2;
+ continue;
+ }
+
+ exponent= exponents[s_index];
+
+ dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
+ i, g->region_size[i] - j, x, y, exponent);
+ if(y&16){
+ x = y >> 5;
+ y = y & 0x0f;
+ if (x < 15){
+ v = expval_table[ exponent ][ x ];
+// v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
+ }else{
+ x += get_bitsz(&s->gb, linbits);
+ v = l3_unscale(x, exponent);
+ }
+ if (get_bits1(&s->gb))
+ v = -v;
+ g->sb_hybrid[s_index] = v;
+ if (y < 15){
+ v = expval_table[ exponent ][ y ];
+ }else{
+ y += get_bitsz(&s->gb, linbits);
+ v = l3_unscale(y, exponent);
+ }
+ if (get_bits1(&s->gb))
+ v = -v;
+ g->sb_hybrid[s_index+1] = v;
+ }else{
+ x = y >> 5;
+ y = y & 0x0f;
+ x += y;
+ if (x < 15){
+ v = expval_table[ exponent ][ x ];
+ }else{
+ x += get_bitsz(&s->gb, linbits);
+ v = l3_unscale(x, exponent);
+ }
+ if (get_bits1(&s->gb))
+ v = -v;
+ g->sb_hybrid[s_index+!!y] = v;
+ g->sb_hybrid[s_index+ !y] = 0;
+ }
+ s_index+=2;
+ }
+ }
+
+ /* high frequencies */
+ vlc = &huff_quad_vlc[g->count1table_select];
+ last_pos=0;
+ while (s_index <= 572) {
+ int pos, code;
+ pos = get_bits_count(&s->gb);
+ if (pos >= end_pos) {
+ if (pos > end_pos2 && last_pos){
+ /* some encoders generate an incorrect size for this
+ part. We must go back into the data */
+ s_index -= 4;
+ skip_bits_long(&s->gb, last_pos - pos);
+ av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
+ if(s->error_resilience >= FF_ER_COMPLIANT)
+ s_index=0;
+ break;
+ }
+// av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
+ if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
+ s->gb= s->in_gb;
+ s->in_gb.buffer=NULL;
+ assert((get_bits_count(&s->gb) & 7) == 0);
+ skip_bits_long(&s->gb, pos - end_pos);
+ end_pos2=
+ end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
+ pos= get_bits_count(&s->gb);
+ }
+// av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
+ if(pos >= end_pos)
+ break;
+ }
+ last_pos= pos;
+
+ code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
+ dprintf("t=%d code=%d\n", g->count1table_select, code);
+ g->sb_hybrid[s_index+0]=
+ g->sb_hybrid[s_index+1]=
+ g->sb_hybrid[s_index+2]=
+ g->sb_hybrid[s_index+3]= 0;
+ while(code){
+ const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
+ int v;
+ int pos= s_index+idxtab[code];
+ code ^= 8>>idxtab[code];
+ v = exp_table[ exponents[pos] ];
+// v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
+ if(get_bits1(&s->gb))
+ v = -v;
+ g->sb_hybrid[pos] = v;
+ }
+ s_index+=4;
+ }
+ /* skip extension bits */
+ bits_left = end_pos - get_bits_count(&s->gb);
+//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
+ if (bits_left < 0 || bits_left > 16) {
+ av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
+ s_index=0;
+ }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
+ av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
+ s_index=0;
+ }
+ memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
+ skip_bits_long(&s->gb, bits_left);
+
+ return 0;
+}
+
+/* Reorder short blocks from bitstream order to interleaved order. It
+ would be faster to do it in parsing, but the code would be far more
+ complicated */
+static void reorder_block(MPADecodeContext *s, GranuleDef *g)
+{
+ int i, j, len;
+ int32_t *ptr, *dst, *ptr1;
+ int32_t tmp[576];
+
+ if (g->block_type != 2)
+ return;
+
+ if (g->switch_point) {
+ if (s->sample_rate_index != 8) {
+ ptr = g->sb_hybrid + 36;
+ } else {
+ ptr = g->sb_hybrid + 48;
+ }
+ } else {
+ ptr = g->sb_hybrid;
+ }
+
+ for(i=g->short_start;i<13;i++) {
+ len = band_size_short[s->sample_rate_index][i];
+ ptr1 = ptr;
+ dst = tmp;
+ for(j=len;j>0;j--) {
+ *dst++ = ptr[0*len];
+ *dst++ = ptr[1*len];
+ *dst++ = ptr[2*len];
+ ptr++;
+ }
+ ptr+=2*len;
+ memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
+ }
+}
+
+#define ISQRT2 FIXR(0.70710678118654752440)
+
+static void compute_stereo(MPADecodeContext *s,
+ GranuleDef *g0, GranuleDef *g1)
+{
+ int i, j, k, l;
+ int32_t v1, v2;
+ int sf_max, tmp0, tmp1, sf, len, non_zero_found;
+ int32_t (*is_tab)[16];
+ int32_t *tab0, *tab1;
+ int non_zero_found_short[3];
+
+ /* intensity stereo */
+ if (s->mode_ext & MODE_EXT_I_STEREO) {
+ if (!s->lsf) {
+ is_tab = is_table;
+ sf_max = 7;
+ } else {
+ is_tab = is_table_lsf[g1->scalefac_compress & 1];
+ sf_max = 16;
+ }
+
+ tab0 = g0->sb_hybrid + 576;
+ tab1 = g1->sb_hybrid + 576;
+
+ non_zero_found_short[0] = 0;
+ non_zero_found_short[1] = 0;
+ non_zero_found_short[2] = 0;
+ k = (13 - g1->short_start) * 3 + g1->long_end - 3;
+ for(i = 12;i >= g1->short_start;i--) {
+ /* for last band, use previous scale factor */
+ if (i != 11)
+ k -= 3;
+ len = band_size_short[s->sample_rate_index][i];
+ for(l=2;l>=0;l--) {
+ tab0 -= len;
+ tab1 -= len;
+ if (!non_zero_found_short[l]) {
+ /* test if non zero band. if so, stop doing i-stereo */
+ for(j=0;j<len;j++) {
+ if (tab1[j] != 0) {
+ non_zero_found_short[l] = 1;
+ goto found1;
+ }
+ }
+ sf = g1->scale_factors[k + l];
+ if (sf >= sf_max)
+ goto found1;
+
+ v1 = is_tab[0][sf];
+ v2 = is_tab[1][sf];
+ for(j=0;j<len;j++) {
+ tmp0 = tab0[j];
+ tab0[j] = MULL(tmp0, v1);
+ tab1[j] = MULL(tmp0, v2);
+ }
+ } else {
+ found1:
+ if (s->mode_ext & MODE_EXT_MS_STEREO) {
+ /* lower part of the spectrum : do ms stereo
+ if enabled */
+ for(j=0;j<len;j++) {
+ tmp0 = tab0[j];
+ tmp1 = tab1[j];
+ tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
+ tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
+ }
+ }
+ }
+ }
+ }
+
+ non_zero_found = non_zero_found_short[0] |
+ non_zero_found_short[1] |
+ non_zero_found_short[2];
+
+ for(i = g1->long_end - 1;i >= 0;i--) {
+ len = band_size_long[s->sample_rate_index][i];
+ tab0 -= len;
+ tab1 -= len;
+ /* test if non zero band. if so, stop doing i-stereo */
+ if (!non_zero_found) {
+ for(j=0;j<len;j++) {
+ if (tab1[j] != 0) {
+ non_zero_found = 1;
+ goto found2;
+ }
+ }
+ /* for last band, use previous scale factor */
+ k = (i == 21) ? 20 : i;
+ sf = g1->scale_factors[k];
+ if (sf >= sf_max)
+ goto found2;
+ v1 = is_tab[0][sf];
+ v2 = is_tab[1][sf];
+ for(j=0;j<len;j++) {
+ tmp0 = tab0[j];
+ tab0[j] = MULL(tmp0, v1);
+ tab1[j] = MULL(tmp0, v2);
+ }
+ } else {
+ found2:
+ if (s->mode_ext & MODE_EXT_MS_STEREO) {
+ /* lower part of the spectrum : do ms stereo
+ if enabled */
+ for(j=0;j<len;j++) {
+ tmp0 = tab0[j];
+ tmp1 = tab1[j];
+ tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
+ tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
+ }
+ }
+ }
+ }
+ } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
+ /* ms stereo ONLY */
+ /* NOTE: the 1/sqrt(2) normalization factor is included in the
+ global gain */
+ tab0 = g0->sb_hybrid;
+ tab1 = g1->sb_hybrid;
+ for(i=0;i<576;i++) {
+ tmp0 = tab0[i];
+ tmp1 = tab1[i];
+ tab0[i] = tmp0 + tmp1;
+ tab1[i] = tmp0 - tmp1;
+ }
+ }
+}
+
+static void compute_antialias_integer(MPADecodeContext *s,
+ GranuleDef *g)
+{
+ int32_t *ptr, *csa;
+ int n, i;
+
+ /* we antialias only "long" bands */
+ if (g->block_type == 2) {
+ if (!g->switch_point)
+ return;
+ /* XXX: check this for 8000Hz case */
+ n = 1;
+ } else {
+ n = SBLIMIT - 1;
+ }
+
+ ptr = g->sb_hybrid + 18;
+ for(i = n;i > 0;i--) {
+ int tmp0, tmp1, tmp2;
+ csa = &csa_table[0][0];
+#define INT_AA(j) \
+ tmp0 = ptr[-1-j];\
+ tmp1 = ptr[ j];\
+ tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
+ ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
+ ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
+
+ INT_AA(0)
+ INT_AA(1)
+ INT_AA(2)
+ INT_AA(3)
+ INT_AA(4)
+ INT_AA(5)
+ INT_AA(6)
+ INT_AA(7)
+
+ ptr += 18;
+ }
+}
+
+static void compute_antialias_float(MPADecodeContext *s,
+ GranuleDef *g)
+{
+ int32_t *ptr;
+ int n, i;
+
+ /* we antialias only "long" bands */
+ if (g->block_type == 2) {
+ if (!g->switch_point)
+ return;
+ /* XXX: check this for 8000Hz case */
+ n = 1;
+ } else {
+ n = SBLIMIT - 1;
+ }
+
+ ptr = g->sb_hybrid + 18;
+ for(i = n;i > 0;i--) {
+ float tmp0, tmp1;
+ float *csa = &csa_table_float[0][0];
+#define FLOAT_AA(j)\
+ tmp0= ptr[-1-j];\
+ tmp1= ptr[ j];\
+ ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
+ ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
+
+ FLOAT_AA(0)
+ FLOAT_AA(1)
+ FLOAT_AA(2)
+ FLOAT_AA(3)
+ FLOAT_AA(4)
+ FLOAT_AA(5)
+ FLOAT_AA(6)
+ FLOAT_AA(7)
+
+ ptr += 18;
+ }
+}
+
+static void compute_imdct(MPADecodeContext *s,
+ GranuleDef *g,
+ int32_t *sb_samples,
+ int32_t *mdct_buf)
+{
+ int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
+ int32_t out2[12];
+ int i, j, mdct_long_end, v, sblimit;
+
+ /* find last non zero block */
+ ptr = g->sb_hybrid + 576;
+ ptr1 = g->sb_hybrid + 2 * 18;
+ while (ptr >= ptr1) {
+ ptr -= 6;
+ v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
+ if (v != 0)
+ break;
+ }
+ sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
+
+ if (g->block_type == 2) {
+ /* XXX: check for 8000 Hz */
+ if (g->switch_point)
+ mdct_long_end = 2;
+ else
+ mdct_long_end = 0;
+ } else {
+ mdct_long_end = sblimit;
+ }
+
+ buf = mdct_buf;
+ ptr = g->sb_hybrid;
+ for(j=0;j<mdct_long_end;j++) {
+ /* apply window & overlap with previous buffer */
+ out_ptr = sb_samples + j;
+ /* select window */
+ if (g->switch_point && j < 2)
+ win1 = mdct_win[0];
+ else
+ win1 = mdct_win[g->block_type];
+ /* select frequency inversion */
+ win = win1 + ((4 * 36) & -(j & 1));
+ imdct36(out_ptr, buf, ptr, win);
+ out_ptr += 18*SBLIMIT;
+ ptr += 18;
+ buf += 18;
+ }
+ for(j=mdct_long_end;j<sblimit;j++) {
+ /* select frequency inversion */
+ win = mdct_win[2] + ((4 * 36) & -(j & 1));
+ out_ptr = sb_samples + j;
+
+ for(i=0; i<6; i++){
+ *out_ptr = buf[i];
+ out_ptr += SBLIMIT;
+ }
+ imdct12(out2, ptr + 0);
+ for(i=0;i<6;i++) {
+ *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
+ buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
+ out_ptr += SBLIMIT;
+ }
+ imdct12(out2, ptr + 1);
+ for(i=0;i<6;i++) {
+ *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
+ buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
+ out_ptr += SBLIMIT;
+ }
+ imdct12(out2, ptr + 2);
+ for(i=0;i<6;i++) {
+ buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
+ buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
+ buf[i + 6*2] = 0;
+ }
+ ptr += 18;
+ buf += 18;
+ }
+ /* zero bands */
+ for(j=sblimit;j<SBLIMIT;j++) {
+ /* overlap */
+ out_ptr = sb_samples + j;
+ for(i=0;i<18;i++) {
+ *out_ptr = buf[i];
+ buf[i] = 0;
+ out_ptr += SBLIMIT;
+ }
+ buf += 18;
+ }
+}
+
+#if defined(DEBUG)
+void sample_dump(int fnum, int32_t *tab, int n)
+{
+ static FILE *files[16], *f;
+ char buf[512];
+ int i;
+ int32_t v;
+
+ f = files[fnum];
+ if (!f) {
+ snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
+ fnum,
+#ifdef USE_HIGHPRECISION
+ "hp"
+#else
+ "lp"
+#endif
+ );
+ f = fopen(buf, "w");
+ if (!f)
+ return;
+ files[fnum] = f;
+ }
+
+ if (fnum == 0) {
+ static int pos = 0;
+ av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
+ for(i=0;i<n;i++) {
+ av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
+ if ((i % 18) == 17)
+ av_log(NULL, AV_LOG_DEBUG, "\n");
+ }
+ pos += n;
+ }
+ for(i=0;i<n;i++) {
+ /* normalize to 23 frac bits */
+ v = tab[i] << (23 - FRAC_BITS);
+ fwrite(&v, 1, sizeof(int32_t), f);
+ }
+}
+#endif
+
+
+/* main layer3 decoding function */
+static int mp_decode_layer3(MPADecodeContext *s)
+{
+ int nb_granules, main_data_begin, private_bits;
+ int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
+ GranuleDef granules[2][2], *g;
+ int16_t exponents[576];
+
+ /* read side info */
+ if (s->lsf) {
+ main_data_begin = get_bits(&s->gb, 8);
+ private_bits = get_bits(&s->gb, s->nb_channels);
+ nb_granules = 1;
+ } else {
+ main_data_begin = get_bits(&s->gb, 9);
+ if (s->nb_channels == 2)
+ private_bits = get_bits(&s->gb, 3);
+ else
+ private_bits = get_bits(&s->gb, 5);
+ nb_granules = 2;
+ for(ch=0;ch<s->nb_channels;ch++) {
+ granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
+ granules[ch][1].scfsi = get_bits(&s->gb, 4);
+ }
+ }
+
+ for(gr=0;gr<nb_granules;gr++) {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ dprintf("gr=%d ch=%d: side_info\n", gr, ch);
+ g = &granules[ch][gr];
+ g->part2_3_length = get_bits(&s->gb, 12);
+ g->big_values = get_bits(&s->gb, 9);
+ if(g->big_values > 288){
+ av_log(NULL, AV_LOG_ERROR, "big_values too big\n");
+ return -1;
+ }
+
+ g->global_gain = get_bits(&s->gb, 8);
+ /* if MS stereo only is selected, we precompute the
+ 1/sqrt(2) renormalization factor */
+ if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
+ MODE_EXT_MS_STEREO)
+ g->global_gain -= 2;
+ if (s->lsf)
+ g->scalefac_compress = get_bits(&s->gb, 9);
+ else
+ g->scalefac_compress = get_bits(&s->gb, 4);
+ blocksplit_flag = get_bits(&s->gb, 1);
+ if (blocksplit_flag) {
+ g->block_type = get_bits(&s->gb, 2);
+ if (g->block_type == 0){
+ av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
+ return -1;
+ }
+ g->switch_point = get_bits(&s->gb, 1);
+ for(i=0;i<2;i++)
+ g->table_select[i] = get_bits(&s->gb, 5);
+ for(i=0;i<3;i++)
+ g->subblock_gain[i] = get_bits(&s->gb, 3);
+ /* compute huffman coded region sizes */
+ if (g->block_type == 2)
+ g->region_size[0] = (36 / 2);
+ else {
+ if (s->sample_rate_index <= 2)
+ g->region_size[0] = (36 / 2);
+ else if (s->sample_rate_index != 8)
+ g->region_size[0] = (54 / 2);
+ else
+ g->region_size[0] = (108 / 2);
+ }
+ g->region_size[1] = (576 / 2);
+ } else {
+ int region_address1, region_address2, l;
+ g->block_type = 0;
+ g->switch_point = 0;
+ for(i=0;i<3;i++)
+ g->table_select[i] = get_bits(&s->gb, 5);
+ /* compute huffman coded region sizes */
+ region_address1 = get_bits(&s->gb, 4);
+ region_address2 = get_bits(&s->gb, 3);
+ dprintf("region1=%d region2=%d\n",
+ region_address1, region_address2);
+ g->region_size[0] =
+ band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
+ l = region_address1 + region_address2 + 2;
+ /* should not overflow */
+ if (l > 22)
+ l = 22;
+ g->region_size[1] =
+ band_index_long[s->sample_rate_index][l] >> 1;
+ }
+ /* convert region offsets to region sizes and truncate
+ size to big_values */
+ g->region_size[2] = (576 / 2);
+ j = 0;
+ for(i=0;i<3;i++) {
+ k = FFMIN(g->region_size[i], g->big_values);
+ g->region_size[i] = k - j;
+ j = k;
+ }
+
+ /* compute band indexes */
+ if (g->block_type == 2) {
+ if (g->switch_point) {
+ /* if switched mode, we handle the 36 first samples as
+ long blocks. For 8000Hz, we handle the 48 first
+ exponents as long blocks (XXX: check this!) */
+ if (s->sample_rate_index <= 2)
+ g->long_end = 8;
+ else if (s->sample_rate_index != 8)
+ g->long_end = 6;
+ else
+ g->long_end = 4; /* 8000 Hz */
+
+ g->short_start = 2 + (s->sample_rate_index != 8);
+ } else {
+ g->long_end = 0;
+ g->short_start = 0;
+ }
+ } else {
+ g->short_start = 13;
+ g->long_end = 22;
+ }
+
+ g->preflag = 0;
+ if (!s->lsf)
+ g->preflag = get_bits(&s->gb, 1);
+ g->scalefac_scale = get_bits(&s->gb, 1);
+ g->count1table_select = get_bits(&s->gb, 1);
+ dprintf("block_type=%d switch_point=%d\n",
+ g->block_type, g->switch_point);
+ }
+ }
+
+ if (!s->adu_mode) {
+ const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
+ assert((get_bits_count(&s->gb) & 7) == 0);
+ /* now we get bits from the main_data_begin offset */
+ dprintf("seekback: %d\n", main_data_begin);
+//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
+
+ memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
+ s->in_gb= s->gb;
+ init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
+ skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
+ }
+
+ for(gr=0;gr<nb_granules;gr++) {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ g = &granules[ch][gr];
+ if(get_bits_count(&s->gb)<0){
+ av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skiping granule %d\n",
+ main_data_begin, s->last_buf_size, gr);
+ skip_bits_long(&s->gb, g->part2_3_length);
+ memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
+ if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
+ skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
+ s->gb= s->in_gb;
+ s->in_gb.buffer=NULL;
+ }
+ continue;
+ }
+
+ bits_pos = get_bits_count(&s->gb);
+
+ if (!s->lsf) {
+ uint8_t *sc;
+ int slen, slen1, slen2;
+
+ /* MPEG1 scale factors */
+ slen1 = slen_table[0][g->scalefac_compress];
+ slen2 = slen_table[1][g->scalefac_compress];
+ dprintf("slen1=%d slen2=%d\n", slen1, slen2);
+ if (g->block_type == 2) {
+ n = g->switch_point ? 17 : 18;
+ j = 0;
+ if(slen1){
+ for(i=0;i<n;i++)
+ g->scale_factors[j++] = get_bits(&s->gb, slen1);
+ }else{
+ for(i=0;i<n;i++)
+ g->scale_factors[j++] = 0;
+ }
+ if(slen2){
+ for(i=0;i<18;i++)
+ g->scale_factors[j++] = get_bits(&s->gb, slen2);
+ for(i=0;i<3;i++)
+ g->scale_factors[j++] = 0;
+ }else{
+ for(i=0;i<21;i++)
+ g->scale_factors[j++] = 0;
+ }
+ } else {
+ sc = granules[ch][0].scale_factors;
+ j = 0;
+ for(k=0;k<4;k++) {
+ n = (k == 0 ? 6 : 5);
+ if ((g->scfsi & (0x8 >> k)) == 0) {
+ slen = (k < 2) ? slen1 : slen2;
+ if(slen){
+ for(i=0;i<n;i++)
+ g->scale_factors[j++] = get_bits(&s->gb, slen);
+ }else{
+ for(i=0;i<n;i++)
+ g->scale_factors[j++] = 0;
+ }
+ } else {
+ /* simply copy from last granule */
+ for(i=0;i<n;i++) {
+ g->scale_factors[j] = sc[j];
+ j++;
+ }
+ }
+ }
+ g->scale_factors[j++] = 0;
+ }
+#if defined(DEBUG)
+ {
+ dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
+ g->scfsi, gr, ch);
+ for(i=0;i<j;i++)
+ dprintf(" %d", g->scale_factors[i]);
+ dprintf("\n");
+ }
+#endif
+ } else {
+ int tindex, tindex2, slen[4], sl, sf;
+
+ /* LSF scale factors */
+ if (g->block_type == 2) {
+ tindex = g->switch_point ? 2 : 1;
+ } else {
+ tindex = 0;
+ }
+ sf = g->scalefac_compress;
+ if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
+ /* intensity stereo case */
+ sf >>= 1;
+ if (sf < 180) {
+ lsf_sf_expand(slen, sf, 6, 6, 0);
+ tindex2 = 3;
+ } else if (sf < 244) {
+ lsf_sf_expand(slen, sf - 180, 4, 4, 0);
+ tindex2 = 4;
+ } else {
+ lsf_sf_expand(slen, sf - 244, 3, 0, 0);
+ tindex2 = 5;
+ }
+ } else {
+ /* normal case */
+ if (sf < 400) {
+ lsf_sf_expand(slen, sf, 5, 4, 4);
+ tindex2 = 0;
+ } else if (sf < 500) {
+ lsf_sf_expand(slen, sf - 400, 5, 4, 0);
+ tindex2 = 1;
+ } else {
+ lsf_sf_expand(slen, sf - 500, 3, 0, 0);
+ tindex2 = 2;
+ g->preflag = 1;
+ }
+ }
+
+ j = 0;
+ for(k=0;k<4;k++) {
+ n = lsf_nsf_table[tindex2][tindex][k];
+ sl = slen[k];
+ if(sl){
+ for(i=0;i<n;i++)
+ g->scale_factors[j++] = get_bits(&s->gb, sl);
+ }else{
+ for(i=0;i<n;i++)
+ g->scale_factors[j++] = 0;
+ }
+ }
+ /* XXX: should compute exact size */
+ for(;j<40;j++)
+ g->scale_factors[j] = 0;
+#if defined(DEBUG)
+ {
+ dprintf("gr=%d ch=%d scale_factors:\n",
+ gr, ch);
+ for(i=0;i<40;i++)
+ dprintf(" %d", g->scale_factors[i]);
+ dprintf("\n");
+ }
+#endif
+ }
+
+ exponents_from_scale_factors(s, g, exponents);
+
+ /* read Huffman coded residue */
+ huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
+#if defined(DEBUG)
+ sample_dump(0, g->sb_hybrid, 576);
+#endif
+ } /* ch */
+
+ if (s->nb_channels == 2)
+ compute_stereo(s, &granules[0][gr], &granules[1][gr]);
+
+ for(ch=0;ch<s->nb_channels;ch++) {
+ g = &granules[ch][gr];
+
+ reorder_block(s, g);
+#if defined(DEBUG)
+ sample_dump(0, g->sb_hybrid, 576);
+#endif
+ s->compute_antialias(s, g);
+#if defined(DEBUG)
+ sample_dump(1, g->sb_hybrid, 576);
+#endif
+ compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
+#if defined(DEBUG)
+ sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
+#endif
+ }
+ } /* gr */
+ if(get_bits_count(&s->gb)<0)
+ skip_bits_long(&s->gb, -get_bits_count(&s->gb));
+ return nb_granules * 18;
+}
+
+static int mp_decode_frame(MPADecodeContext *s,
+ OUT_INT *samples, const uint8_t *buf, int buf_size)
+{
+ int i, nb_frames, ch;
+ OUT_INT *samples_ptr;
+
+ init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
+
+ /* skip error protection field */
+ if (s->error_protection)
+ get_bits(&s->gb, 16);
+
+ dprintf("frame %d:\n", s->frame_count);
+ switch(s->layer) {
+ case 1:
+ nb_frames = mp_decode_layer1(s);
+ break;
+ case 2:
+ nb_frames = mp_decode_layer2(s);
+ break;
+ case 3:
+ default:
+ nb_frames = mp_decode_layer3(s);
+
+ s->last_buf_size=0;
+ if(s->in_gb.buffer){
+ align_get_bits(&s->gb);
+ i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
+ if(i >= 0 && i <= BACKSTEP_SIZE){
+ memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
+ s->last_buf_size=i;
+ }else
+ av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
+ s->gb= s->in_gb;
+ s->in_gb.buffer= NULL;
+ }
+
+ align_get_bits(&s->gb);
+ assert((get_bits_count(&s->gb) & 7) == 0);
+ i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
+
+ if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
+ av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
+ i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
+ }
+ assert(i <= buf_size - HEADER_SIZE && i>= 0);
+ memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
+ s->last_buf_size += i;
+
+ break;
+ }
+#if defined(DEBUG)
+ for(i=0;i<nb_frames;i++) {
+ for(ch=0;ch<s->nb_channels;ch++) {
+ int j;
+ dprintf("%d-%d:", i, ch);
+ for(j=0;j<SBLIMIT;j++)
+ dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
+ dprintf("\n");
+ }
+ }
+#endif
+ /* apply the synthesis filter */
+ for(ch=0;ch<s->nb_channels;ch++) {
+ samples_ptr = samples + ch;
+ for(i=0;i<nb_frames;i++) {
+ ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
+ window, &s->dither_state,
+ samples_ptr, s->nb_channels,
+ s->sb_samples[ch][i]);
+ samples_ptr += 32 * s->nb_channels;
+ }
+ }
+#ifdef DEBUG
+ s->frame_count++;
+#endif
+ return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
+}
+
+static int decode_frame(AVCodecContext * avctx,
+ void *data, int *data_size,
+ uint8_t * buf, int buf_size)
+{
+ MPADecodeContext *s = avctx->priv_data;
+ uint32_t header;
+ int out_size;
+ OUT_INT *out_samples = data;
+
+retry:
+ if(buf_size < HEADER_SIZE)
+ return -1;
+
+ header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
+ if(ff_mpa_check_header(header) < 0){
+ buf++;
+// buf_size--;
+ av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
+ goto retry;
+ }
+
+ if (decode_header(s, header) == 1) {
+ /* free format: prepare to compute frame size */
+ s->frame_size = -1;
+ return -1;
+ }
+ /* update codec info */
+ avctx->channels = s->nb_channels;
+ avctx->bit_rate = s->bit_rate;
+ avctx->sub_id = s->layer;
+ switch(s->layer) {
+ case 1:
+ avctx->frame_size = 384;
+ break;
+ case 2:
+ avctx->frame_size = 1152;
+ break;
+ case 3:
+ if (s->lsf)
+ avctx->frame_size = 576;
+ else
+ avctx->frame_size = 1152;
+ break;
+ }
+
+ if(s->frame_size<=0 || s->frame_size > buf_size){
+ av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
+ return -1;
+ }else if(s->frame_size < buf_size){
+ av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
+ }
+
+ out_size = mp_decode_frame(s, out_samples, buf, buf_size);
+ if(out_size>=0){
+ *data_size = out_size;
+ avctx->sample_rate = s->sample_rate;
+ //FIXME maybe move the other codec info stuff from above here too
+ }else
+ av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
+ s->frame_size = 0;
+ return buf_size;
+}
+
+static void flush(AVCodecContext *avctx){
+ MPADecodeContext *s = avctx->priv_data;
+ s->last_buf_size= 0;
+}
+
+#ifdef CONFIG_MP3ADU_DECODER
+static int decode_frame_adu(AVCodecContext * avctx,
+ void *data, int *data_size,
+ uint8_t * buf, int buf_size)
+{
+ MPADecodeContext *s = avctx->priv_data;
+ uint32_t header;
+ int len, out_size;
+ OUT_INT *out_samples = data;
+
+ len = buf_size;
+
+ // Discard too short frames
+ if (buf_size < HEADER_SIZE) {
+ *data_size = 0;
+ return buf_size;
+ }
+
+
+ if (len > MPA_MAX_CODED_FRAME_SIZE)
+ len = MPA_MAX_CODED_FRAME_SIZE;
+
+ // Get header and restore sync word
+ header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
+
+ if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
+ *data_size = 0;
+ return buf_size;
+ }
+
+ decode_header(s, header);
+ /* update codec info */
+ avctx->sample_rate = s->sample_rate;
+ avctx->channels = s->nb_channels;
+ avctx->bit_rate = s->bit_rate;
+ avctx->sub_id = s->layer;
+
+ avctx->frame_size=s->frame_size = len;
+
+ if (avctx->parse_only) {
+ out_size = buf_size;
+ } else {
+ out_size = mp_decode_frame(s, out_samples, buf, buf_size);
+ }
+
+ *data_size = out_size;
+ return buf_size;
+}
+#endif /* CONFIG_MP3ADU_DECODER */
+
+#ifdef CONFIG_MP3ON4_DECODER
+/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
+static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
+static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
+/* offsets into output buffer, assume output order is FL FR BL BR C LFE */
+static int chan_offset[9][5] = {
+ {0},
+ {0}, // C
+ {0}, // FLR
+ {2,0}, // C FLR
+ {2,0,3}, // C FLR BS
+ {4,0,2}, // C FLR BLRS
+ {4,0,2,5}, // C FLR BLRS LFE
+ {4,0,2,6,5}, // C FLR BLRS BLR LFE
+ {0,2} // FLR BLRS
+};
+
+
+static int decode_init_mp3on4(AVCodecContext * avctx)
+{
+ MP3On4DecodeContext *s = avctx->priv_data;
+ int i;
+
+ if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
+ av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
+ return -1;
+ }
+
+ s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
+ s->frames = mp3Frames[s->chan_cfg];
+ if(!s->frames) {
+ av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
+ return -1;
+ }
+ avctx->channels = mp3Channels[s->chan_cfg];
+
+ /* Init the first mp3 decoder in standard way, so that all tables get builded
+ * We replace avctx->priv_data with the context of the first decoder so that
+ * decode_init() does not have to be changed.
+ * Other decoders will be inited here copying data from the first context
+ */
+ // Allocate zeroed memory for the first decoder context
+ s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
+ // Put decoder context in place to make init_decode() happy
+ avctx->priv_data = s->mp3decctx[0];
+ decode_init(avctx);
+ // Restore mp3on4 context pointer
+ avctx->priv_data = s;
+ s->mp3decctx[0]->adu_mode = 1; // Set adu mode
+
+ /* Create a separate codec/context for each frame (first is already ok).
+ * Each frame is 1 or 2 channels - up to 5 frames allowed
+ */
+ for (i = 1; i < s->frames; i++) {
+ s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
+ s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
+ s->mp3decctx[i]->adu_mode = 1;
+ }
+
+ return 0;
+}
+
+
+static int decode_close_mp3on4(AVCodecContext * avctx)
+{
+ MP3On4DecodeContext *s = avctx->priv_data;
+ int i;
+
+ for (i = 0; i < s->frames; i++)
+ if (s->mp3decctx[i])
+ av_free(s->mp3decctx[i]);
+
+ return 0;
+}
+
+
+static int decode_frame_mp3on4(AVCodecContext * avctx,
+ void *data, int *data_size,
+ uint8_t * buf, int buf_size)
+{
+ MP3On4DecodeContext *s = avctx->priv_data;
+ MPADecodeContext *m;
+ int len, out_size = 0;
+ uint32_t header;
+ OUT_INT *out_samples = data;
+ OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
+ OUT_INT *outptr, *bp;
+ int fsize;
+ unsigned char *start2 = buf, *start;
+ int fr, i, j, n;
+ int off = avctx->channels;
+ int *coff = chan_offset[s->chan_cfg];
+
+ len = buf_size;
+
+ // Discard too short frames
+ if (buf_size < HEADER_SIZE) {
+ *data_size = 0;
+ return buf_size;
+ }
+
+ // If only one decoder interleave is not needed
+ outptr = s->frames == 1 ? out_samples : decoded_buf;
+
+ for (fr = 0; fr < s->frames; fr++) {
+ start = start2;
+ fsize = (start[0] << 4) | (start[1] >> 4);
+ start2 += fsize;
+ if (fsize > len)
+ fsize = len;
+ len -= fsize;
+ if (fsize > MPA_MAX_CODED_FRAME_SIZE)
+ fsize = MPA_MAX_CODED_FRAME_SIZE;
+ m = s->mp3decctx[fr];
+ assert (m != NULL);
+
+ // Get header
+ header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
+
+ if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
+ *data_size = 0;
+ return buf_size;
+ }
+
+ decode_header(m, header);
+ mp_decode_frame(m, decoded_buf, start, fsize);
+
+ n = MPA_FRAME_SIZE * m->nb_channels;
+ out_size += n * sizeof(OUT_INT);
+ if(s->frames > 1) {
+ /* interleave output data */
+ bp = out_samples + coff[fr];
+ if(m->nb_channels == 1) {
+ for(j = 0; j < n; j++) {
+ *bp = decoded_buf[j];
+ bp += off;
+ }
+ } else {
+ for(j = 0; j < n; j++) {
+ bp[0] = decoded_buf[j++];
+ bp[1] = decoded_buf[j];
+ bp += off;
+ }
+ }
+ }
+ }
+
+ /* update codec info */
+ avctx->sample_rate = s->mp3decctx[0]->sample_rate;
+ avctx->frame_size= buf_size;
+ avctx->bit_rate = 0;
+ for (i = 0; i < s->frames; i++)
+ avctx->bit_rate += s->mp3decctx[i]->bit_rate;
+
+ *data_size = out_size;
+ return buf_size;
+}
+#endif /* CONFIG_MP3ON4_DECODER */
+
+#ifdef CONFIG_MP2_DECODER
+AVCodec mp2_decoder =
+{
+ "mp2",
+ CODEC_TYPE_AUDIO,
+ CODEC_ID_MP2,
+ sizeof(MPADecodeContext),
+ decode_init,
+ NULL,
+ NULL,
+ decode_frame,
+ CODEC_CAP_PARSE_ONLY,
+};
+#endif
+#ifdef CONFIG_MP3_DECODER
+AVCodec mp3_decoder =
+{
+ "mp3",
+ CODEC_TYPE_AUDIO,
+ CODEC_ID_MP3,
+ sizeof(MPADecodeContext),
+ decode_init,
+ NULL,
+ NULL,
+ decode_frame,
+ CODEC_CAP_PARSE_ONLY,
+ .flush= flush,
+};
+#endif
+#ifdef CONFIG_MP3ADU_DECODER
+AVCodec mp3adu_decoder =
+{
+ "mp3adu",
+ CODEC_TYPE_AUDIO,
+ CODEC_ID_MP3ADU,
+ sizeof(MPADecodeContext),
+ decode_init,
+ NULL,
+ NULL,
+ decode_frame_adu,
+ CODEC_CAP_PARSE_ONLY,
+ .flush= flush,
+};
+#endif
+#ifdef CONFIG_MP3ON4_DECODER
+AVCodec mp3on4_decoder =
+{
+ "mp3on4",
+ CODEC_TYPE_AUDIO,
+ CODEC_ID_MP3ON4,
+ sizeof(MP3On4DecodeContext),
+ decode_init_mp3on4,
+ NULL,
+ decode_close_mp3on4,
+ decode_frame_mp3on4,
+ .flush= flush,
+};
+#endif