diff options
Diffstat (limited to 'contrib/ffmpeg/libavcodec/vc1.c')
-rw-r--r-- | contrib/ffmpeg/libavcodec/vc1.c | 4626 |
1 files changed, 4626 insertions, 0 deletions
diff --git a/contrib/ffmpeg/libavcodec/vc1.c b/contrib/ffmpeg/libavcodec/vc1.c new file mode 100644 index 000000000..84868904d --- /dev/null +++ b/contrib/ffmpeg/libavcodec/vc1.c @@ -0,0 +1,4626 @@ +/* + * VC-1 and WMV3 decoder + * Copyright (c) 2006-2007 Konstantin Shishkov + * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/** + * @file vc1.c + * VC-1 and WMV3 decoder + * + */ +#include "common.h" +#include "dsputil.h" +#include "avcodec.h" +#include "mpegvideo.h" +#include "vc1data.h" +#include "vc1acdata.h" + +#undef NDEBUG +#include <assert.h> + +extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2]; +extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2]; +extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2]; +#define MB_INTRA_VLC_BITS 9 +extern VLC ff_msmp4_mb_i_vlc; +extern const uint16_t ff_msmp4_mb_i_table[64][2]; +#define DC_VLC_BITS 9 +#define AC_VLC_BITS 9 +static const uint16_t table_mb_intra[64][2]; + +/** Markers used if VC-1 AP frame data */ +//@{ +enum VC1Code{ + VC1_CODE_RES0 = 0x00000100, + VC1_CODE_ENDOFSEQ = 0x0000010A, + VC1_CODE_SLICE, + VC1_CODE_FIELD, + VC1_CODE_FRAME, + VC1_CODE_ENTRYPOINT, + VC1_CODE_SEQHDR, +}; +//@} + +/** Available Profiles */ +//@{ +enum Profile { + PROFILE_SIMPLE, + PROFILE_MAIN, + PROFILE_COMPLEX, ///< TODO: WMV9 specific + PROFILE_ADVANCED +}; +//@} + +/** Sequence quantizer mode */ +//@{ +enum QuantMode { + QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level + QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level + QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames + QUANT_UNIFORM ///< Uniform quant used for all frames +}; +//@} + +/** Where quant can be changed */ +//@{ +enum DQProfile { + DQPROFILE_FOUR_EDGES, + DQPROFILE_DOUBLE_EDGES, + DQPROFILE_SINGLE_EDGE, + DQPROFILE_ALL_MBS +}; +//@} + +/** @name Where quant can be changed + */ +//@{ +enum DQSingleEdge { + DQSINGLE_BEDGE_LEFT, + DQSINGLE_BEDGE_TOP, + DQSINGLE_BEDGE_RIGHT, + DQSINGLE_BEDGE_BOTTOM +}; +//@} + +/** Which pair of edges is quantized with ALTPQUANT */ +//@{ +enum DQDoubleEdge { + DQDOUBLE_BEDGE_TOPLEFT, + DQDOUBLE_BEDGE_TOPRIGHT, + DQDOUBLE_BEDGE_BOTTOMRIGHT, + DQDOUBLE_BEDGE_BOTTOMLEFT +}; +//@} + +/** MV modes for P frames */ +//@{ +enum MVModes { + MV_PMODE_1MV_HPEL_BILIN, + MV_PMODE_1MV, + MV_PMODE_1MV_HPEL, + MV_PMODE_MIXED_MV, + MV_PMODE_INTENSITY_COMP +}; +//@} + +/** @name MV types for B frames */ +//@{ +enum BMVTypes { + BMV_TYPE_BACKWARD, + BMV_TYPE_FORWARD, + BMV_TYPE_INTERPOLATED +}; +//@} + +/** @name Block types for P/B frames */ +//@{ +enum TransformTypes { + TT_8X8, + TT_8X4_BOTTOM, + TT_8X4_TOP, + TT_8X4, //Both halves + TT_4X8_RIGHT, + TT_4X8_LEFT, + TT_4X8, //Both halves + TT_4X4 +}; +//@} + +/** Table for conversion between TTBLK and TTMB */ +static const int ttblk_to_tt[3][8] = { + { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT }, + { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP }, + { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP } +}; + +static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 }; + +/** MV P mode - the 5th element is only used for mode 1 */ +static const uint8_t mv_pmode_table[2][5] = { + { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV }, + { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN } +}; +static const uint8_t mv_pmode_table2[2][4] = { + { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV }, + { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN } +}; + +/** One more frame type */ +#define BI_TYPE 7 + +static const int fps_nr[5] = { 24, 25, 30, 50, 60 }, + fps_dr[2] = { 1000, 1001 }; +static const uint8_t pquant_table[3][32] = { + { /* Implicit quantizer */ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31 + }, + { /* Explicit quantizer, pquantizer uniform */ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 + }, + { /* Explicit quantizer, pquantizer non-uniform */ + 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, + 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31 + } +}; + +/** @name VC-1 VLC tables and defines + * @todo TODO move this into the context + */ +//@{ +#define VC1_BFRACTION_VLC_BITS 7 +static VLC vc1_bfraction_vlc; +#define VC1_IMODE_VLC_BITS 4 +static VLC vc1_imode_vlc; +#define VC1_NORM2_VLC_BITS 3 +static VLC vc1_norm2_vlc; +#define VC1_NORM6_VLC_BITS 9 +static VLC vc1_norm6_vlc; +/* Could be optimized, one table only needs 8 bits */ +#define VC1_TTMB_VLC_BITS 9 //12 +static VLC vc1_ttmb_vlc[3]; +#define VC1_MV_DIFF_VLC_BITS 9 //15 +static VLC vc1_mv_diff_vlc[4]; +#define VC1_CBPCY_P_VLC_BITS 9 //14 +static VLC vc1_cbpcy_p_vlc[4]; +#define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6 +static VLC vc1_4mv_block_pattern_vlc[4]; +#define VC1_TTBLK_VLC_BITS 5 +static VLC vc1_ttblk_vlc[3]; +#define VC1_SUBBLKPAT_VLC_BITS 6 +static VLC vc1_subblkpat_vlc[3]; + +static VLC vc1_ac_coeff_table[8]; +//@} + +enum CodingSet { + CS_HIGH_MOT_INTRA = 0, + CS_HIGH_MOT_INTER, + CS_LOW_MOT_INTRA, + CS_LOW_MOT_INTER, + CS_MID_RATE_INTRA, + CS_MID_RATE_INTER, + CS_HIGH_RATE_INTRA, + CS_HIGH_RATE_INTER +}; + +/** @name Overlap conditions for Advanced Profile */ +//@{ +enum COTypes { + CONDOVER_NONE = 0, + CONDOVER_ALL, + CONDOVER_SELECT +}; +//@} + + +/** The VC1 Context + * @fixme Change size wherever another size is more efficient + * Many members are only used for Advanced Profile + */ +typedef struct VC1Context{ + MpegEncContext s; + + int bits; + + /** Simple/Main Profile sequence header */ + //@{ + int res_sm; ///< reserved, 2b + int res_x8; ///< reserved + int multires; ///< frame-level RESPIC syntax element present + int res_fasttx; ///< reserved, always 1 + int res_transtab; ///< reserved, always 0 + int rangered; ///< RANGEREDFRM (range reduction) syntax element present + ///< at frame level + int res_rtm_flag; ///< reserved, set to 1 + int reserved; ///< reserved + //@} + + /** Advanced Profile */ + //@{ + int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer + int chromaformat; ///< 2bits, 2=4:2:0, only defined + int postprocflag; ///< Per-frame processing suggestion flag present + int broadcast; ///< TFF/RFF present + int interlace; ///< Progressive/interlaced (RPTFTM syntax element) + int tfcntrflag; ///< TFCNTR present + int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present + int extended_dmv; ///< Additional extended dmv range at P/B frame-level + int color_prim; ///< 8bits, chroma coordinates of the color primaries + int transfer_char; ///< 8bits, Opto-electronic transfer characteristics + int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix + int hrd_param_flag; ///< Presence of Hypothetical Reference + ///< Decoder parameters + int psf; ///< Progressive Segmented Frame + //@} + + /** Sequence header data for all Profiles + * TODO: choose between ints, uint8_ts and monobit flags + */ + //@{ + int profile; ///< 2bits, Profile + int frmrtq_postproc; ///< 3bits, + int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength + int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple) + int extended_mv; ///< Ext MV in P/B (not in Simple) + int dquant; ///< How qscale varies with MBs, 2bits (not in Simple) + int vstransform; ///< variable-size [48]x[48] transform type + info + int overlap; ///< overlapped transforms in use + int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_* + int finterpflag; ///< INTERPFRM present + //@} + + /** Frame decoding info for all profiles */ + //@{ + uint8_t mv_mode; ///< MV coding monde + uint8_t mv_mode2; ///< Secondary MV coding mode (B frames) + int k_x; ///< Number of bits for MVs (depends on MV range) + int k_y; ///< Number of bits for MVs (depends on MV range) + int range_x, range_y; ///< MV range + uint8_t pq, altpq; ///< Current/alternate frame quantizer scale + /** pquant parameters */ + //@{ + uint8_t dquantfrm; + uint8_t dqprofile; + uint8_t dqsbedge; + uint8_t dqbilevel; + //@} + /** AC coding set indexes + * @see 8.1.1.10, p(1)10 + */ + //@{ + int c_ac_table_index; ///< Chroma index from ACFRM element + int y_ac_table_index; ///< Luma index from AC2FRM element + //@} + int ttfrm; ///< Transform type info present at frame level + uint8_t ttmbf; ///< Transform type flag + uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform + int codingset; ///< index of current table set from 11.8 to use for luma block decoding + int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding + int pqindex; ///< raw pqindex used in coding set selection + int a_avail, c_avail; + uint8_t *mb_type_base, *mb_type[3]; + + + /** Luma compensation parameters */ + //@{ + uint8_t lumscale; + uint8_t lumshift; + //@} + int16_t bfraction; ///< Relative position % anchors=> how to scale MVs + uint8_t halfpq; ///< Uniform quant over image and qp+.5 + uint8_t respic; ///< Frame-level flag for resized images + int buffer_fullness; ///< HRD info + /** Ranges: + * -# 0 -> [-64n 63.f] x [-32, 31.f] + * -# 1 -> [-128, 127.f] x [-64, 63.f] + * -# 2 -> [-512, 511.f] x [-128, 127.f] + * -# 3 -> [-1024, 1023.f] x [-256, 255.f] + */ + uint8_t mvrange; + uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use + VLC *cbpcy_vlc; ///< CBPCY VLC table + int tt_index; ///< Index for Transform Type tables + uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV) + uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs + int mv_type_is_raw; ///< mv type mb plane is not coded + int dmb_is_raw; ///< direct mb plane is raw + int skip_is_raw; ///< skip mb plane is not coded + uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation + int use_ic; ///< use intensity compensation in B-frames + int rnd; ///< rounding control + + /** Frame decoding info for S/M profiles only */ + //@{ + uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128) + uint8_t interpfrm; + //@} + + /** Frame decoding info for Advanced profile */ + //@{ + uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace + uint8_t numpanscanwin; + uint8_t tfcntr; + uint8_t rptfrm, tff, rff; + uint16_t topleftx; + uint16_t toplefty; + uint16_t bottomrightx; + uint16_t bottomrighty; + uint8_t uvsamp; + uint8_t postproc; + int hrd_num_leaky_buckets; + uint8_t bit_rate_exponent; + uint8_t buffer_size_exponent; + uint8_t* acpred_plane; ///< AC prediction flags bitplane + int acpred_is_raw; + uint8_t* over_flags_plane; ///< Overflags bitplane + int overflg_is_raw; + uint8_t condover; + uint16_t *hrd_rate, *hrd_buffer; + uint8_t *hrd_fullness; + uint8_t range_mapy_flag; + uint8_t range_mapuv_flag; + uint8_t range_mapy; + uint8_t range_mapuv; + //@} + + int p_frame_skipped; + int bi_type; +} VC1Context; + +/** + * Get unary code of limited length + * @fixme FIXME Slow and ugly + * @param gb GetBitContext + * @param[in] stop The bitstop value (unary code of 1's or 0's) + * @param[in] len Maximum length + * @return Unary length/index + */ +static int get_prefix(GetBitContext *gb, int stop, int len) +{ +#if 1 + int i; + + for(i = 0; i < len && get_bits1(gb) != stop; i++); + return i; +/* int i = 0, tmp = !stop; + + while (i != len && tmp != stop) + { + tmp = get_bits(gb, 1); + i++; + } + if (i == len && tmp != stop) return len+1; + return i;*/ +#else + unsigned int buf; + int log; + + OPEN_READER(re, gb); + UPDATE_CACHE(re, gb); + buf=GET_CACHE(re, gb); //Still not sure + if (stop) buf = ~buf; + + log= av_log2(-buf); //FIXME: -? + if (log < limit){ + LAST_SKIP_BITS(re, gb, log+1); + CLOSE_READER(re, gb); + return log; + } + + LAST_SKIP_BITS(re, gb, limit); + CLOSE_READER(re, gb); + return limit; +#endif +} + +static inline int decode210(GetBitContext *gb){ + int n; + n = get_bits1(gb); + if (n == 1) + return 0; + else + return 2 - get_bits1(gb); +} + +/** + * Init VC-1 specific tables and VC1Context members + * @param v The VC1Context to initialize + * @return Status + */ +static int vc1_init_common(VC1Context *v) +{ + static int done = 0; + int i = 0; + + v->hrd_rate = v->hrd_buffer = NULL; + + /* VLC tables */ + if(!done) + { + done = 1; + init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23, + vc1_bfraction_bits, 1, 1, + vc1_bfraction_codes, 1, 1, 1); + init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4, + vc1_norm2_bits, 1, 1, + vc1_norm2_codes, 1, 1, 1); + init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64, + vc1_norm6_bits, 1, 1, + vc1_norm6_codes, 2, 2, 1); + init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7, + vc1_imode_bits, 1, 1, + vc1_imode_codes, 1, 1, 1); + for (i=0; i<3; i++) + { + init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16, + vc1_ttmb_bits[i], 1, 1, + vc1_ttmb_codes[i], 2, 2, 1); + init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8, + vc1_ttblk_bits[i], 1, 1, + vc1_ttblk_codes[i], 1, 1, 1); + init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15, + vc1_subblkpat_bits[i], 1, 1, + vc1_subblkpat_codes[i], 1, 1, 1); + } + for(i=0; i<4; i++) + { + init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16, + vc1_4mv_block_pattern_bits[i], 1, 1, + vc1_4mv_block_pattern_codes[i], 1, 1, 1); + init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64, + vc1_cbpcy_p_bits[i], 1, 1, + vc1_cbpcy_p_codes[i], 2, 2, 1); + init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73, + vc1_mv_diff_bits[i], 1, 1, + vc1_mv_diff_codes[i], 2, 2, 1); + } + for(i=0; i<8; i++) + init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i], + &vc1_ac_tables[i][0][1], 8, 4, + &vc1_ac_tables[i][0][0], 8, 4, 1); + init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64, + &ff_msmp4_mb_i_table[0][1], 4, 2, + &ff_msmp4_mb_i_table[0][0], 4, 2, 1); + } + + /* Other defaults */ + v->pq = -1; + v->mvrange = 0; /* 7.1.1.18, p80 */ + + return 0; +} + +/***********************************************************************/ +/** + * @defgroup bitplane VC9 Bitplane decoding + * @see 8.7, p56 + * @{ + */ + +/** @addtogroup bitplane + * Imode types + * @{ + */ +enum Imode { + IMODE_RAW, + IMODE_NORM2, + IMODE_DIFF2, + IMODE_NORM6, + IMODE_DIFF6, + IMODE_ROWSKIP, + IMODE_COLSKIP +}; +/** @} */ //imode defines + +/** Decode rows by checking if they are skipped + * @param plane Buffer to store decoded bits + * @param[in] width Width of this buffer + * @param[in] height Height of this buffer + * @param[in] stride of this buffer + */ +static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){ + int x, y; + + for (y=0; y<height; y++){ + if (!get_bits(gb, 1)) //rowskip + memset(plane, 0, width); + else + for (x=0; x<width; x++) + plane[x] = get_bits(gb, 1); + plane += stride; + } +} + +/** Decode columns by checking if they are skipped + * @param plane Buffer to store decoded bits + * @param[in] width Width of this buffer + * @param[in] height Height of this buffer + * @param[in] stride of this buffer + * @fixme FIXME: Optimize + */ +static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){ + int x, y; + + for (x=0; x<width; x++){ + if (!get_bits(gb, 1)) //colskip + for (y=0; y<height; y++) + plane[y*stride] = 0; + else + for (y=0; y<height; y++) + plane[y*stride] = get_bits(gb, 1); + plane ++; + } +} + +/** Decode a bitplane's bits + * @param bp Bitplane where to store the decode bits + * @param v VC-1 context for bit reading and logging + * @return Status + * @fixme FIXME: Optimize + */ +static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v) +{ + GetBitContext *gb = &v->s.gb; + + int imode, x, y, code, offset; + uint8_t invert, *planep = data; + int width, height, stride; + + width = v->s.mb_width; + height = v->s.mb_height; + stride = v->s.mb_stride; + invert = get_bits(gb, 1); + imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1); + + *raw_flag = 0; + switch (imode) + { + case IMODE_RAW: + //Data is actually read in the MB layer (same for all tests == "raw") + *raw_flag = 1; //invert ignored + return invert; + case IMODE_DIFF2: + case IMODE_NORM2: + if ((height * width) & 1) + { + *planep++ = get_bits(gb, 1); + offset = 1; + } + else offset = 0; + // decode bitplane as one long line + for (y = offset; y < height * width; y += 2) { + code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1); + *planep++ = code & 1; + offset++; + if(offset == width) { + offset = 0; + planep += stride - width; + } + *planep++ = code >> 1; + offset++; + if(offset == width) { + offset = 0; + planep += stride - width; + } + } + break; + case IMODE_DIFF6: + case IMODE_NORM6: + if(!(height % 3) && (width % 3)) { // use 2x3 decoding + for(y = 0; y < height; y+= 3) { + for(x = width & 1; x < width; x += 2) { + code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2); + if(code < 0){ + av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n"); + return -1; + } + planep[x + 0] = (code >> 0) & 1; + planep[x + 1] = (code >> 1) & 1; + planep[x + 0 + stride] = (code >> 2) & 1; + planep[x + 1 + stride] = (code >> 3) & 1; + planep[x + 0 + stride * 2] = (code >> 4) & 1; + planep[x + 1 + stride * 2] = (code >> 5) & 1; + } + planep += stride * 3; + } + if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb); + } else { // 3x2 + planep += (height & 1) * stride; + for(y = height & 1; y < height; y += 2) { + for(x = width % 3; x < width; x += 3) { + code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2); + if(code < 0){ + av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n"); + return -1; + } + planep[x + 0] = (code >> 0) & 1; + planep[x + 1] = (code >> 1) & 1; + planep[x + 2] = (code >> 2) & 1; + planep[x + 0 + stride] = (code >> 3) & 1; + planep[x + 1 + stride] = (code >> 4) & 1; + planep[x + 2 + stride] = (code >> 5) & 1; + } + planep += stride * 2; + } + x = width % 3; + if(x) decode_colskip(data , x, height , stride, &v->s.gb); + if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb); + } + break; + case IMODE_ROWSKIP: + decode_rowskip(data, width, height, stride, &v->s.gb); + break; + case IMODE_COLSKIP: + decode_colskip(data, width, height, stride, &v->s.gb); + break; + default: break; + } + + /* Applying diff operator */ + if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6) + { + planep = data; + planep[0] ^= invert; + for (x=1; x<width; x++) + planep[x] ^= planep[x-1]; + for (y=1; y<height; y++) + { + planep += stride; + planep[0] ^= planep[-stride]; + for (x=1; x<width; x++) + { + if (planep[x-1] != planep[x-stride]) planep[x] ^= invert; + else planep[x] ^= planep[x-1]; + } + } + } + else if (invert) + { + planep = data; + for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride + } + return (imode<<1) + invert; +} + +/** @} */ //Bitplane group + +/***********************************************************************/ +/** VOP Dquant decoding + * @param v VC-1 Context + */ +static int vop_dquant_decoding(VC1Context *v) +{ + GetBitContext *gb = &v->s.gb; + int pqdiff; + + //variable size + if (v->dquant == 2) + { + pqdiff = get_bits(gb, 3); + if (pqdiff == 7) v->altpq = get_bits(gb, 5); + else v->altpq = v->pq + pqdiff + 1; + } + else + { + v->dquantfrm = get_bits(gb, 1); + if ( v->dquantfrm ) + { + v->dqprofile = get_bits(gb, 2); + switch (v->dqprofile) + { + case DQPROFILE_SINGLE_EDGE: + case DQPROFILE_DOUBLE_EDGES: + v->dqsbedge = get_bits(gb, 2); + break; + case DQPROFILE_ALL_MBS: + v->dqbilevel = get_bits(gb, 1); + default: break; //Forbidden ? + } + if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS) + { + pqdiff = get_bits(gb, 3); + if (pqdiff == 7) v->altpq = get_bits(gb, 5); + else v->altpq = v->pq + pqdiff + 1; + } + } + } + return 0; +} + +/** Put block onto picture + */ +static void vc1_put_block(VC1Context *v, DCTELEM block[6][64]) +{ + uint8_t *Y; + int ys, us, vs; + DSPContext *dsp = &v->s.dsp; + + if(v->rangeredfrm) { + int i, j, k; + for(k = 0; k < 6; k++) + for(j = 0; j < 8; j++) + for(i = 0; i < 8; i++) + block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128; + + } + ys = v->s.current_picture.linesize[0]; + us = v->s.current_picture.linesize[1]; + vs = v->s.current_picture.linesize[2]; + Y = v->s.dest[0]; + + dsp->put_pixels_clamped(block[0], Y, ys); + dsp->put_pixels_clamped(block[1], Y + 8, ys); + Y += ys * 8; + dsp->put_pixels_clamped(block[2], Y, ys); + dsp->put_pixels_clamped(block[3], Y + 8, ys); + + if(!(v->s.flags & CODEC_FLAG_GRAY)) { + dsp->put_pixels_clamped(block[4], v->s.dest[1], us); + dsp->put_pixels_clamped(block[5], v->s.dest[2], vs); + } +} + +/** Do motion compensation over 1 macroblock + * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c + */ +static void vc1_mc_1mv(VC1Context *v, int dir) +{ + MpegEncContext *s = &v->s; + DSPContext *dsp = &v->s.dsp; + uint8_t *srcY, *srcU, *srcV; + int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y; + + if(!v->s.last_picture.data[0])return; + + mx = s->mv[dir][0][0]; + my = s->mv[dir][0][1]; + + // store motion vectors for further use in B frames + if(s->pict_type == P_TYPE) { + s->current_picture.motion_val[1][s->block_index[0]][0] = mx; + s->current_picture.motion_val[1][s->block_index[0]][1] = my; + } + uvmx = (mx + ((mx & 3) == 3)) >> 1; + uvmy = (my + ((my & 3) == 3)) >> 1; + if(v->fastuvmc) { + uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1)); + uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1)); + } + if(!dir) { + srcY = s->last_picture.data[0]; + srcU = s->last_picture.data[1]; + srcV = s->last_picture.data[2]; + } else { + srcY = s->next_picture.data[0]; + srcU = s->next_picture.data[1]; + srcV = s->next_picture.data[2]; + } + + src_x = s->mb_x * 16 + (mx >> 2); + src_y = s->mb_y * 16 + (my >> 2); + uvsrc_x = s->mb_x * 8 + (uvmx >> 2); + uvsrc_y = s->mb_y * 8 + (uvmy >> 2); + + if(v->profile != PROFILE_ADVANCED){ + src_x = av_clip( src_x, -16, s->mb_width * 16); + src_y = av_clip( src_y, -16, s->mb_height * 16); + uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); + uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); + }else{ + src_x = av_clip( src_x, -17, s->avctx->coded_width); + src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); + uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); + uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); + } + + srcY += src_y * s->linesize + src_x; + srcU += uvsrc_y * s->uvlinesize + uvsrc_x; + srcV += uvsrc_y * s->uvlinesize + uvsrc_x; + + /* for grayscale we should not try to read from unknown area */ + if(s->flags & CODEC_FLAG_GRAY) { + srcU = s->edge_emu_buffer + 18 * s->linesize; + srcV = s->edge_emu_buffer + 18 * s->linesize; + } + + if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP) + || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3 + || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){ + uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize; + + srcY -= s->mspel * (1 + s->linesize); + ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2, + src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos); + srcY = s->edge_emu_buffer; + ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1, + uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); + ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1, + uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); + srcU = uvbuf; + srcV = uvbuf + 16; + /* if we deal with range reduction we need to scale source blocks */ + if(v->rangeredfrm) { + int i, j; + uint8_t *src, *src2; + + src = srcY; + for(j = 0; j < 17 + s->mspel*2; j++) { + for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128; + src += s->linesize; + } + src = srcU; src2 = srcV; + for(j = 0; j < 9; j++) { + for(i = 0; i < 9; i++) { + src[i] = ((src[i] - 128) >> 1) + 128; + src2[i] = ((src2[i] - 128) >> 1) + 128; + } + src += s->uvlinesize; + src2 += s->uvlinesize; + } + } + /* if we deal with intensity compensation we need to scale source blocks */ + if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { + int i, j; + uint8_t *src, *src2; + + src = srcY; + for(j = 0; j < 17 + s->mspel*2; j++) { + for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]]; + src += s->linesize; + } + src = srcU; src2 = srcV; + for(j = 0; j < 9; j++) { + for(i = 0; i < 9; i++) { + src[i] = v->lutuv[src[i]]; + src2[i] = v->lutuv[src2[i]]; + } + src += s->uvlinesize; + src2 += s->uvlinesize; + } + } + srcY += s->mspel * (1 + s->linesize); + } + + if(s->mspel) { + dxy = ((my & 3) << 2) | (mx & 3); + dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd); + dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd); + srcY += s->linesize * 8; + dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd); + dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd); + } else { // hpel mc - always used for luma + dxy = (my & 2) | ((mx & 2) >> 1); + + if(!v->rnd) + dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); + else + dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); + } + + if(s->flags & CODEC_FLAG_GRAY) return; + /* Chroma MC always uses qpel bilinear */ + uvdxy = ((uvmy & 3) << 2) | (uvmx & 3); + uvmx = (uvmx&3)<<1; + uvmy = (uvmy&3)<<1; + if(!v->rnd){ + dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); + dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); + }else{ + dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); + dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); + } +} + +/** Do motion compensation for 4-MV macroblock - luminance block + */ +static void vc1_mc_4mv_luma(VC1Context *v, int n) +{ + MpegEncContext *s = &v->s; + DSPContext *dsp = &v->s.dsp; + uint8_t *srcY; + int dxy, mx, my, src_x, src_y; + int off; + + if(!v->s.last_picture.data[0])return; + mx = s->mv[0][n][0]; + my = s->mv[0][n][1]; + srcY = s->last_picture.data[0]; + + off = s->linesize * 4 * (n&2) + (n&1) * 8; + + src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2); + src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2); + + if(v->profile != PROFILE_ADVANCED){ + src_x = av_clip( src_x, -16, s->mb_width * 16); + src_y = av_clip( src_y, -16, s->mb_height * 16); + }else{ + src_x = av_clip( src_x, -17, s->avctx->coded_width); + src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); + } + + srcY += src_y * s->linesize + src_x; + + if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP) + || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2 + || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){ + srcY -= s->mspel * (1 + s->linesize); + ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2, + src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos); + srcY = s->edge_emu_buffer; + /* if we deal with range reduction we need to scale source blocks */ + if(v->rangeredfrm) { + int i, j; + uint8_t *src; + + src = srcY; + for(j = 0; j < 9 + s->mspel*2; j++) { + for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128; + src += s->linesize; + } + } + /* if we deal with intensity compensation we need to scale source blocks */ + if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { + int i, j; + uint8_t *src; + + src = srcY; + for(j = 0; j < 9 + s->mspel*2; j++) { + for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]]; + src += s->linesize; + } + } + srcY += s->mspel * (1 + s->linesize); + } + + if(s->mspel) { + dxy = ((my & 3) << 2) | (mx & 3); + dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd); + } else { // hpel mc - always used for luma + dxy = (my & 2) | ((mx & 2) >> 1); + if(!v->rnd) + dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8); + else + dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8); + } +} + +static inline int median4(int a, int b, int c, int d) +{ + if(a < b) { + if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2; + else return (FFMIN(b, c) + FFMAX(a, d)) / 2; + } else { + if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2; + else return (FFMIN(a, c) + FFMAX(b, d)) / 2; + } +} + + +/** Do motion compensation for 4-MV macroblock - both chroma blocks + */ +static void vc1_mc_4mv_chroma(VC1Context *v) +{ + MpegEncContext *s = &v->s; + DSPContext *dsp = &v->s.dsp; + uint8_t *srcU, *srcV; + int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y; + int i, idx, tx = 0, ty = 0; + int mvx[4], mvy[4], intra[4]; + static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; + + if(!v->s.last_picture.data[0])return; + if(s->flags & CODEC_FLAG_GRAY) return; + + for(i = 0; i < 4; i++) { + mvx[i] = s->mv[0][i][0]; + mvy[i] = s->mv[0][i][1]; + intra[i] = v->mb_type[0][s->block_index[i]]; + } + + /* calculate chroma MV vector from four luma MVs */ + idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0]; + if(!idx) { // all blocks are inter + tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]); + ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]); + } else if(count[idx] == 1) { // 3 inter blocks + switch(idx) { + case 0x1: + tx = mid_pred(mvx[1], mvx[2], mvx[3]); + ty = mid_pred(mvy[1], mvy[2], mvy[3]); + break; + case 0x2: + tx = mid_pred(mvx[0], mvx[2], mvx[3]); + ty = mid_pred(mvy[0], mvy[2], mvy[3]); + break; + case 0x4: + tx = mid_pred(mvx[0], mvx[1], mvx[3]); + ty = mid_pred(mvy[0], mvy[1], mvy[3]); + break; + case 0x8: + tx = mid_pred(mvx[0], mvx[1], mvx[2]); + ty = mid_pred(mvy[0], mvy[1], mvy[2]); + break; + } + } else if(count[idx] == 2) { + int t1 = 0, t2 = 0; + for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;} + for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;} + tx = (mvx[t1] + mvx[t2]) / 2; + ty = (mvy[t1] + mvy[t2]) / 2; + } else { + s->current_picture.motion_val[1][s->block_index[0]][0] = 0; + s->current_picture.motion_val[1][s->block_index[0]][1] = 0; + return; //no need to do MC for inter blocks + } + + s->current_picture.motion_val[1][s->block_index[0]][0] = tx; + s->current_picture.motion_val[1][s->block_index[0]][1] = ty; + uvmx = (tx + ((tx&3) == 3)) >> 1; + uvmy = (ty + ((ty&3) == 3)) >> 1; + if(v->fastuvmc) { + uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1)); + uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1)); + } + + uvsrc_x = s->mb_x * 8 + (uvmx >> 2); + uvsrc_y = s->mb_y * 8 + (uvmy >> 2); + + if(v->profile != PROFILE_ADVANCED){ + uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); + uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); + }else{ + uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); + uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); + } + + srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x; + srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x; + if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP) + || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9 + || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){ + ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1, + uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); + ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1, + uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); + srcU = s->edge_emu_buffer; + srcV = s->edge_emu_buffer + 16; + + /* if we deal with range reduction we need to scale source blocks */ + if(v->rangeredfrm) { + int i, j; + uint8_t *src, *src2; + + src = srcU; src2 = srcV; + for(j = 0; j < 9; j++) { + for(i = 0; i < 9; i++) { + src[i] = ((src[i] - 128) >> 1) + 128; + src2[i] = ((src2[i] - 128) >> 1) + 128; + } + src += s->uvlinesize; + src2 += s->uvlinesize; + } + } + /* if we deal with intensity compensation we need to scale source blocks */ + if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { + int i, j; + uint8_t *src, *src2; + + src = srcU; src2 = srcV; + for(j = 0; j < 9; j++) { + for(i = 0; i < 9; i++) { + src[i] = v->lutuv[src[i]]; + src2[i] = v->lutuv[src2[i]]; + } + src += s->uvlinesize; + src2 += s->uvlinesize; + } + } + } + + /* Chroma MC always uses qpel bilinear */ + uvdxy = ((uvmy & 3) << 2) | (uvmx & 3); + uvmx = (uvmx&3)<<1; + uvmy = (uvmy&3)<<1; + if(!v->rnd){ + dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); + dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); + }else{ + dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); + dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); + } +} + +static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb); + +/** + * Decode Simple/Main Profiles sequence header + * @see Figure 7-8, p16-17 + * @param avctx Codec context + * @param gb GetBit context initialized from Codec context extra_data + * @return Status + */ +static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb) +{ + VC1Context *v = avctx->priv_data; + + av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32)); + v->profile = get_bits(gb, 2); + if (v->profile == PROFILE_COMPLEX) + { + av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n"); + } + + if (v->profile == PROFILE_ADVANCED) + { + return decode_sequence_header_adv(v, gb); + } + else + { + v->res_sm = get_bits(gb, 2); //reserved + if (v->res_sm) + { + av_log(avctx, AV_LOG_ERROR, + "Reserved RES_SM=%i is forbidden\n", v->res_sm); + return -1; + } + } + + // (fps-2)/4 (->30) + v->frmrtq_postproc = get_bits(gb, 3); //common + // (bitrate-32kbps)/64kbps + v->bitrtq_postproc = get_bits(gb, 5); //common + v->s.loop_filter = get_bits(gb, 1); //common + if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE) + { + av_log(avctx, AV_LOG_ERROR, + "LOOPFILTER shell not be enabled in simple profile\n"); + } + + v->res_x8 = get_bits(gb, 1); //reserved + if (v->res_x8) + { + av_log(avctx, AV_LOG_ERROR, + "1 for reserved RES_X8 is forbidden\n"); + //return -1; + } + v->multires = get_bits(gb, 1); + v->res_fasttx = get_bits(gb, 1); + if (!v->res_fasttx) + { + av_log(avctx, AV_LOG_ERROR, + "0 for reserved RES_FASTTX is forbidden\n"); + //return -1; + } + + v->fastuvmc = get_bits(gb, 1); //common + if (!v->profile && !v->fastuvmc) + { + av_log(avctx, AV_LOG_ERROR, + "FASTUVMC unavailable in Simple Profile\n"); + return -1; + } + v->extended_mv = get_bits(gb, 1); //common + if (!v->profile && v->extended_mv) + { + av_log(avctx, AV_LOG_ERROR, + "Extended MVs unavailable in Simple Profile\n"); + return -1; + } + v->dquant = get_bits(gb, 2); //common + v->vstransform = get_bits(gb, 1); //common + + v->res_transtab = get_bits(gb, 1); + if (v->res_transtab) + { + av_log(avctx, AV_LOG_ERROR, + "1 for reserved RES_TRANSTAB is forbidden\n"); + return -1; + } + + v->overlap = get_bits(gb, 1); //common + + v->s.resync_marker = get_bits(gb, 1); + v->rangered = get_bits(gb, 1); + if (v->rangered && v->profile == PROFILE_SIMPLE) + { + av_log(avctx, AV_LOG_INFO, + "RANGERED should be set to 0 in simple profile\n"); + } + + v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common + v->quantizer_mode = get_bits(gb, 2); //common + + v->finterpflag = get_bits(gb, 1); //common + v->res_rtm_flag = get_bits(gb, 1); //reserved + if (!v->res_rtm_flag) + { +// av_log(avctx, AV_LOG_ERROR, +// "0 for reserved RES_RTM_FLAG is forbidden\n"); + av_log(avctx, AV_LOG_ERROR, + "Old WMV3 version detected, only I-frames will be decoded\n"); + //return -1; + } + //TODO: figure out what they mean (always 0x402F) + if(!v->res_fasttx) skip_bits(gb, 16); + av_log(avctx, AV_LOG_DEBUG, + "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n" + "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n" + "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n" + "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n", + v->profile, v->frmrtq_postproc, v->bitrtq_postproc, + v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv, + v->rangered, v->vstransform, v->overlap, v->s.resync_marker, + v->dquant, v->quantizer_mode, avctx->max_b_frames + ); + return 0; +} + +static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb) +{ + v->res_rtm_flag = 1; + v->level = get_bits(gb, 3); + if(v->level >= 5) + { + av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level); + } + v->chromaformat = get_bits(gb, 2); + if (v->chromaformat != 1) + { + av_log(v->s.avctx, AV_LOG_ERROR, + "Only 4:2:0 chroma format supported\n"); + return -1; + } + + // (fps-2)/4 (->30) + v->frmrtq_postproc = get_bits(gb, 3); //common + // (bitrate-32kbps)/64kbps + v->bitrtq_postproc = get_bits(gb, 5); //common + v->postprocflag = get_bits(gb, 1); //common + + v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1; + v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1; + v->s.avctx->width = v->s.avctx->coded_width; + v->s.avctx->height = v->s.avctx->coded_height; + v->broadcast = get_bits1(gb); + v->interlace = get_bits1(gb); + v->tfcntrflag = get_bits1(gb); + v->finterpflag = get_bits1(gb); + get_bits1(gb); // reserved + + v->s.h_edge_pos = v->s.avctx->coded_width; + v->s.v_edge_pos = v->s.avctx->coded_height; + + av_log(v->s.avctx, AV_LOG_DEBUG, + "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n" + "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n" + "TFCTRflag=%i, FINTERPflag=%i\n", + v->level, v->frmrtq_postproc, v->bitrtq_postproc, + v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace, + v->tfcntrflag, v->finterpflag + ); + + v->psf = get_bits1(gb); + if(v->psf) { //PsF, 6.1.13 + av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n"); + return -1; + } + v->s.max_b_frames = v->s.avctx->max_b_frames = 7; + if(get_bits1(gb)) { //Display Info - decoding is not affected by it + int w, h, ar = 0; + av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n"); + v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1; + v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1; + av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h); + if(get_bits1(gb)) + ar = get_bits(gb, 4); + if(ar && ar < 14){ + v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar]; + }else if(ar == 15){ + w = get_bits(gb, 8); + h = get_bits(gb, 8); + v->s.avctx->sample_aspect_ratio = (AVRational){w, h}; + } + + if(get_bits1(gb)){ //framerate stuff + if(get_bits1(gb)) { + v->s.avctx->time_base.num = 32; + v->s.avctx->time_base.den = get_bits(gb, 16) + 1; + } else { + int nr, dr; + nr = get_bits(gb, 8); + dr = get_bits(gb, 4); + if(nr && nr < 8 && dr && dr < 3){ + v->s.avctx->time_base.num = fps_dr[dr - 1]; + v->s.avctx->time_base.den = fps_nr[nr - 1] * 1000; + } + } + } + + if(get_bits1(gb)){ + v->color_prim = get_bits(gb, 8); + v->transfer_char = get_bits(gb, 8); + v->matrix_coef = get_bits(gb, 8); + } + } + + v->hrd_param_flag = get_bits1(gb); + if(v->hrd_param_flag) { + int i; + v->hrd_num_leaky_buckets = get_bits(gb, 5); + get_bits(gb, 4); //bitrate exponent + get_bits(gb, 4); //buffer size exponent + for(i = 0; i < v->hrd_num_leaky_buckets; i++) { + get_bits(gb, 16); //hrd_rate[n] + get_bits(gb, 16); //hrd_buffer[n] + } + } + return 0; +} + +static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb) +{ + VC1Context *v = avctx->priv_data; + int i, blink, clentry, refdist; + + av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32)); + blink = get_bits1(gb); // broken link + clentry = get_bits1(gb); // closed entry + v->panscanflag = get_bits1(gb); + refdist = get_bits1(gb); // refdist flag + v->s.loop_filter = get_bits1(gb); + v->fastuvmc = get_bits1(gb); + v->extended_mv = get_bits1(gb); + v->dquant = get_bits(gb, 2); + v->vstransform = get_bits1(gb); + v->overlap = get_bits1(gb); + v->quantizer_mode = get_bits(gb, 2); + + if(v->hrd_param_flag){ + for(i = 0; i < v->hrd_num_leaky_buckets; i++) { + get_bits(gb, 8); //hrd_full[n] + } + } + + if(get_bits1(gb)){ + avctx->coded_width = (get_bits(gb, 12)+1)<<1; + avctx->coded_height = (get_bits(gb, 12)+1)<<1; + } + if(v->extended_mv) + v->extended_dmv = get_bits1(gb); + if(get_bits1(gb)) { + av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n"); + skip_bits(gb, 3); // Y range, ignored for now + } + if(get_bits1(gb)) { + av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n"); + skip_bits(gb, 3); // UV range, ignored for now + } + + av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n" + "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n" + "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n" + "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n", + blink, clentry, v->panscanflag, refdist, v->s.loop_filter, + v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode); + + return 0; +} + +static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb) +{ + int pqindex, lowquant, status; + + if(v->finterpflag) v->interpfrm = get_bits(gb, 1); + skip_bits(gb, 2); //framecnt unused + v->rangeredfrm = 0; + if (v->rangered) v->rangeredfrm = get_bits(gb, 1); + v->s.pict_type = get_bits(gb, 1); + if (v->s.avctx->max_b_frames) { + if (!v->s.pict_type) { + if (get_bits(gb, 1)) v->s.pict_type = I_TYPE; + else v->s.pict_type = B_TYPE; + } else v->s.pict_type = P_TYPE; + } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE; + + v->bi_type = 0; + if(v->s.pict_type == B_TYPE) { + v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1); + v->bfraction = vc1_bfraction_lut[v->bfraction]; + if(v->bfraction == 0) { + v->s.pict_type = BI_TYPE; + } + } + if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) + get_bits(gb, 7); // skip buffer fullness + + /* calculate RND */ + if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) + v->rnd = 1; + if(v->s.pict_type == P_TYPE) + v->rnd ^= 1; + + /* Quantizer stuff */ + pqindex = get_bits(gb, 5); + if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) + v->pq = pquant_table[0][pqindex]; + else + v->pq = pquant_table[1][pqindex]; + + v->pquantizer = 1; + if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) + v->pquantizer = pqindex < 9; + if (v->quantizer_mode == QUANT_NON_UNIFORM) + v->pquantizer = 0; + v->pqindex = pqindex; + if (pqindex < 9) v->halfpq = get_bits(gb, 1); + else v->halfpq = 0; + if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) + v->pquantizer = get_bits(gb, 1); + v->dquantfrm = 0; + if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3); + v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13 + v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11 + v->range_x = 1 << (v->k_x - 1); + v->range_y = 1 << (v->k_y - 1); + if (v->profile == PROFILE_ADVANCED) + { + if (v->postprocflag) v->postproc = get_bits(gb, 1); + } + else + if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2); + + if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){ + if(get_bits1(gb))return -1; + } +//av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n", +// (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm); + + if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0; + + switch(v->s.pict_type) { + case P_TYPE: + if (v->pq < 5) v->tt_index = 0; + else if(v->pq < 13) v->tt_index = 1; + else v->tt_index = 2; + + lowquant = (v->pq > 12) ? 0 : 1; + v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)]; + if (v->mv_mode == MV_PMODE_INTENSITY_COMP) + { + int scale, shift, i; + v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)]; + v->lumscale = get_bits(gb, 6); + v->lumshift = get_bits(gb, 6); + v->use_ic = 1; + /* fill lookup tables for intensity compensation */ + if(!v->lumscale) { + scale = -64; + shift = (255 - v->lumshift * 2) << 6; + if(v->lumshift > 31) + shift += 128 << 6; + } else { + scale = v->lumscale + 32; + if(v->lumshift > 31) + shift = (v->lumshift - 64) << 6; + else + shift = v->lumshift << 6; + } + for(i = 0; i < 256; i++) { + v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6); + v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6); + } + } + if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN) + v->s.quarter_sample = 0; + else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { + if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN) + v->s.quarter_sample = 0; + else + v->s.quarter_sample = 1; + } else + v->s.quarter_sample = 1; + v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)); + + if ((v->mv_mode == MV_PMODE_INTENSITY_COMP && + v->mv_mode2 == MV_PMODE_MIXED_MV) + || v->mv_mode == MV_PMODE_MIXED_MV) + { + status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + } else { + v->mv_type_is_raw = 0; + memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height); + } + status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + + /* Hopefully this is correct for P frames */ + v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables + v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)]; + + if (v->dquant) + { + av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); + vop_dquant_decoding(v); + } + + v->ttfrm = 0; //FIXME Is that so ? + if (v->vstransform) + { + v->ttmbf = get_bits(gb, 1); + if (v->ttmbf) + { + v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)]; + } + } else { + v->ttmbf = 1; + v->ttfrm = TT_8X8; + } + break; + case B_TYPE: + if (v->pq < 5) v->tt_index = 0; + else if(v->pq < 13) v->tt_index = 1; + else v->tt_index = 2; + + lowquant = (v->pq > 12) ? 0 : 1; + v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN; + v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV); + v->s.mspel = v->s.quarter_sample; + + status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + + v->s.mv_table_index = get_bits(gb, 2); + v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)]; + + if (v->dquant) + { + av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); + vop_dquant_decoding(v); + } + + v->ttfrm = 0; + if (v->vstransform) + { + v->ttmbf = get_bits(gb, 1); + if (v->ttmbf) + { + v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)]; + } + } else { + v->ttmbf = 1; + v->ttfrm = TT_8X8; + } + break; + } + + /* AC Syntax */ + v->c_ac_table_index = decode012(gb); + if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) + { + v->y_ac_table_index = decode012(gb); + } + /* DC Syntax */ + v->s.dc_table_index = get_bits(gb, 1); + + if(v->s.pict_type == BI_TYPE) { + v->s.pict_type = B_TYPE; + v->bi_type = 1; + } + return 0; +} + +static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb) +{ + int pqindex, lowquant; + int status; + + v->p_frame_skipped = 0; + + if(v->interlace){ + v->fcm = decode012(gb); + if(v->fcm) return -1; // interlaced frames/fields are not implemented + } + switch(get_prefix(gb, 0, 4)) { + case 0: + v->s.pict_type = P_TYPE; + break; + case 1: + v->s.pict_type = B_TYPE; + break; + case 2: + v->s.pict_type = I_TYPE; + break; + case 3: + v->s.pict_type = BI_TYPE; + break; + case 4: + v->s.pict_type = P_TYPE; // skipped pic + v->p_frame_skipped = 1; + return 0; + } + if(v->tfcntrflag) + get_bits(gb, 8); + if(v->broadcast) { + if(!v->interlace || v->psf) { + v->rptfrm = get_bits(gb, 2); + } else { + v->tff = get_bits1(gb); + v->rptfrm = get_bits1(gb); + } + } + if(v->panscanflag) { + //... + } + v->rnd = get_bits1(gb); + if(v->interlace) + v->uvsamp = get_bits1(gb); + if(v->finterpflag) v->interpfrm = get_bits(gb, 1); + if(v->s.pict_type == B_TYPE) { + v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1); + v->bfraction = vc1_bfraction_lut[v->bfraction]; + if(v->bfraction == 0) { + v->s.pict_type = BI_TYPE; /* XXX: should not happen here */ + } + } + pqindex = get_bits(gb, 5); + v->pqindex = pqindex; + if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) + v->pq = pquant_table[0][pqindex]; + else + v->pq = pquant_table[1][pqindex]; + + v->pquantizer = 1; + if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) + v->pquantizer = pqindex < 9; + if (v->quantizer_mode == QUANT_NON_UNIFORM) + v->pquantizer = 0; + v->pqindex = pqindex; + if (pqindex < 9) v->halfpq = get_bits(gb, 1); + else v->halfpq = 0; + if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) + v->pquantizer = get_bits(gb, 1); + + if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0; + + switch(v->s.pict_type) { + case I_TYPE: + case BI_TYPE: + status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + v->condover = CONDOVER_NONE; + if(v->overlap && v->pq <= 8) { + v->condover = decode012(gb); + if(v->condover == CONDOVER_SELECT) { + status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + } + } + break; + case P_TYPE: + if(v->postprocflag) + v->postproc = get_bits1(gb); + if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3); + else v->mvrange = 0; + v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13 + v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11 + v->range_x = 1 << (v->k_x - 1); + v->range_y = 1 << (v->k_y - 1); + + if (v->pq < 5) v->tt_index = 0; + else if(v->pq < 13) v->tt_index = 1; + else v->tt_index = 2; + + lowquant = (v->pq > 12) ? 0 : 1; + v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)]; + if (v->mv_mode == MV_PMODE_INTENSITY_COMP) + { + int scale, shift, i; + v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)]; + v->lumscale = get_bits(gb, 6); + v->lumshift = get_bits(gb, 6); + /* fill lookup tables for intensity compensation */ + if(!v->lumscale) { + scale = -64; + shift = (255 - v->lumshift * 2) << 6; + if(v->lumshift > 31) + shift += 128 << 6; + } else { + scale = v->lumscale + 32; + if(v->lumshift > 31) + shift = (v->lumshift - 64) << 6; + else + shift = v->lumshift << 6; + } + for(i = 0; i < 256; i++) { + v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6); + v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6); + } + v->use_ic = 1; + } + if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN) + v->s.quarter_sample = 0; + else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { + if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN) + v->s.quarter_sample = 0; + else + v->s.quarter_sample = 1; + } else + v->s.quarter_sample = 1; + v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)); + + if ((v->mv_mode == MV_PMODE_INTENSITY_COMP && + v->mv_mode2 == MV_PMODE_MIXED_MV) + || v->mv_mode == MV_PMODE_MIXED_MV) + { + status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + } else { + v->mv_type_is_raw = 0; + memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height); + } + status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + + /* Hopefully this is correct for P frames */ + v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables + v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)]; + if (v->dquant) + { + av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); + vop_dquant_decoding(v); + } + + v->ttfrm = 0; //FIXME Is that so ? + if (v->vstransform) + { + v->ttmbf = get_bits(gb, 1); + if (v->ttmbf) + { + v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)]; + } + } else { + v->ttmbf = 1; + v->ttfrm = TT_8X8; + } + break; + case B_TYPE: + if(v->postprocflag) + v->postproc = get_bits1(gb); + if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3); + else v->mvrange = 0; + v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13 + v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11 + v->range_x = 1 << (v->k_x - 1); + v->range_y = 1 << (v->k_y - 1); + + if (v->pq < 5) v->tt_index = 0; + else if(v->pq < 13) v->tt_index = 1; + else v->tt_index = 2; + + lowquant = (v->pq > 12) ? 0 : 1; + v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN; + v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV); + v->s.mspel = v->s.quarter_sample; + + status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); + if (status < 0) return -1; + av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " + "Imode: %i, Invert: %i\n", status>>1, status&1); + + v->s.mv_table_index = get_bits(gb, 2); + v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)]; + + if (v->dquant) + { + av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); + vop_dquant_decoding(v); + } + + v->ttfrm = 0; + if (v->vstransform) + { + v->ttmbf = get_bits(gb, 1); + if (v->ttmbf) + { + v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)]; + } + } else { + v->ttmbf = 1; + v->ttfrm = TT_8X8; + } + break; + } + + /* AC Syntax */ + v->c_ac_table_index = decode012(gb); + if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) + { + v->y_ac_table_index = decode012(gb); + } + /* DC Syntax */ + v->s.dc_table_index = get_bits(gb, 1); + if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) { + av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); + vop_dquant_decoding(v); + } + + v->bi_type = 0; + if(v->s.pict_type == BI_TYPE) { + v->s.pict_type = B_TYPE; + v->bi_type = 1; + } + return 0; +} + +/***********************************************************************/ +/** + * @defgroup block VC-1 Block-level functions + * @see 7.1.4, p91 and 8.1.1.7, p(1)04 + * @{ + */ + +/** + * @def GET_MQUANT + * @brief Get macroblock-level quantizer scale + */ +#define GET_MQUANT() \ + if (v->dquantfrm) \ + { \ + int edges = 0; \ + if (v->dqprofile == DQPROFILE_ALL_MBS) \ + { \ + if (v->dqbilevel) \ + { \ + mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \ + } \ + else \ + { \ + mqdiff = get_bits(gb, 3); \ + if (mqdiff != 7) mquant = v->pq + mqdiff; \ + else mquant = get_bits(gb, 5); \ + } \ + } \ + if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \ + edges = 1 << v->dqsbedge; \ + else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \ + edges = (3 << v->dqsbedge) % 15; \ + else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \ + edges = 15; \ + if((edges&1) && !s->mb_x) \ + mquant = v->altpq; \ + if((edges&2) && s->first_slice_line) \ + mquant = v->altpq; \ + if((edges&4) && s->mb_x == (s->mb_width - 1)) \ + mquant = v->altpq; \ + if((edges&8) && s->mb_y == (s->mb_height - 1)) \ + mquant = v->altpq; \ + } + +/** + * @def GET_MVDATA(_dmv_x, _dmv_y) + * @brief Get MV differentials + * @see MVDATA decoding from 8.3.5.2, p(1)20 + * @param _dmv_x Horizontal differential for decoded MV + * @param _dmv_y Vertical differential for decoded MV + */ +#define GET_MVDATA(_dmv_x, _dmv_y) \ + index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\ + VC1_MV_DIFF_VLC_BITS, 2); \ + if (index > 36) \ + { \ + mb_has_coeffs = 1; \ + index -= 37; \ + } \ + else mb_has_coeffs = 0; \ + s->mb_intra = 0; \ + if (!index) { _dmv_x = _dmv_y = 0; } \ + else if (index == 35) \ + { \ + _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \ + _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \ + } \ + else if (index == 36) \ + { \ + _dmv_x = 0; \ + _dmv_y = 0; \ + s->mb_intra = 1; \ + } \ + else \ + { \ + index1 = index%6; \ + if (!s->quarter_sample && index1 == 5) val = 1; \ + else val = 0; \ + if(size_table[index1] - val > 0) \ + val = get_bits(gb, size_table[index1] - val); \ + else val = 0; \ + sign = 0 - (val&1); \ + _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ + \ + index1 = index/6; \ + if (!s->quarter_sample && index1 == 5) val = 1; \ + else val = 0; \ + if(size_table[index1] - val > 0) \ + val = get_bits(gb, size_table[index1] - val); \ + else val = 0; \ + sign = 0 - (val&1); \ + _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ + } + +/** Predict and set motion vector + */ +static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra) +{ + int xy, wrap, off = 0; + int16_t *A, *B, *C; + int px, py; + int sum; + + /* scale MV difference to be quad-pel */ + dmv_x <<= 1 - s->quarter_sample; + dmv_y <<= 1 - s->quarter_sample; + + wrap = s->b8_stride; + xy = s->block_index[n]; + + if(s->mb_intra){ + s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0; + s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0; + s->current_picture.motion_val[1][xy][0] = 0; + s->current_picture.motion_val[1][xy][1] = 0; + if(mv1) { /* duplicate motion data for 1-MV block */ + s->current_picture.motion_val[0][xy + 1][0] = 0; + s->current_picture.motion_val[0][xy + 1][1] = 0; + s->current_picture.motion_val[0][xy + wrap][0] = 0; + s->current_picture.motion_val[0][xy + wrap][1] = 0; + s->current_picture.motion_val[0][xy + wrap + 1][0] = 0; + s->current_picture.motion_val[0][xy + wrap + 1][1] = 0; + s->current_picture.motion_val[1][xy + 1][0] = 0; + s->current_picture.motion_val[1][xy + 1][1] = 0; + s->current_picture.motion_val[1][xy + wrap][0] = 0; + s->current_picture.motion_val[1][xy + wrap][1] = 0; + s->current_picture.motion_val[1][xy + wrap + 1][0] = 0; + s->current_picture.motion_val[1][xy + wrap + 1][1] = 0; + } + return; + } + + C = s->current_picture.motion_val[0][xy - 1]; + A = s->current_picture.motion_val[0][xy - wrap]; + if(mv1) + off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2; + else { + //in 4-MV mode different blocks have different B predictor position + switch(n){ + case 0: + off = (s->mb_x > 0) ? -1 : 1; + break; + case 1: + off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1; + break; + case 2: + off = 1; + break; + case 3: + off = -1; + } + } + B = s->current_picture.motion_val[0][xy - wrap + off]; + + if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds + if(s->mb_width == 1) { + px = A[0]; + py = A[1]; + } else { + px = mid_pred(A[0], B[0], C[0]); + py = mid_pred(A[1], B[1], C[1]); + } + } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds + px = C[0]; + py = C[1]; + } else { + px = py = 0; + } + /* Pullback MV as specified in 8.3.5.3.4 */ + { + int qx, qy, X, Y; + qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0); + qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0); + X = (s->mb_width << 6) - 4; + Y = (s->mb_height << 6) - 4; + if(mv1) { + if(qx + px < -60) px = -60 - qx; + if(qy + py < -60) py = -60 - qy; + } else { + if(qx + px < -28) px = -28 - qx; + if(qy + py < -28) py = -28 - qy; + } + if(qx + px > X) px = X - qx; + if(qy + py > Y) py = Y - qy; + } + /* Calculate hybrid prediction as specified in 8.3.5.3.5 */ + if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) { + if(is_intra[xy - wrap]) + sum = FFABS(px) + FFABS(py); + else + sum = FFABS(px - A[0]) + FFABS(py - A[1]); + if(sum > 32) { + if(get_bits1(&s->gb)) { + px = A[0]; + py = A[1]; + } else { + px = C[0]; + py = C[1]; + } + } else { + if(is_intra[xy - 1]) + sum = FFABS(px) + FFABS(py); + else + sum = FFABS(px - C[0]) + FFABS(py - C[1]); + if(sum > 32) { + if(get_bits1(&s->gb)) { + px = A[0]; + py = A[1]; + } else { + px = C[0]; + py = C[1]; + } + } + } + } + /* store MV using signed modulus of MV range defined in 4.11 */ + s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x; + s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y; + if(mv1) { /* duplicate motion data for 1-MV block */ + s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0]; + s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1]; + s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0]; + s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1]; + s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0]; + s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1]; + } +} + +/** Motion compensation for direct or interpolated blocks in B-frames + */ +static void vc1_interp_mc(VC1Context *v) +{ + MpegEncContext *s = &v->s; + DSPContext *dsp = &v->s.dsp; + uint8_t *srcY, *srcU, *srcV; + int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y; + + if(!v->s.next_picture.data[0])return; + + mx = s->mv[1][0][0]; + my = s->mv[1][0][1]; + uvmx = (mx + ((mx & 3) == 3)) >> 1; + uvmy = (my + ((my & 3) == 3)) >> 1; + if(v->fastuvmc) { + uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1)); + uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1)); + } + srcY = s->next_picture.data[0]; + srcU = s->next_picture.data[1]; + srcV = s->next_picture.data[2]; + + src_x = s->mb_x * 16 + (mx >> 2); + src_y = s->mb_y * 16 + (my >> 2); + uvsrc_x = s->mb_x * 8 + (uvmx >> 2); + uvsrc_y = s->mb_y * 8 + (uvmy >> 2); + + if(v->profile != PROFILE_ADVANCED){ + src_x = av_clip( src_x, -16, s->mb_width * 16); + src_y = av_clip( src_y, -16, s->mb_height * 16); + uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); + uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); + }else{ + src_x = av_clip( src_x, -17, s->avctx->coded_width); + src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); + uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); + uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); + } + + srcY += src_y * s->linesize + src_x; + srcU += uvsrc_y * s->uvlinesize + uvsrc_x; + srcV += uvsrc_y * s->uvlinesize + uvsrc_x; + + /* for grayscale we should not try to read from unknown area */ + if(s->flags & CODEC_FLAG_GRAY) { + srcU = s->edge_emu_buffer + 18 * s->linesize; + srcV = s->edge_emu_buffer + 18 * s->linesize; + } + + if(v->rangeredfrm + || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16 + || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){ + uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize; + + srcY -= s->mspel * (1 + s->linesize); + ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2, + src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos); + srcY = s->edge_emu_buffer; + ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1, + uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); + ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1, + uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); + srcU = uvbuf; + srcV = uvbuf + 16; + /* if we deal with range reduction we need to scale source blocks */ + if(v->rangeredfrm) { + int i, j; + uint8_t *src, *src2; + + src = srcY; + for(j = 0; j < 17 + s->mspel*2; j++) { + for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128; + src += s->linesize; + } + src = srcU; src2 = srcV; + for(j = 0; j < 9; j++) { + for(i = 0; i < 9; i++) { + src[i] = ((src[i] - 128) >> 1) + 128; + src2[i] = ((src2[i] - 128) >> 1) + 128; + } + src += s->uvlinesize; + src2 += s->uvlinesize; + } + } + srcY += s->mspel * (1 + s->linesize); + } + + mx >>= 1; + my >>= 1; + dxy = ((my & 1) << 1) | (mx & 1); + + dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); + + if(s->flags & CODEC_FLAG_GRAY) return; + /* Chroma MC always uses qpel blilinear */ + uvdxy = ((uvmy & 3) << 2) | (uvmx & 3); + uvmx = (uvmx&3)<<1; + uvmy = (uvmy&3)<<1; + dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); + dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); +} + +static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs) +{ + int n = bfrac; + +#if B_FRACTION_DEN==256 + if(inv) + n -= 256; + if(!qs) + return 2 * ((value * n + 255) >> 9); + return (value * n + 128) >> 8; +#else + if(inv) + n -= B_FRACTION_DEN; + if(!qs) + return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN)); + return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN; +#endif +} + +/** Reconstruct motion vector for B-frame and do motion compensation + */ +static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode) +{ + if(v->use_ic) { + v->mv_mode2 = v->mv_mode; + v->mv_mode = MV_PMODE_INTENSITY_COMP; + } + if(direct) { + vc1_mc_1mv(v, 0); + vc1_interp_mc(v); + if(v->use_ic) v->mv_mode = v->mv_mode2; + return; + } + if(mode == BMV_TYPE_INTERPOLATED) { + vc1_mc_1mv(v, 0); + vc1_interp_mc(v); + if(v->use_ic) v->mv_mode = v->mv_mode2; + return; + } + + if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2; + vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD)); + if(v->use_ic) v->mv_mode = v->mv_mode2; +} + +static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype) +{ + MpegEncContext *s = &v->s; + int xy, wrap, off = 0; + int16_t *A, *B, *C; + int px, py; + int sum; + int r_x, r_y; + const uint8_t *is_intra = v->mb_type[0]; + + r_x = v->range_x; + r_y = v->range_y; + /* scale MV difference to be quad-pel */ + dmv_x[0] <<= 1 - s->quarter_sample; + dmv_y[0] <<= 1 - s->quarter_sample; + dmv_x[1] <<= 1 - s->quarter_sample; + dmv_y[1] <<= 1 - s->quarter_sample; + + wrap = s->b8_stride; + xy = s->block_index[0]; + + if(s->mb_intra) { + s->current_picture.motion_val[0][xy][0] = + s->current_picture.motion_val[0][xy][1] = + s->current_picture.motion_val[1][xy][0] = + s->current_picture.motion_val[1][xy][1] = 0; + return; + } + s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample); + s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample); + s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample); + s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample); + if(direct) { + s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0]; + s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1]; + s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0]; + s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1]; + return; + } + + if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) { + C = s->current_picture.motion_val[0][xy - 2]; + A = s->current_picture.motion_val[0][xy - wrap*2]; + off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2; + B = s->current_picture.motion_val[0][xy - wrap*2 + off]; + + if(!s->first_slice_line) { // predictor A is not out of bounds + if(s->mb_width == 1) { + px = A[0]; + py = A[1]; + } else { + px = mid_pred(A[0], B[0], C[0]); + py = mid_pred(A[1], B[1], C[1]); + } + } else if(s->mb_x) { // predictor C is not out of bounds + px = C[0]; + py = C[1]; + } else { + px = py = 0; + } + /* Pullback MV as specified in 8.3.5.3.4 */ + { + int qx, qy, X, Y; + if(v->profile < PROFILE_ADVANCED) { + qx = (s->mb_x << 5); + qy = (s->mb_y << 5); + X = (s->mb_width << 5) - 4; + Y = (s->mb_height << 5) - 4; + if(qx + px < -28) px = -28 - qx; + if(qy + py < -28) py = -28 - qy; + if(qx + px > X) px = X - qx; + if(qy + py > Y) py = Y - qy; + } else { + qx = (s->mb_x << 6); + qy = (s->mb_y << 6); + X = (s->mb_width << 6) - 4; + Y = (s->mb_height << 6) - 4; + if(qx + px < -60) px = -60 - qx; + if(qy + py < -60) py = -60 - qy; + if(qx + px > X) px = X - qx; + if(qy + py > Y) py = Y - qy; + } + } + /* Calculate hybrid prediction as specified in 8.3.5.3.5 */ + if(0 && !s->first_slice_line && s->mb_x) { + if(is_intra[xy - wrap]) + sum = FFABS(px) + FFABS(py); + else + sum = FFABS(px - A[0]) + FFABS(py - A[1]); + if(sum > 32) { + if(get_bits1(&s->gb)) { + px = A[0]; + py = A[1]; + } else { + px = C[0]; + py = C[1]; + } + } else { + if(is_intra[xy - 2]) + sum = FFABS(px) + FFABS(py); + else + sum = FFABS(px - C[0]) + FFABS(py - C[1]); + if(sum > 32) { + if(get_bits1(&s->gb)) { + px = A[0]; + py = A[1]; + } else { + px = C[0]; + py = C[1]; + } + } + } + } + /* store MV using signed modulus of MV range defined in 4.11 */ + s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x; + s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y; + } + if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) { + C = s->current_picture.motion_val[1][xy - 2]; + A = s->current_picture.motion_val[1][xy - wrap*2]; + off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2; + B = s->current_picture.motion_val[1][xy - wrap*2 + off]; + + if(!s->first_slice_line) { // predictor A is not out of bounds + if(s->mb_width == 1) { + px = A[0]; + py = A[1]; + } else { + px = mid_pred(A[0], B[0], C[0]); + py = mid_pred(A[1], B[1], C[1]); + } + } else if(s->mb_x) { // predictor C is not out of bounds + px = C[0]; + py = C[1]; + } else { + px = py = 0; + } + /* Pullback MV as specified in 8.3.5.3.4 */ + { + int qx, qy, X, Y; + if(v->profile < PROFILE_ADVANCED) { + qx = (s->mb_x << 5); + qy = (s->mb_y << 5); + X = (s->mb_width << 5) - 4; + Y = (s->mb_height << 5) - 4; + if(qx + px < -28) px = -28 - qx; + if(qy + py < -28) py = -28 - qy; + if(qx + px > X) px = X - qx; + if(qy + py > Y) py = Y - qy; + } else { + qx = (s->mb_x << 6); + qy = (s->mb_y << 6); + X = (s->mb_width << 6) - 4; + Y = (s->mb_height << 6) - 4; + if(qx + px < -60) px = -60 - qx; + if(qy + py < -60) py = -60 - qy; + if(qx + px > X) px = X - qx; + if(qy + py > Y) py = Y - qy; + } + } + /* Calculate hybrid prediction as specified in 8.3.5.3.5 */ + if(0 && !s->first_slice_line && s->mb_x) { + if(is_intra[xy - wrap]) + sum = FFABS(px) + FFABS(py); + else + sum = FFABS(px - A[0]) + FFABS(py - A[1]); + if(sum > 32) { + if(get_bits1(&s->gb)) { + px = A[0]; + py = A[1]; + } else { + px = C[0]; + py = C[1]; + } + } else { + if(is_intra[xy - 2]) + sum = FFABS(px) + FFABS(py); + else + sum = FFABS(px - C[0]) + FFABS(py - C[1]); + if(sum > 32) { + if(get_bits1(&s->gb)) { + px = A[0]; + py = A[1]; + } else { + px = C[0]; + py = C[1]; + } + } + } + } + /* store MV using signed modulus of MV range defined in 4.11 */ + + s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x; + s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y; + } + s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0]; + s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1]; + s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0]; + s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1]; +} + +/** Get predicted DC value for I-frames only + * prediction dir: left=0, top=1 + * @param s MpegEncContext + * @param[in] n block index in the current MB + * @param dc_val_ptr Pointer to DC predictor + * @param dir_ptr Prediction direction for use in AC prediction + */ +static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n, + int16_t **dc_val_ptr, int *dir_ptr) +{ + int a, b, c, wrap, pred, scale; + int16_t *dc_val; + static const uint16_t dcpred[32] = { + -1, 1024, 512, 341, 256, 205, 171, 146, 128, + 114, 102, 93, 85, 79, 73, 68, 64, + 60, 57, 54, 51, 49, 47, 45, 43, + 41, 39, 38, 37, 35, 34, 33 + }; + + /* find prediction - wmv3_dc_scale always used here in fact */ + if (n < 4) scale = s->y_dc_scale; + else scale = s->c_dc_scale; + + wrap = s->block_wrap[n]; + dc_val= s->dc_val[0] + s->block_index[n]; + + /* B A + * C X + */ + c = dc_val[ - 1]; + b = dc_val[ - 1 - wrap]; + a = dc_val[ - wrap]; + + if (pq < 9 || !overlap) + { + /* Set outer values */ + if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale]; + if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale]; + } + else + { + /* Set outer values */ + if (s->first_slice_line && (n!=2 && n!=3)) b=a=0; + if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0; + } + + if (abs(a - b) <= abs(b - c)) { + pred = c; + *dir_ptr = 1;//left + } else { + pred = a; + *dir_ptr = 0;//top + } + + /* update predictor */ + *dc_val_ptr = &dc_val[0]; + return pred; +} + + +/** Get predicted DC value + * prediction dir: left=0, top=1 + * @param s MpegEncContext + * @param[in] n block index in the current MB + * @param dc_val_ptr Pointer to DC predictor + * @param dir_ptr Prediction direction for use in AC prediction + */ +static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n, + int a_avail, int c_avail, + int16_t **dc_val_ptr, int *dir_ptr) +{ + int a, b, c, wrap, pred, scale; + int16_t *dc_val; + int mb_pos = s->mb_x + s->mb_y * s->mb_stride; + int q1, q2 = 0; + + /* find prediction - wmv3_dc_scale always used here in fact */ + if (n < 4) scale = s->y_dc_scale; + else scale = s->c_dc_scale; + + wrap = s->block_wrap[n]; + dc_val= s->dc_val[0] + s->block_index[n]; + + /* B A + * C X + */ + c = dc_val[ - 1]; + b = dc_val[ - 1 - wrap]; + a = dc_val[ - wrap]; + /* scale predictors if needed */ + q1 = s->current_picture.qscale_table[mb_pos]; + if(c_avail && (n!= 1 && n!=3)) { + q2 = s->current_picture.qscale_table[mb_pos - 1]; + if(q2 && q2 != q1) + c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18; + } + if(a_avail && (n!= 2 && n!=3)) { + q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; + if(q2 && q2 != q1) + a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18; + } + if(a_avail && c_avail && (n!=3)) { + int off = mb_pos; + if(n != 1) off--; + if(n != 2) off -= s->mb_stride; + q2 = s->current_picture.qscale_table[off]; + if(q2 && q2 != q1) + b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18; + } + + if(a_avail && c_avail) { + if(abs(a - b) <= abs(b - c)) { + pred = c; + *dir_ptr = 1;//left + } else { + pred = a; + *dir_ptr = 0;//top + } + } else if(a_avail) { + pred = a; + *dir_ptr = 0;//top + } else if(c_avail) { + pred = c; + *dir_ptr = 1;//left + } else { + pred = 0; + *dir_ptr = 1;//left + } + + /* update predictor */ + *dc_val_ptr = &dc_val[0]; + return pred; +} + + +/** + * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles + * @see 7.1.4, p91 and 8.1.1.7, p(1)04 + * @{ + */ + +static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr) +{ + int xy, wrap, pred, a, b, c; + + xy = s->block_index[n]; + wrap = s->b8_stride; + + /* B C + * A X + */ + a = s->coded_block[xy - 1 ]; + b = s->coded_block[xy - 1 - wrap]; + c = s->coded_block[xy - wrap]; + + if (b == c) { + pred = a; + } else { + pred = c; + } + + /* store value */ + *coded_block_ptr = &s->coded_block[xy]; + + return pred; +} + +/** + * Decode one AC coefficient + * @param v The VC1 context + * @param last Last coefficient + * @param skip How much zero coefficients to skip + * @param value Decoded AC coefficient value + * @see 8.1.3.4 + */ +static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset) +{ + GetBitContext *gb = &v->s.gb; + int index, escape, run = 0, level = 0, lst = 0; + + index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3); + if (index != vc1_ac_sizes[codingset] - 1) { + run = vc1_index_decode_table[codingset][index][0]; + level = vc1_index_decode_table[codingset][index][1]; + lst = index >= vc1_last_decode_table[codingset]; + if(get_bits(gb, 1)) + level = -level; + } else { + escape = decode210(gb); + if (escape != 2) { + index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3); + run = vc1_index_decode_table[codingset][index][0]; + level = vc1_index_decode_table[codingset][index][1]; + lst = index >= vc1_last_decode_table[codingset]; + if(escape == 0) { + if(lst) + level += vc1_last_delta_level_table[codingset][run]; + else + level += vc1_delta_level_table[codingset][run]; + } else { + if(lst) + run += vc1_last_delta_run_table[codingset][level] + 1; + else + run += vc1_delta_run_table[codingset][level] + 1; + } + if(get_bits(gb, 1)) + level = -level; + } else { + int sign; + lst = get_bits(gb, 1); + if(v->s.esc3_level_length == 0) { + if(v->pq < 8 || v->dquantfrm) { // table 59 + v->s.esc3_level_length = get_bits(gb, 3); + if(!v->s.esc3_level_length) + v->s.esc3_level_length = get_bits(gb, 2) + 8; + } else { //table 60 + v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2; + } + v->s.esc3_run_length = 3 + get_bits(gb, 2); + } + run = get_bits(gb, v->s.esc3_run_length); + sign = get_bits(gb, 1); + level = get_bits(gb, v->s.esc3_level_length); + if(sign) + level = -level; + } + } + + *last = lst; + *skip = run; + *value = level; +} + +/** Decode intra block in intra frames - should be faster than decode_intra_block + * @param v VC1Context + * @param block block to decode + * @param coded are AC coeffs present or not + * @param codingset set of VLC to decode data + */ +static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset) +{ + GetBitContext *gb = &v->s.gb; + MpegEncContext *s = &v->s; + int dc_pred_dir = 0; /* Direction of the DC prediction used */ + int run_diff, i; + int16_t *dc_val; + int16_t *ac_val, *ac_val2; + int dcdiff; + + /* Get DC differential */ + if (n < 4) { + dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); + } else { + dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); + } + if (dcdiff < 0){ + av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); + return -1; + } + if (dcdiff) + { + if (dcdiff == 119 /* ESC index value */) + { + /* TODO: Optimize */ + if (v->pq == 1) dcdiff = get_bits(gb, 10); + else if (v->pq == 2) dcdiff = get_bits(gb, 9); + else dcdiff = get_bits(gb, 8); + } + else + { + if (v->pq == 1) + dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; + else if (v->pq == 2) + dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1; + } + if (get_bits(gb, 1)) + dcdiff = -dcdiff; + } + + /* Prediction */ + dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir); + *dc_val = dcdiff; + + /* Store the quantized DC coeff, used for prediction */ + if (n < 4) { + block[0] = dcdiff * s->y_dc_scale; + } else { + block[0] = dcdiff * s->c_dc_scale; + } + /* Skip ? */ + run_diff = 0; + i = 0; + if (!coded) { + goto not_coded; + } + + //AC Decoding + i = 1; + + { + int last = 0, skip, value; + const int8_t *zz_table; + int scale; + int k; + + scale = v->pq * 2 + v->halfpq; + + if(v->s.ac_pred) { + if(!dc_pred_dir) + zz_table = vc1_horizontal_zz; + else + zz_table = vc1_vertical_zz; + } else + zz_table = vc1_normal_zz; + + ac_val = s->ac_val[0][0] + s->block_index[n] * 16; + ac_val2 = ac_val; + if(dc_pred_dir) //left + ac_val -= 16; + else //top + ac_val -= 16 * s->block_wrap[n]; + + while (!last) { + vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); + i += skip; + if(i > 63) + break; + block[zz_table[i++]] = value; + } + + /* apply AC prediction if needed */ + if(s->ac_pred) { + if(dc_pred_dir) { //left + for(k = 1; k < 8; k++) + block[k << 3] += ac_val[k]; + } else { //top + for(k = 1; k < 8; k++) + block[k] += ac_val[k + 8]; + } + } + /* save AC coeffs for further prediction */ + for(k = 1; k < 8; k++) { + ac_val2[k] = block[k << 3]; + ac_val2[k + 8] = block[k]; + } + + /* scale AC coeffs */ + for(k = 1; k < 64; k++) + if(block[k]) { + block[k] *= scale; + if(!v->pquantizer) + block[k] += (block[k] < 0) ? -v->pq : v->pq; + } + + if(s->ac_pred) i = 63; + } + +not_coded: + if(!coded) { + int k, scale; + ac_val = s->ac_val[0][0] + s->block_index[n] * 16; + ac_val2 = ac_val; + + scale = v->pq * 2 + v->halfpq; + memset(ac_val2, 0, 16 * 2); + if(dc_pred_dir) {//left + ac_val -= 16; + if(s->ac_pred) + memcpy(ac_val2, ac_val, 8 * 2); + } else {//top + ac_val -= 16 * s->block_wrap[n]; + if(s->ac_pred) + memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); + } + + /* apply AC prediction if needed */ + if(s->ac_pred) { + if(dc_pred_dir) { //left + for(k = 1; k < 8; k++) { + block[k << 3] = ac_val[k] * scale; + if(!v->pquantizer && block[k << 3]) + block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq; + } + } else { //top + for(k = 1; k < 8; k++) { + block[k] = ac_val[k + 8] * scale; + if(!v->pquantizer && block[k]) + block[k] += (block[k] < 0) ? -v->pq : v->pq; + } + } + i = 63; + } + } + s->block_last_index[n] = i; + + return 0; +} + +/** Decode intra block in intra frames - should be faster than decode_intra_block + * @param v VC1Context + * @param block block to decode + * @param coded are AC coeffs present or not + * @param codingset set of VLC to decode data + */ +static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant) +{ + GetBitContext *gb = &v->s.gb; + MpegEncContext *s = &v->s; + int dc_pred_dir = 0; /* Direction of the DC prediction used */ + int run_diff, i; + int16_t *dc_val; + int16_t *ac_val, *ac_val2; + int dcdiff; + int a_avail = v->a_avail, c_avail = v->c_avail; + int use_pred = s->ac_pred; + int scale; + int q1, q2 = 0; + int mb_pos = s->mb_x + s->mb_y * s->mb_stride; + + /* Get DC differential */ + if (n < 4) { + dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); + } else { + dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); + } + if (dcdiff < 0){ + av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); + return -1; + } + if (dcdiff) + { + if (dcdiff == 119 /* ESC index value */) + { + /* TODO: Optimize */ + if (mquant == 1) dcdiff = get_bits(gb, 10); + else if (mquant == 2) dcdiff = get_bits(gb, 9); + else dcdiff = get_bits(gb, 8); + } + else + { + if (mquant == 1) + dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; + else if (mquant == 2) + dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1; + } + if (get_bits(gb, 1)) + dcdiff = -dcdiff; + } + + /* Prediction */ + dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir); + *dc_val = dcdiff; + + /* Store the quantized DC coeff, used for prediction */ + if (n < 4) { + block[0] = dcdiff * s->y_dc_scale; + } else { + block[0] = dcdiff * s->c_dc_scale; + } + /* Skip ? */ + run_diff = 0; + i = 0; + + //AC Decoding + i = 1; + + /* check if AC is needed at all and adjust direction if needed */ + if(!a_avail) dc_pred_dir = 1; + if(!c_avail) dc_pred_dir = 0; + if(!a_avail && !c_avail) use_pred = 0; + ac_val = s->ac_val[0][0] + s->block_index[n] * 16; + ac_val2 = ac_val; + + scale = mquant * 2 + v->halfpq; + + if(dc_pred_dir) //left + ac_val -= 16; + else //top + ac_val -= 16 * s->block_wrap[n]; + + q1 = s->current_picture.qscale_table[mb_pos]; + if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1]; + if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; + if(dc_pred_dir && n==1) q2 = q1; + if(!dc_pred_dir && n==2) q2 = q1; + if(n==3) q2 = q1; + + if(coded) { + int last = 0, skip, value; + const int8_t *zz_table; + int k; + + if(v->s.ac_pred) { + if(!dc_pred_dir) + zz_table = vc1_horizontal_zz; + else + zz_table = vc1_vertical_zz; + } else + zz_table = vc1_normal_zz; + + while (!last) { + vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); + i += skip; + if(i > 63) + break; + block[zz_table[i++]] = value; + } + + /* apply AC prediction if needed */ + if(use_pred) { + /* scale predictors if needed*/ + if(q2 && q1!=q2) { + q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; + q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; + + if(dc_pred_dir) { //left + for(k = 1; k < 8; k++) + block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; + } else { //top + for(k = 1; k < 8; k++) + block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; + } + } else { + if(dc_pred_dir) { //left + for(k = 1; k < 8; k++) + block[k << 3] += ac_val[k]; + } else { //top + for(k = 1; k < 8; k++) + block[k] += ac_val[k + 8]; + } + } + } + /* save AC coeffs for further prediction */ + for(k = 1; k < 8; k++) { + ac_val2[k] = block[k << 3]; + ac_val2[k + 8] = block[k]; + } + + /* scale AC coeffs */ + for(k = 1; k < 64; k++) + if(block[k]) { + block[k] *= scale; + if(!v->pquantizer) + block[k] += (block[k] < 0) ? -mquant : mquant; + } + + if(use_pred) i = 63; + } else { // no AC coeffs + int k; + + memset(ac_val2, 0, 16 * 2); + if(dc_pred_dir) {//left + if(use_pred) { + memcpy(ac_val2, ac_val, 8 * 2); + if(q2 && q1!=q2) { + q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; + q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; + for(k = 1; k < 8; k++) + ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; + } + } + } else {//top + if(use_pred) { + memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); + if(q2 && q1!=q2) { + q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; + q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; + for(k = 1; k < 8; k++) + ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; + } + } + } + + /* apply AC prediction if needed */ + if(use_pred) { + if(dc_pred_dir) { //left + for(k = 1; k < 8; k++) { + block[k << 3] = ac_val2[k] * scale; + if(!v->pquantizer && block[k << 3]) + block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant; + } + } else { //top + for(k = 1; k < 8; k++) { + block[k] = ac_val2[k + 8] * scale; + if(!v->pquantizer && block[k]) + block[k] += (block[k] < 0) ? -mquant : mquant; + } + } + i = 63; + } + } + s->block_last_index[n] = i; + + return 0; +} + +/** Decode intra block in inter frames - more generic version than vc1_decode_i_block + * @param v VC1Context + * @param block block to decode + * @param coded are AC coeffs present or not + * @param mquant block quantizer + * @param codingset set of VLC to decode data + */ +static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset) +{ + GetBitContext *gb = &v->s.gb; + MpegEncContext *s = &v->s; + int dc_pred_dir = 0; /* Direction of the DC prediction used */ + int run_diff, i; + int16_t *dc_val; + int16_t *ac_val, *ac_val2; + int dcdiff; + int mb_pos = s->mb_x + s->mb_y * s->mb_stride; + int a_avail = v->a_avail, c_avail = v->c_avail; + int use_pred = s->ac_pred; + int scale; + int q1, q2 = 0; + + /* XXX: Guard against dumb values of mquant */ + mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant ); + + /* Set DC scale - y and c use the same */ + s->y_dc_scale = s->y_dc_scale_table[mquant]; + s->c_dc_scale = s->c_dc_scale_table[mquant]; + + /* Get DC differential */ + if (n < 4) { + dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); + } else { + dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); + } + if (dcdiff < 0){ + av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); + return -1; + } + if (dcdiff) + { + if (dcdiff == 119 /* ESC index value */) + { + /* TODO: Optimize */ + if (mquant == 1) dcdiff = get_bits(gb, 10); + else if (mquant == 2) dcdiff = get_bits(gb, 9); + else dcdiff = get_bits(gb, 8); + } + else + { + if (mquant == 1) + dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; + else if (mquant == 2) + dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1; + } + if (get_bits(gb, 1)) + dcdiff = -dcdiff; + } + + /* Prediction */ + dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir); + *dc_val = dcdiff; + + /* Store the quantized DC coeff, used for prediction */ + + if (n < 4) { + block[0] = dcdiff * s->y_dc_scale; + } else { + block[0] = dcdiff * s->c_dc_scale; + } + /* Skip ? */ + run_diff = 0; + i = 0; + + //AC Decoding + i = 1; + + /* check if AC is needed at all and adjust direction if needed */ + if(!a_avail) dc_pred_dir = 1; + if(!c_avail) dc_pred_dir = 0; + if(!a_avail && !c_avail) use_pred = 0; + ac_val = s->ac_val[0][0] + s->block_index[n] * 16; + ac_val2 = ac_val; + + scale = mquant * 2 + v->halfpq; + + if(dc_pred_dir) //left + ac_val -= 16; + else //top + ac_val -= 16 * s->block_wrap[n]; + + q1 = s->current_picture.qscale_table[mb_pos]; + if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1]; + if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; + if(dc_pred_dir && n==1) q2 = q1; + if(!dc_pred_dir && n==2) q2 = q1; + if(n==3) q2 = q1; + + if(coded) { + int last = 0, skip, value; + const int8_t *zz_table; + int k; + + zz_table = vc1_simple_progressive_8x8_zz; + + while (!last) { + vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); + i += skip; + if(i > 63) + break; + block[zz_table[i++]] = value; + } + + /* apply AC prediction if needed */ + if(use_pred) { + /* scale predictors if needed*/ + if(q2 && q1!=q2) { + q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; + q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; + + if(dc_pred_dir) { //left + for(k = 1; k < 8; k++) + block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; + } else { //top + for(k = 1; k < 8; k++) + block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; + } + } else { + if(dc_pred_dir) { //left + for(k = 1; k < 8; k++) + block[k << 3] += ac_val[k]; + } else { //top + for(k = 1; k < 8; k++) + block[k] += ac_val[k + 8]; + } + } + } + /* save AC coeffs for further prediction */ + for(k = 1; k < 8; k++) { + ac_val2[k] = block[k << 3]; + ac_val2[k + 8] = block[k]; + } + + /* scale AC coeffs */ + for(k = 1; k < 64; k++) + if(block[k]) { + block[k] *= scale; + if(!v->pquantizer) + block[k] += (block[k] < 0) ? -mquant : mquant; + } + + if(use_pred) i = 63; + } else { // no AC coeffs + int k; + + memset(ac_val2, 0, 16 * 2); + if(dc_pred_dir) {//left + if(use_pred) { + memcpy(ac_val2, ac_val, 8 * 2); + if(q2 && q1!=q2) { + q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; + q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; + for(k = 1; k < 8; k++) + ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; + } + } + } else {//top + if(use_pred) { + memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); + if(q2 && q1!=q2) { + q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; + q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; + for(k = 1; k < 8; k++) + ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; + } + } + } + + /* apply AC prediction if needed */ + if(use_pred) { + if(dc_pred_dir) { //left + for(k = 1; k < 8; k++) { + block[k << 3] = ac_val2[k] * scale; + if(!v->pquantizer && block[k << 3]) + block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant; + } + } else { //top + for(k = 1; k < 8; k++) { + block[k] = ac_val2[k + 8] * scale; + if(!v->pquantizer && block[k]) + block[k] += (block[k] < 0) ? -mquant : mquant; + } + } + i = 63; + } + } + s->block_last_index[n] = i; + + return 0; +} + +/** Decode P block + */ +static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block) +{ + MpegEncContext *s = &v->s; + GetBitContext *gb = &s->gb; + int i, j; + int subblkpat = 0; + int scale, off, idx, last, skip, value; + int ttblk = ttmb & 7; + + if(ttmb == -1) { + ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)]; + } + if(ttblk == TT_4X4) { + subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1); + } + if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) { + subblkpat = decode012(gb); + if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits + if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4; + if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8; + } + scale = 2 * mquant + v->halfpq; + + // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT + if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) { + subblkpat = 2 - (ttblk == TT_8X4_TOP); + ttblk = TT_8X4; + } + if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) { + subblkpat = 2 - (ttblk == TT_4X8_LEFT); + ttblk = TT_4X8; + } + switch(ttblk) { + case TT_8X8: + i = 0; + last = 0; + while (!last) { + vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); + i += skip; + if(i > 63) + break; + idx = vc1_simple_progressive_8x8_zz[i++]; + block[idx] = value * scale; + if(!v->pquantizer) + block[idx] += (block[idx] < 0) ? -mquant : mquant; + } + s->dsp.vc1_inv_trans_8x8(block); + break; + case TT_4X4: + for(j = 0; j < 4; j++) { + last = subblkpat & (1 << (3 - j)); + i = 0; + off = (j & 1) * 4 + (j & 2) * 16; + while (!last) { + vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); + i += skip; + if(i > 15) + break; + idx = vc1_simple_progressive_4x4_zz[i++]; + block[idx + off] = value * scale; + if(!v->pquantizer) + block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant; + } + if(!(subblkpat & (1 << (3 - j)))) + s->dsp.vc1_inv_trans_4x4(block, j); + } + break; + case TT_8X4: + for(j = 0; j < 2; j++) { + last = subblkpat & (1 << (1 - j)); + i = 0; + off = j * 32; + while (!last) { + vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); + i += skip; + if(i > 31) + break; + if(v->profile < PROFILE_ADVANCED) + idx = vc1_simple_progressive_8x4_zz[i++]; + else + idx = vc1_adv_progressive_8x4_zz[i++]; + block[idx + off] = value * scale; + if(!v->pquantizer) + block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant; + } + if(!(subblkpat & (1 << (1 - j)))) + s->dsp.vc1_inv_trans_8x4(block, j); + } + break; + case TT_4X8: + for(j = 0; j < 2; j++) { + last = subblkpat & (1 << (1 - j)); + i = 0; + off = j * 4; + while (!last) { + vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); + i += skip; + if(i > 31) + break; + if(v->profile < PROFILE_ADVANCED) + idx = vc1_simple_progressive_4x8_zz[i++]; + else + idx = vc1_adv_progressive_4x8_zz[i++]; + block[idx + off] = value * scale; + if(!v->pquantizer) + block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant; + } + if(!(subblkpat & (1 << (1 - j)))) + s->dsp.vc1_inv_trans_4x8(block, j); + } + break; + } + return 0; +} + + +/** Decode one P-frame MB (in Simple/Main profile) + */ +static int vc1_decode_p_mb(VC1Context *v) +{ + MpegEncContext *s = &v->s; + GetBitContext *gb = &s->gb; + int i, j; + int mb_pos = s->mb_x + s->mb_y * s->mb_stride; + int cbp; /* cbp decoding stuff */ + int mqdiff, mquant; /* MB quantization */ + int ttmb = v->ttfrm; /* MB Transform type */ + int status; + + static const int size_table[6] = { 0, 2, 3, 4, 5, 8 }, + offset_table[6] = { 0, 1, 3, 7, 15, 31 }; + int mb_has_coeffs = 1; /* last_flag */ + int dmv_x, dmv_y; /* Differential MV components */ + int index, index1; /* LUT indices */ + int val, sign; /* temp values */ + int first_block = 1; + int dst_idx, off; + int skipped, fourmv; + + mquant = v->pq; /* Loosy initialization */ + + if (v->mv_type_is_raw) + fourmv = get_bits1(gb); + else + fourmv = v->mv_type_mb_plane[mb_pos]; + if (v->skip_is_raw) + skipped = get_bits1(gb); + else + skipped = v->s.mbskip_table[mb_pos]; + + s->dsp.clear_blocks(s->block[0]); + + if (!fourmv) /* 1MV mode */ + { + if (!skipped) + { + GET_MVDATA(dmv_x, dmv_y); + + if (s->mb_intra) { + s->current_picture.motion_val[1][s->block_index[0]][0] = 0; + s->current_picture.motion_val[1][s->block_index[0]][1] = 0; + } + s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16; + vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]); + + /* FIXME Set DC val for inter block ? */ + if (s->mb_intra && !mb_has_coeffs) + { + GET_MQUANT(); + s->ac_pred = get_bits(gb, 1); + cbp = 0; + } + else if (mb_has_coeffs) + { + if (s->mb_intra) s->ac_pred = get_bits(gb, 1); + cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); + GET_MQUANT(); + } + else + { + mquant = v->pq; + cbp = 0; + } + s->current_picture.qscale_table[mb_pos] = mquant; + + if (!v->ttmbf && !s->mb_intra && mb_has_coeffs) + ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, + VC1_TTMB_VLC_BITS, 2); + if(!s->mb_intra) vc1_mc_1mv(v, 0); + dst_idx = 0; + for (i=0; i<6; i++) + { + s->dc_val[0][s->block_index[i]] = 0; + dst_idx += i >> 2; + val = ((cbp >> (5 - i)) & 1); + off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); + v->mb_type[0][s->block_index[i]] = s->mb_intra; + if(s->mb_intra) { + /* check if prediction blocks A and C are available */ + v->a_avail = v->c_avail = 0; + if(i == 2 || i == 3 || !s->first_slice_line) + v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; + if(i == 1 || i == 3 || s->mb_x) + v->c_avail = v->mb_type[0][s->block_index[i] - 1]; + + vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset); + if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; + s->dsp.vc1_inv_trans_8x8(s->block[i]); + if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1; + for(j = 0; j < 64; j++) s->block[i][j] += 128; + if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16; + s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); + if(v->pq >= 9 && v->overlap) { + if(v->c_avail) + s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); + if(v->a_avail) + s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); + } + } else if(val) { + vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block); + if(!v->ttmbf && ttmb < 8) ttmb = -1; + first_block = 0; + if((i<4) || !(s->flags & CODEC_FLAG_GRAY)) + s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize); + } + } + } + else //Skipped + { + s->mb_intra = 0; + for(i = 0; i < 6; i++) { + v->mb_type[0][s->block_index[i]] = 0; + s->dc_val[0][s->block_index[i]] = 0; + } + s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP; + s->current_picture.qscale_table[mb_pos] = 0; + vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]); + vc1_mc_1mv(v, 0); + return 0; + } + } //1MV mode + else //4MV mode + { + if (!skipped /* unskipped MB */) + { + int intra_count = 0, coded_inter = 0; + int is_intra[6], is_coded[6]; + /* Get CBPCY */ + cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); + for (i=0; i<6; i++) + { + val = ((cbp >> (5 - i)) & 1); + s->dc_val[0][s->block_index[i]] = 0; + s->mb_intra = 0; + if(i < 4) { + dmv_x = dmv_y = 0; + s->mb_intra = 0; + mb_has_coeffs = 0; + if(val) { + GET_MVDATA(dmv_x, dmv_y); + } + vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]); + if(!s->mb_intra) vc1_mc_4mv_luma(v, i); + intra_count += s->mb_intra; + is_intra[i] = s->mb_intra; + is_coded[i] = mb_has_coeffs; + } + if(i&4){ + is_intra[i] = (intra_count >= 3); + is_coded[i] = val; + } + if(i == 4) vc1_mc_4mv_chroma(v); + v->mb_type[0][s->block_index[i]] = is_intra[i]; + if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i]; + } + // if there are no coded blocks then don't do anything more + if(!intra_count && !coded_inter) return 0; + dst_idx = 0; + GET_MQUANT(); + s->current_picture.qscale_table[mb_pos] = mquant; + /* test if block is intra and has pred */ + { + int intrapred = 0; + for(i=0; i<6; i++) + if(is_intra[i]) { + if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]]) + || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) { + intrapred = 1; + break; + } + } + if(intrapred)s->ac_pred = get_bits(gb, 1); + else s->ac_pred = 0; + } + if (!v->ttmbf && coded_inter) + ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); + for (i=0; i<6; i++) + { + dst_idx += i >> 2; + off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); + s->mb_intra = is_intra[i]; + if (is_intra[i]) { + /* check if prediction blocks A and C are available */ + v->a_avail = v->c_avail = 0; + if(i == 2 || i == 3 || !s->first_slice_line) + v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; + if(i == 1 || i == 3 || s->mb_x) + v->c_avail = v->mb_type[0][s->block_index[i] - 1]; + + vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset); + if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; + s->dsp.vc1_inv_trans_8x8(s->block[i]); + if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1; + for(j = 0; j < 64; j++) s->block[i][j] += 128; + if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16; + s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize); + if(v->pq >= 9 && v->overlap) { + if(v->c_avail) + s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); + if(v->a_avail) + s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); + } + } else if(is_coded[i]) { + status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block); + if(!v->ttmbf && ttmb < 8) ttmb = -1; + first_block = 0; + if((i<4) || !(s->flags & CODEC_FLAG_GRAY)) + s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize); + } + } + return status; + } + else //Skipped MB + { + s->mb_intra = 0; + s->current_picture.qscale_table[mb_pos] = 0; + for (i=0; i<6; i++) { + v->mb_type[0][s->block_index[i]] = 0; + s->dc_val[0][s->block_index[i]] = 0; + } + for (i=0; i<4; i++) + { + vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]); + vc1_mc_4mv_luma(v, i); + } + vc1_mc_4mv_chroma(v); + s->current_picture.qscale_table[mb_pos] = 0; + return 0; + } + } + + /* Should never happen */ + return -1; +} + +/** Decode one B-frame MB (in Main profile) + */ +static void vc1_decode_b_mb(VC1Context *v) +{ + MpegEncContext *s = &v->s; + GetBitContext *gb = &s->gb; + int i, j; + int mb_pos = s->mb_x + s->mb_y * s->mb_stride; + int cbp = 0; /* cbp decoding stuff */ + int mqdiff, mquant; /* MB quantization */ + int ttmb = v->ttfrm; /* MB Transform type */ + + static const int size_table[6] = { 0, 2, 3, 4, 5, 8 }, + offset_table[6] = { 0, 1, 3, 7, 15, 31 }; + int mb_has_coeffs = 0; /* last_flag */ + int index, index1; /* LUT indices */ + int val, sign; /* temp values */ + int first_block = 1; + int dst_idx, off; + int skipped, direct; + int dmv_x[2], dmv_y[2]; + int bmvtype = BMV_TYPE_BACKWARD; + + mquant = v->pq; /* Loosy initialization */ + s->mb_intra = 0; + + if (v->dmb_is_raw) + direct = get_bits1(gb); + else + direct = v->direct_mb_plane[mb_pos]; + if (v->skip_is_raw) + skipped = get_bits1(gb); + else + skipped = v->s.mbskip_table[mb_pos]; + + s->dsp.clear_blocks(s->block[0]); + dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0; + for(i = 0; i < 6; i++) { + v->mb_type[0][s->block_index[i]] = 0; + s->dc_val[0][s->block_index[i]] = 0; + } + s->current_picture.qscale_table[mb_pos] = 0; + + if (!direct) { + if (!skipped) { + GET_MVDATA(dmv_x[0], dmv_y[0]); + dmv_x[1] = dmv_x[0]; + dmv_y[1] = dmv_y[0]; + } + if(skipped || !s->mb_intra) { + bmvtype = decode012(gb); + switch(bmvtype) { + case 0: + bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD; + break; + case 1: + bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD; + break; + case 2: + bmvtype = BMV_TYPE_INTERPOLATED; + dmv_x[0] = dmv_y[0] = 0; + } + } + } + for(i = 0; i < 6; i++) + v->mb_type[0][s->block_index[i]] = s->mb_intra; + + if (skipped) { + if(direct) bmvtype = BMV_TYPE_INTERPOLATED; + vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); + vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); + return; + } + if (direct) { + cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); + GET_MQUANT(); + s->mb_intra = 0; + mb_has_coeffs = 0; + s->current_picture.qscale_table[mb_pos] = mquant; + if(!v->ttmbf) + ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); + dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0; + vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); + vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); + } else { + if(!mb_has_coeffs && !s->mb_intra) { + /* no coded blocks - effectively skipped */ + vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); + vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); + return; + } + if(s->mb_intra && !mb_has_coeffs) { + GET_MQUANT(); + s->current_picture.qscale_table[mb_pos] = mquant; + s->ac_pred = get_bits1(gb); + cbp = 0; + vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); + } else { + if(bmvtype == BMV_TYPE_INTERPOLATED) { + GET_MVDATA(dmv_x[0], dmv_y[0]); + if(!mb_has_coeffs) { + /* interpolated skipped block */ + vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); + vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); + return; + } + } + vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); + if(!s->mb_intra) { + vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); + } + if(s->mb_intra) + s->ac_pred = get_bits1(gb); + cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); + GET_MQUANT(); + s->current_picture.qscale_table[mb_pos] = mquant; + if(!v->ttmbf && !s->mb_intra && mb_has_coeffs) + ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); + } + } + dst_idx = 0; + for (i=0; i<6; i++) + { + s->dc_val[0][s->block_index[i]] = 0; + dst_idx += i >> 2; + val = ((cbp >> (5 - i)) & 1); + off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); + v->mb_type[0][s->block_index[i]] = s->mb_intra; + if(s->mb_intra) { + /* check if prediction blocks A and C are available */ + v->a_avail = v->c_avail = 0; + if(i == 2 || i == 3 || !s->first_slice_line) + v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; + if(i == 1 || i == 3 || s->mb_x) + v->c_avail = v->mb_type[0][s->block_index[i] - 1]; + + vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset); + if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; + s->dsp.vc1_inv_trans_8x8(s->block[i]); + if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1; + for(j = 0; j < 64; j++) s->block[i][j] += 128; + s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); + } else if(val) { + vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block); + if(!v->ttmbf && ttmb < 8) ttmb = -1; + first_block = 0; + if((i<4) || !(s->flags & CODEC_FLAG_GRAY)) + s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize); + } + } +} + +/** Decode blocks of I-frame + */ +static void vc1_decode_i_blocks(VC1Context *v) +{ + int k, j; + MpegEncContext *s = &v->s; + int cbp, val; + uint8_t *coded_val; + int mb_pos; + + /* select codingmode used for VLC tables selection */ + switch(v->y_ac_table_index){ + case 0: + v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; + break; + case 1: + v->codingset = CS_HIGH_MOT_INTRA; + break; + case 2: + v->codingset = CS_MID_RATE_INTRA; + break; + } + + switch(v->c_ac_table_index){ + case 0: + v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; + break; + case 1: + v->codingset2 = CS_HIGH_MOT_INTER; + break; + case 2: + v->codingset2 = CS_MID_RATE_INTER; + break; + } + + /* Set DC scale - y and c use the same */ + s->y_dc_scale = s->y_dc_scale_table[v->pq]; + s->c_dc_scale = s->c_dc_scale_table[v->pq]; + + //do frame decode + s->mb_x = s->mb_y = 0; + s->mb_intra = 1; + s->first_slice_line = 1; + ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); + for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { + for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { + ff_init_block_index(s); + ff_update_block_index(s); + s->dsp.clear_blocks(s->block[0]); + mb_pos = s->mb_x + s->mb_y * s->mb_width; + s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA; + s->current_picture.qscale_table[mb_pos] = v->pq; + s->current_picture.motion_val[1][s->block_index[0]][0] = 0; + s->current_picture.motion_val[1][s->block_index[0]][1] = 0; + + // do actual MB decoding and displaying + cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2); + v->s.ac_pred = get_bits(&v->s.gb, 1); + + for(k = 0; k < 6; k++) { + val = ((cbp >> (5 - k)) & 1); + + if (k < 4) { + int pred = vc1_coded_block_pred(&v->s, k, &coded_val); + val = val ^ pred; + *coded_val = val; + } + cbp |= val << (5 - k); + + vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2); + + s->dsp.vc1_inv_trans_8x8(s->block[k]); + if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16; + if(v->pq >= 9 && v->overlap) { + for(j = 0; j < 64; j++) s->block[k][j] += 128; + } + } + + vc1_put_block(v, s->block); + if(v->pq >= 9 && v->overlap) { + if(s->mb_x) { + s->dsp.vc1_h_overlap(s->dest[0], s->linesize); + s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize); + if(!(s->flags & CODEC_FLAG_GRAY)) { + s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize); + s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize); + } + } + s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize); + s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); + if(!s->first_slice_line) { + s->dsp.vc1_v_overlap(s->dest[0], s->linesize); + s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize); + if(!(s->flags & CODEC_FLAG_GRAY)) { + s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize); + s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize); + } + } + s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize); + s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); + } + + if(get_bits_count(&s->gb) > v->bits) { + av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits); + return; + } + } + ff_draw_horiz_band(s, s->mb_y * 16, 16); + s->first_slice_line = 0; + } +} + +/** Decode blocks of I-frame for advanced profile + */ +static void vc1_decode_i_blocks_adv(VC1Context *v) +{ + int k, j; + MpegEncContext *s = &v->s; + int cbp, val; + uint8_t *coded_val; + int mb_pos; + int mquant = v->pq; + int mqdiff; + int overlap; + GetBitContext *gb = &s->gb; + + /* select codingmode used for VLC tables selection */ + switch(v->y_ac_table_index){ + case 0: + v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; + break; + case 1: + v->codingset = CS_HIGH_MOT_INTRA; + break; + case 2: + v->codingset = CS_MID_RATE_INTRA; + break; + } + + switch(v->c_ac_table_index){ + case 0: + v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; + break; + case 1: + v->codingset2 = CS_HIGH_MOT_INTER; + break; + case 2: + v->codingset2 = CS_MID_RATE_INTER; + break; + } + + //do frame decode + s->mb_x = s->mb_y = 0; + s->mb_intra = 1; + s->first_slice_line = 1; + ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); + for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { + for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { + ff_init_block_index(s); + ff_update_block_index(s); + s->dsp.clear_blocks(s->block[0]); + mb_pos = s->mb_x + s->mb_y * s->mb_stride; + s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA; + s->current_picture.motion_val[1][s->block_index[0]][0] = 0; + s->current_picture.motion_val[1][s->block_index[0]][1] = 0; + + // do actual MB decoding and displaying + cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2); + if(v->acpred_is_raw) + v->s.ac_pred = get_bits(&v->s.gb, 1); + else + v->s.ac_pred = v->acpred_plane[mb_pos]; + + if(v->condover == CONDOVER_SELECT) { + if(v->overflg_is_raw) + overlap = get_bits(&v->s.gb, 1); + else + overlap = v->over_flags_plane[mb_pos]; + } else + overlap = (v->condover == CONDOVER_ALL); + + GET_MQUANT(); + + s->current_picture.qscale_table[mb_pos] = mquant; + /* Set DC scale - y and c use the same */ + s->y_dc_scale = s->y_dc_scale_table[mquant]; + s->c_dc_scale = s->c_dc_scale_table[mquant]; + + for(k = 0; k < 6; k++) { + val = ((cbp >> (5 - k)) & 1); + + if (k < 4) { + int pred = vc1_coded_block_pred(&v->s, k, &coded_val); + val = val ^ pred; + *coded_val = val; + } + cbp |= val << (5 - k); + + v->a_avail = !s->first_slice_line || (k==2 || k==3); + v->c_avail = !!s->mb_x || (k==1 || k==3); + + vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant); + + s->dsp.vc1_inv_trans_8x8(s->block[k]); + for(j = 0; j < 64; j++) s->block[k][j] += 128; + } + + vc1_put_block(v, s->block); + if(overlap) { + if(s->mb_x) { + s->dsp.vc1_h_overlap(s->dest[0], s->linesize); + s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize); + if(!(s->flags & CODEC_FLAG_GRAY)) { + s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize); + s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize); + } + } + s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize); + s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); + if(!s->first_slice_line) { + s->dsp.vc1_v_overlap(s->dest[0], s->linesize); + s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize); + if(!(s->flags & CODEC_FLAG_GRAY)) { + s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize); + s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize); + } + } + s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize); + s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); + } + + if(get_bits_count(&s->gb) > v->bits) { + av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits); + return; + } + } + ff_draw_horiz_band(s, s->mb_y * 16, 16); + s->first_slice_line = 0; + } +} + +static void vc1_decode_p_blocks(VC1Context *v) +{ + MpegEncContext *s = &v->s; + + /* select codingmode used for VLC tables selection */ + switch(v->c_ac_table_index){ + case 0: + v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; + break; + case 1: + v->codingset = CS_HIGH_MOT_INTRA; + break; + case 2: + v->codingset = CS_MID_RATE_INTRA; + break; + } + + switch(v->c_ac_table_index){ + case 0: + v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; + break; + case 1: + v->codingset2 = CS_HIGH_MOT_INTER; + break; + case 2: + v->codingset2 = CS_MID_RATE_INTER; + break; + } + + ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); + s->first_slice_line = 1; + for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { + for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { + ff_init_block_index(s); + ff_update_block_index(s); + s->dsp.clear_blocks(s->block[0]); + + vc1_decode_p_mb(v); + if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) { + av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y); + return; + } + } + ff_draw_horiz_band(s, s->mb_y * 16, 16); + s->first_slice_line = 0; + } +} + +static void vc1_decode_b_blocks(VC1Context *v) +{ + MpegEncContext *s = &v->s; + + /* select codingmode used for VLC tables selection */ + switch(v->c_ac_table_index){ + case 0: + v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; + break; + case 1: + v->codingset = CS_HIGH_MOT_INTRA; + break; + case 2: + v->codingset = CS_MID_RATE_INTRA; + break; + } + + switch(v->c_ac_table_index){ + case 0: + v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; + break; + case 1: + v->codingset2 = CS_HIGH_MOT_INTER; + break; + case 2: + v->codingset2 = CS_MID_RATE_INTER; + break; + } + + ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); + s->first_slice_line = 1; + for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { + for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { + ff_init_block_index(s); + ff_update_block_index(s); + s->dsp.clear_blocks(s->block[0]); + + vc1_decode_b_mb(v); + if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) { + av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y); + return; + } + } + ff_draw_horiz_band(s, s->mb_y * 16, 16); + s->first_slice_line = 0; + } +} + +static void vc1_decode_skip_blocks(VC1Context *v) +{ + MpegEncContext *s = &v->s; + + ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); + s->first_slice_line = 1; + for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { + s->mb_x = 0; + ff_init_block_index(s); + ff_update_block_index(s); + memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16); + memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8); + memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8); + ff_draw_horiz_band(s, s->mb_y * 16, 16); + s->first_slice_line = 0; + } + s->pict_type = P_TYPE; +} + +static void vc1_decode_blocks(VC1Context *v) +{ + + v->s.esc3_level_length = 0; + + switch(v->s.pict_type) { + case I_TYPE: + if(v->profile == PROFILE_ADVANCED) + vc1_decode_i_blocks_adv(v); + else + vc1_decode_i_blocks(v); + break; + case P_TYPE: + if(v->p_frame_skipped) + vc1_decode_skip_blocks(v); + else + vc1_decode_p_blocks(v); + break; + case B_TYPE: + if(v->bi_type){ + if(v->profile == PROFILE_ADVANCED) + vc1_decode_i_blocks_adv(v); + else + vc1_decode_i_blocks(v); + }else + vc1_decode_b_blocks(v); + break; + } +} + +#define IS_MARKER(x) (((x) & ~0xFF) == VC1_CODE_RES0) + +/** Find VC-1 marker in buffer + * @return position where next marker starts or end of buffer if no marker found + */ +static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end) +{ + uint32_t mrk = 0xFFFFFFFF; + + if(end-src < 4) return end; + while(src < end){ + mrk = (mrk << 8) | *src++; + if(IS_MARKER(mrk)) + return src-4; + } + return end; +} + +static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst) +{ + int dsize = 0, i; + + if(size < 4){ + for(dsize = 0; dsize < size; dsize++) *dst++ = *src++; + return size; + } + for(i = 0; i < size; i++, src++) { + if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) { + dst[dsize++] = src[1]; + src++; + i++; + } else + dst[dsize++] = *src; + } + return dsize; +} + +/** Initialize a VC1/WMV3 decoder + * @todo TODO: Handle VC-1 IDUs (Transport level?) + * @todo TODO: Decypher remaining bits in extra_data + */ +static int vc1_decode_init(AVCodecContext *avctx) +{ + VC1Context *v = avctx->priv_data; + MpegEncContext *s = &v->s; + GetBitContext gb; + + if (!avctx->extradata_size || !avctx->extradata) return -1; + if (!(avctx->flags & CODEC_FLAG_GRAY)) + avctx->pix_fmt = PIX_FMT_YUV420P; + else + avctx->pix_fmt = PIX_FMT_GRAY8; + v->s.avctx = avctx; + avctx->flags |= CODEC_FLAG_EMU_EDGE; + v->s.flags |= CODEC_FLAG_EMU_EDGE; + + if(ff_h263_decode_init(avctx) < 0) + return -1; + if (vc1_init_common(v) < 0) return -1; + + avctx->coded_width = avctx->width; + avctx->coded_height = avctx->height; + if (avctx->codec_id == CODEC_ID_WMV3) + { + int count = 0; + + // looks like WMV3 has a sequence header stored in the extradata + // advanced sequence header may be before the first frame + // the last byte of the extradata is a version number, 1 for the + // samples we can decode + + init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8); + + if (decode_sequence_header(avctx, &gb) < 0) + return -1; + + count = avctx->extradata_size*8 - get_bits_count(&gb); + if (count>0) + { + av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n", + count, get_bits(&gb, count)); + } + else if (count < 0) + { + av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count); + } + } else { // VC1/WVC1 + uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size; + uint8_t *next; int size, buf2_size; + uint8_t *buf2 = NULL; + int seq_inited = 0, ep_inited = 0; + + if(avctx->extradata_size < 16) { + av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size); + return -1; + } + + buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE); + if(start[0]) start++; // in WVC1 extradata first byte is its size + next = start; + for(; next < end; start = next){ + next = find_next_marker(start + 4, end); + size = next - start - 4; + if(size <= 0) continue; + buf2_size = vc1_unescape_buffer(start + 4, size, buf2); + init_get_bits(&gb, buf2, buf2_size * 8); + switch(AV_RB32(start)){ + case VC1_CODE_SEQHDR: + if(decode_sequence_header(avctx, &gb) < 0){ + av_free(buf2); + return -1; + } + seq_inited = 1; + break; + case VC1_CODE_ENTRYPOINT: + if(decode_entry_point(avctx, &gb) < 0){ + av_free(buf2); + return -1; + } + ep_inited = 1; + break; + } + } + av_free(buf2); + if(!seq_inited || !ep_inited){ + av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n"); + return -1; + } + } + avctx->has_b_frames= !!(avctx->max_b_frames); + s->low_delay = !avctx->has_b_frames; + + s->mb_width = (avctx->coded_width+15)>>4; + s->mb_height = (avctx->coded_height+15)>>4; + + /* Allocate mb bitplanes */ + v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height); + v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height); + v->acpred_plane = av_malloc(s->mb_stride * s->mb_height); + v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height); + + /* allocate block type info in that way so it could be used with s->block_index[] */ + v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2); + v->mb_type[0] = v->mb_type_base + s->b8_stride + 1; + v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1; + v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1); + + /* Init coded blocks info */ + if (v->profile == PROFILE_ADVANCED) + { +// if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0) +// return -1; +// if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0) +// return -1; + } + + return 0; +} + + +/** Decode a VC1/WMV3 frame + * @todo TODO: Handle VC-1 IDUs (Transport level?) + */ +static int vc1_decode_frame(AVCodecContext *avctx, + void *data, int *data_size, + uint8_t *buf, int buf_size) +{ + VC1Context *v = avctx->priv_data; + MpegEncContext *s = &v->s; + AVFrame *pict = data; + uint8_t *buf2 = NULL; + + /* no supplementary picture */ + if (buf_size == 0) { + /* special case for last picture */ + if (s->low_delay==0 && s->next_picture_ptr) { + *pict= *(AVFrame*)s->next_picture_ptr; + s->next_picture_ptr= NULL; + + *data_size = sizeof(AVFrame); + } + + return 0; + } + + //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there + if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){ + int i= ff_find_unused_picture(s, 0); + s->current_picture_ptr= &s->picture[i]; + } + + //for advanced profile we may need to parse and unescape data + if (avctx->codec_id == CODEC_ID_VC1) { + int buf_size2 = 0; + buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE); + + if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */ + uint8_t *dst = buf2, *start, *end, *next; + int size; + + next = buf; + for(start = buf, end = buf + buf_size; next < end; start = next){ + next = find_next_marker(start + 4, end); + size = next - start - 4; + if(size <= 0) continue; + switch(AV_RB32(start)){ + case VC1_CODE_FRAME: + buf_size2 = vc1_unescape_buffer(start + 4, size, buf2); + break; + case VC1_CODE_ENTRYPOINT: /* it should be before frame data */ + buf_size2 = vc1_unescape_buffer(start + 4, size, buf2); + init_get_bits(&s->gb, buf2, buf_size2*8); + decode_entry_point(avctx, &s->gb); + break; + case VC1_CODE_SLICE: + av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n"); + av_free(buf2); + return -1; + } + } + }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */ + uint8_t *divider; + + divider = find_next_marker(buf, buf + buf_size); + if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){ + av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n"); + return -1; + } + + buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2); + // TODO + av_free(buf2);return -1; + }else{ + buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2); + } + init_get_bits(&s->gb, buf2, buf_size2*8); + } else + init_get_bits(&s->gb, buf, buf_size*8); + // do parse frame header + if(v->profile < PROFILE_ADVANCED) { + if(vc1_parse_frame_header(v, &s->gb) == -1) { + av_free(buf2); + return -1; + } + } else { + if(vc1_parse_frame_header_adv(v, &s->gb) == -1) { + av_free(buf2); + return -1; + } + } + + if(s->pict_type != I_TYPE && !v->res_rtm_flag){ + av_free(buf2); + return -1; + } + + // for hurry_up==5 + s->current_picture.pict_type= s->pict_type; + s->current_picture.key_frame= s->pict_type == I_TYPE; + + /* skip B-frames if we don't have reference frames */ + if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){ + av_free(buf2); + return -1;//buf_size; + } + /* skip b frames if we are in a hurry */ + if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size; + if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE) + || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE) + || avctx->skip_frame >= AVDISCARD_ALL) { + av_free(buf2); + return buf_size; + } + /* skip everything if we are in a hurry>=5 */ + if(avctx->hurry_up>=5) { + av_free(buf2); + return -1;//buf_size; + } + + if(s->next_p_frame_damaged){ + if(s->pict_type==B_TYPE) + return buf_size; + else + s->next_p_frame_damaged=0; + } + + if(MPV_frame_start(s, avctx) < 0) { + av_free(buf2); + return -1; + } + + ff_er_frame_start(s); + + v->bits = buf_size * 8; + vc1_decode_blocks(v); +//av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8); +// if(get_bits_count(&s->gb) > buf_size * 8) +// return -1; + ff_er_frame_end(s); + + MPV_frame_end(s); + +assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type); +assert(s->current_picture.pict_type == s->pict_type); + if (s->pict_type == B_TYPE || s->low_delay) { + *pict= *(AVFrame*)s->current_picture_ptr; + } else if (s->last_picture_ptr != NULL) { + *pict= *(AVFrame*)s->last_picture_ptr; + } + + if(s->last_picture_ptr || s->low_delay){ + *data_size = sizeof(AVFrame); + ff_print_debug_info(s, pict); + } + + /* Return the Picture timestamp as the frame number */ + /* we substract 1 because it is added on utils.c */ + avctx->frame_number = s->picture_number - 1; + + av_free(buf2); + return buf_size; +} + + +/** Close a VC1/WMV3 decoder + * @warning Initial try at using MpegEncContext stuff + */ +static int vc1_decode_end(AVCodecContext *avctx) +{ + VC1Context *v = avctx->priv_data; + + av_freep(&v->hrd_rate); + av_freep(&v->hrd_buffer); + MPV_common_end(&v->s); + av_freep(&v->mv_type_mb_plane); + av_freep(&v->direct_mb_plane); + av_freep(&v->acpred_plane); + av_freep(&v->over_flags_plane); + av_freep(&v->mb_type_base); + return 0; +} + + +AVCodec vc1_decoder = { + "vc1", + CODEC_TYPE_VIDEO, + CODEC_ID_VC1, + sizeof(VC1Context), + vc1_decode_init, + NULL, + vc1_decode_end, + vc1_decode_frame, + CODEC_CAP_DELAY, + NULL +}; + +AVCodec wmv3_decoder = { + "wmv3", + CODEC_TYPE_VIDEO, + CODEC_ID_WMV3, + sizeof(VC1Context), + vc1_decode_init, + NULL, + vc1_decode_end, + vc1_decode_frame, + CODEC_CAP_DELAY, + NULL +}; + +#ifdef CONFIG_VC1_PARSER +/** + * finds the end of the current frame in the bitstream. + * @return the position of the first byte of the next frame, or -1 + */ +static int vc1_find_frame_end(ParseContext *pc, const uint8_t *buf, + int buf_size) { + int pic_found, i; + uint32_t state; + + pic_found= pc->frame_start_found; + state= pc->state; + + i=0; + if(!pic_found){ + for(i=0; i<buf_size; i++){ + state= (state<<8) | buf[i]; + if(state == VC1_CODE_FRAME || state == VC1_CODE_FIELD){ + i++; + pic_found=1; + break; + } + } + } + + if(pic_found){ + /* EOF considered as end of frame */ + if (buf_size == 0) + return 0; + for(; i<buf_size; i++){ + state= (state<<8) | buf[i]; + if(IS_MARKER(state) && state != VC1_CODE_FIELD && state != VC1_CODE_SLICE){ + pc->frame_start_found=0; + pc->state=-1; + return i-3; + } + } + } + pc->frame_start_found= pic_found; + pc->state= state; + return END_NOT_FOUND; +} + +static int vc1_parse(AVCodecParserContext *s, + AVCodecContext *avctx, + uint8_t **poutbuf, int *poutbuf_size, + const uint8_t *buf, int buf_size) +{ + ParseContext *pc = s->priv_data; + int next; + + if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){ + next= buf_size; + }else{ + next= vc1_find_frame_end(pc, buf, buf_size); + + if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) { + *poutbuf = NULL; + *poutbuf_size = 0; + return buf_size; + } + } + *poutbuf = (uint8_t *)buf; + *poutbuf_size = buf_size; + return next; +} + +int vc1_split(AVCodecContext *avctx, + const uint8_t *buf, int buf_size) +{ + int i; + uint32_t state= -1; + + for(i=0; i<buf_size; i++){ + state= (state<<8) | buf[i]; + if(IS_MARKER(state) && state != VC1_CODE_SEQHDR && state != VC1_CODE_ENTRYPOINT) + return i-3; + } + return 0; +} + +AVCodecParser vc1_parser = { + { CODEC_ID_VC1 }, + sizeof(ParseContext1), + NULL, + vc1_parse, + ff_parse1_close, + vc1_split, +}; +#endif /* CONFIG_VC1_PARSER */ |