diff options
Diffstat (limited to 'contrib/ffmpeg/libavcodec/vp3.c')
-rw-r--r-- | contrib/ffmpeg/libavcodec/vp3.c | 2665 |
1 files changed, 2665 insertions, 0 deletions
diff --git a/contrib/ffmpeg/libavcodec/vp3.c b/contrib/ffmpeg/libavcodec/vp3.c new file mode 100644 index 000000000..bf17c2da7 --- /dev/null +++ b/contrib/ffmpeg/libavcodec/vp3.c @@ -0,0 +1,2665 @@ +/* + * Copyright (C) 2003-2004 the ffmpeg project + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/** + * @file vp3.c + * On2 VP3 Video Decoder + * + * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) + * For more information about the VP3 coding process, visit: + * http://multimedia.cx/ + * + * Theora decoder by Alex Beregszaszi + */ + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <unistd.h> + +#include "common.h" +#include "avcodec.h" +#include "dsputil.h" +#include "mpegvideo.h" + +#include "vp3data.h" +#include "xiph.h" + +#define FRAGMENT_PIXELS 8 + +/* + * Debugging Variables + * + * Define one or more of the following compile-time variables to 1 to obtain + * elaborate information about certain aspects of the decoding process. + * + * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode) + * DEBUG_VP3: high-level decoding flow + * DEBUG_INIT: initialization parameters + * DEBUG_DEQUANTIZERS: display how the dequanization tables are built + * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding + * DEBUG_MODES: unpacking the coding modes for individual fragments + * DEBUG_VECTORS: display the motion vectors + * DEBUG_TOKEN: display exhaustive information about each DCT token + * DEBUG_VLC: display the VLCs as they are extracted from the stream + * DEBUG_DC_PRED: display the process of reversing DC prediction + * DEBUG_IDCT: show every detail of the IDCT process + */ + +#define KEYFRAMES_ONLY 0 + +#define DEBUG_VP3 0 +#define DEBUG_INIT 0 +#define DEBUG_DEQUANTIZERS 0 +#define DEBUG_BLOCK_CODING 0 +#define DEBUG_MODES 0 +#define DEBUG_VECTORS 0 +#define DEBUG_TOKEN 0 +#define DEBUG_VLC 0 +#define DEBUG_DC_PRED 0 +#define DEBUG_IDCT 0 + +#if DEBUG_VP3 +#define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_vp3(const char *format, ...) { } +#endif + +#if DEBUG_INIT +#define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_init(const char *format, ...) { } +#endif + +#if DEBUG_DEQUANTIZERS +#define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_dequantizers(const char *format, ...) { } +#endif + +#if DEBUG_BLOCK_CODING +#define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_block_coding(const char *format, ...) { } +#endif + +#if DEBUG_MODES +#define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_modes(const char *format, ...) { } +#endif + +#if DEBUG_VECTORS +#define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_vectors(const char *format, ...) { } +#endif + +#if DEBUG_TOKEN +#define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_token(const char *format, ...) { } +#endif + +#if DEBUG_VLC +#define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_vlc(const char *format, ...) { } +#endif + +#if DEBUG_DC_PRED +#define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_dc_pred(const char *format, ...) { } +#endif + +#if DEBUG_IDCT +#define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args) +#else +static inline void debug_idct(const char *format, ...) { } +#endif + +typedef struct Coeff { + struct Coeff *next; + DCTELEM coeff; + uint8_t index; +} Coeff; + +//FIXME split things out into their own arrays +typedef struct Vp3Fragment { + Coeff *next_coeff; + /* address of first pixel taking into account which plane the fragment + * lives on as well as the plane stride */ + int first_pixel; + /* this is the macroblock that the fragment belongs to */ + uint16_t macroblock; + uint8_t coding_method; + uint8_t coeff_count; + int8_t motion_x; + int8_t motion_y; +} Vp3Fragment; + +#define SB_NOT_CODED 0 +#define SB_PARTIALLY_CODED 1 +#define SB_FULLY_CODED 2 + +#define MODE_INTER_NO_MV 0 +#define MODE_INTRA 1 +#define MODE_INTER_PLUS_MV 2 +#define MODE_INTER_LAST_MV 3 +#define MODE_INTER_PRIOR_LAST 4 +#define MODE_USING_GOLDEN 5 +#define MODE_GOLDEN_MV 6 +#define MODE_INTER_FOURMV 7 +#define CODING_MODE_COUNT 8 + +/* special internal mode */ +#define MODE_COPY 8 + +/* There are 6 preset schemes, plus a free-form scheme */ +static int ModeAlphabet[7][CODING_MODE_COUNT] = +{ + /* this is the custom scheme */ + { 0, 0, 0, 0, 0, 0, 0, 0 }, + + /* scheme 1: Last motion vector dominates */ + { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, + MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 2 */ + { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, + MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 3 */ + { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, + MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 4 */ + { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, + MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 5: No motion vector dominates */ + { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, + MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, + MODE_INTRA, MODE_USING_GOLDEN, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + + /* scheme 6 */ + { MODE_INTER_NO_MV, MODE_USING_GOLDEN, + MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, + MODE_INTER_PLUS_MV, MODE_INTRA, + MODE_GOLDEN_MV, MODE_INTER_FOURMV }, + +}; + +#define MIN_DEQUANT_VAL 2 + +typedef struct Vp3DecodeContext { + AVCodecContext *avctx; + int theora, theora_tables; + int version; + int width, height; + AVFrame golden_frame; + AVFrame last_frame; + AVFrame current_frame; + int keyframe; + DSPContext dsp; + int flipped_image; + + int qis[3]; + int nqis; + int quality_index; + int last_quality_index; + + int superblock_count; + int superblock_width; + int superblock_height; + int y_superblock_width; + int y_superblock_height; + int c_superblock_width; + int c_superblock_height; + int u_superblock_start; + int v_superblock_start; + unsigned char *superblock_coding; + + int macroblock_count; + int macroblock_width; + int macroblock_height; + + int fragment_count; + int fragment_width; + int fragment_height; + + Vp3Fragment *all_fragments; + Coeff *coeffs; + Coeff *next_coeff; + int fragment_start[3]; + + ScanTable scantable; + + /* tables */ + uint16_t coded_dc_scale_factor[64]; + uint32_t coded_ac_scale_factor[64]; + uint8_t base_matrix[384][64]; + uint8_t qr_count[2][3]; + uint8_t qr_size [2][3][64]; + uint16_t qr_base[2][3][64]; + + /* this is a list of indices into the all_fragments array indicating + * which of the fragments are coded */ + int *coded_fragment_list; + int coded_fragment_list_index; + int pixel_addresses_inited; + + VLC dc_vlc[16]; + VLC ac_vlc_1[16]; + VLC ac_vlc_2[16]; + VLC ac_vlc_3[16]; + VLC ac_vlc_4[16]; + + VLC superblock_run_length_vlc; + VLC fragment_run_length_vlc; + VLC mode_code_vlc; + VLC motion_vector_vlc; + + /* these arrays need to be on 16-byte boundaries since SSE2 operations + * index into them */ + DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]); //<qmat[is_inter][plane] + + /* This table contains superblock_count * 16 entries. Each set of 16 + * numbers corresponds to the fragment indices 0..15 of the superblock. + * An entry will be -1 to indicate that no entry corresponds to that + * index. */ + int *superblock_fragments; + + /* This table contains superblock_count * 4 entries. Each set of 4 + * numbers corresponds to the macroblock indices 0..3 of the superblock. + * An entry will be -1 to indicate that no entry corresponds to that + * index. */ + int *superblock_macroblocks; + + /* This table contains macroblock_count * 6 entries. Each set of 6 + * numbers corresponds to the fragment indices 0..5 which comprise + * the macroblock (4 Y fragments and 2 C fragments). */ + int *macroblock_fragments; + /* This is an array that indicates how a particular macroblock + * is coded. */ + unsigned char *macroblock_coding; + + int first_coded_y_fragment; + int first_coded_c_fragment; + int last_coded_y_fragment; + int last_coded_c_fragment; + + uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc + int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16 + + /* Huffman decode */ + int hti; + unsigned int hbits; + int entries; + int huff_code_size; + uint16_t huffman_table[80][32][2]; + + uint32_t filter_limit_values[64]; + int bounding_values_array[256]; +} Vp3DecodeContext; + +static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb); + +/************************************************************************ + * VP3 specific functions + ************************************************************************/ + +/* + * This function sets up all of the various blocks mappings: + * superblocks <-> fragments, macroblocks <-> fragments, + * superblocks <-> macroblocks + * + * Returns 0 is successful; returns 1 if *anything* went wrong. + */ +static int init_block_mapping(Vp3DecodeContext *s) +{ + int i, j; + signed int hilbert_walk_mb[4]; + + int current_fragment = 0; + int current_width = 0; + int current_height = 0; + int right_edge = 0; + int bottom_edge = 0; + int superblock_row_inc = 0; + int *hilbert = NULL; + int mapping_index = 0; + + int current_macroblock; + int c_fragment; + + signed char travel_width[16] = { + 1, 1, 0, -1, + 0, 0, 1, 0, + 1, 0, 1, 0, + 0, -1, 0, 1 + }; + + signed char travel_height[16] = { + 0, 0, 1, 0, + 1, 1, 0, -1, + 0, 1, 0, -1, + -1, 0, -1, 0 + }; + + signed char travel_width_mb[4] = { + 1, 0, 1, 0 + }; + + signed char travel_height_mb[4] = { + 0, 1, 0, -1 + }; + + debug_vp3(" vp3: initialize block mapping tables\n"); + + hilbert_walk_mb[0] = 1; + hilbert_walk_mb[1] = s->macroblock_width; + hilbert_walk_mb[2] = 1; + hilbert_walk_mb[3] = -s->macroblock_width; + + /* iterate through each superblock (all planes) and map the fragments */ + for (i = 0; i < s->superblock_count; i++) { + debug_init(" superblock %d (u starts @ %d, v starts @ %d)\n", + i, s->u_superblock_start, s->v_superblock_start); + + /* time to re-assign the limits? */ + if (i == 0) { + + /* start of Y superblocks */ + right_edge = s->fragment_width; + bottom_edge = s->fragment_height; + current_width = -1; + current_height = 0; + superblock_row_inc = 3 * s->fragment_width - + (s->y_superblock_width * 4 - s->fragment_width); + + /* the first operation for this variable is to advance by 1 */ + current_fragment = -1; + + } else if (i == s->u_superblock_start) { + + /* start of U superblocks */ + right_edge = s->fragment_width / 2; + bottom_edge = s->fragment_height / 2; + current_width = -1; + current_height = 0; + superblock_row_inc = 3 * (s->fragment_width / 2) - + (s->c_superblock_width * 4 - s->fragment_width / 2); + + /* the first operation for this variable is to advance by 1 */ + current_fragment = s->fragment_start[1] - 1; + + } else if (i == s->v_superblock_start) { + + /* start of V superblocks */ + right_edge = s->fragment_width / 2; + bottom_edge = s->fragment_height / 2; + current_width = -1; + current_height = 0; + superblock_row_inc = 3 * (s->fragment_width / 2) - + (s->c_superblock_width * 4 - s->fragment_width / 2); + + /* the first operation for this variable is to advance by 1 */ + current_fragment = s->fragment_start[2] - 1; + + } + + if (current_width >= right_edge - 1) { + /* reset width and move to next superblock row */ + current_width = -1; + current_height += 4; + + /* fragment is now at the start of a new superblock row */ + current_fragment += superblock_row_inc; + } + + /* iterate through all 16 fragments in a superblock */ + for (j = 0; j < 16; j++) { + current_fragment += travel_width[j] + right_edge * travel_height[j]; + current_width += travel_width[j]; + current_height += travel_height[j]; + + /* check if the fragment is in bounds */ + if ((current_width < right_edge) && + (current_height < bottom_edge)) { + s->superblock_fragments[mapping_index] = current_fragment; + debug_init(" mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n", + s->superblock_fragments[mapping_index], i, j, + current_width, right_edge, current_height, bottom_edge); + } else { + s->superblock_fragments[mapping_index] = -1; + debug_init(" superblock %d, position %d has no fragment (%d/%d x %d/%d)\n", + i, j, + current_width, right_edge, current_height, bottom_edge); + } + + mapping_index++; + } + } + + /* initialize the superblock <-> macroblock mapping; iterate through + * all of the Y plane superblocks to build this mapping */ + right_edge = s->macroblock_width; + bottom_edge = s->macroblock_height; + current_width = -1; + current_height = 0; + superblock_row_inc = s->macroblock_width - + (s->y_superblock_width * 2 - s->macroblock_width);; + hilbert = hilbert_walk_mb; + mapping_index = 0; + current_macroblock = -1; + for (i = 0; i < s->u_superblock_start; i++) { + + if (current_width >= right_edge - 1) { + /* reset width and move to next superblock row */ + current_width = -1; + current_height += 2; + + /* macroblock is now at the start of a new superblock row */ + current_macroblock += superblock_row_inc; + } + + /* iterate through each potential macroblock in the superblock */ + for (j = 0; j < 4; j++) { + current_macroblock += hilbert_walk_mb[j]; + current_width += travel_width_mb[j]; + current_height += travel_height_mb[j]; + + /* check if the macroblock is in bounds */ + if ((current_width < right_edge) && + (current_height < bottom_edge)) { + s->superblock_macroblocks[mapping_index] = current_macroblock; + debug_init(" mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n", + s->superblock_macroblocks[mapping_index], i, j, + current_width, right_edge, current_height, bottom_edge); + } else { + s->superblock_macroblocks[mapping_index] = -1; + debug_init(" superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n", + i, j, + current_width, right_edge, current_height, bottom_edge); + } + + mapping_index++; + } + } + + /* initialize the macroblock <-> fragment mapping */ + current_fragment = 0; + current_macroblock = 0; + mapping_index = 0; + for (i = 0; i < s->fragment_height; i += 2) { + + for (j = 0; j < s->fragment_width; j += 2) { + + debug_init(" macroblock %d contains fragments: ", current_macroblock); + s->all_fragments[current_fragment].macroblock = current_macroblock; + s->macroblock_fragments[mapping_index++] = current_fragment; + debug_init("%d ", current_fragment); + + if (j + 1 < s->fragment_width) { + s->all_fragments[current_fragment + 1].macroblock = current_macroblock; + s->macroblock_fragments[mapping_index++] = current_fragment + 1; + debug_init("%d ", current_fragment + 1); + } else + s->macroblock_fragments[mapping_index++] = -1; + + if (i + 1 < s->fragment_height) { + s->all_fragments[current_fragment + s->fragment_width].macroblock = + current_macroblock; + s->macroblock_fragments[mapping_index++] = + current_fragment + s->fragment_width; + debug_init("%d ", current_fragment + s->fragment_width); + } else + s->macroblock_fragments[mapping_index++] = -1; + + if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) { + s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = + current_macroblock; + s->macroblock_fragments[mapping_index++] = + current_fragment + s->fragment_width + 1; + debug_init("%d ", current_fragment + s->fragment_width + 1); + } else + s->macroblock_fragments[mapping_index++] = -1; + + /* C planes */ + c_fragment = s->fragment_start[1] + + (i * s->fragment_width / 4) + (j / 2); + s->all_fragments[c_fragment].macroblock = s->macroblock_count; + s->macroblock_fragments[mapping_index++] = c_fragment; + debug_init("%d ", c_fragment); + + c_fragment = s->fragment_start[2] + + (i * s->fragment_width / 4) + (j / 2); + s->all_fragments[c_fragment].macroblock = s->macroblock_count; + s->macroblock_fragments[mapping_index++] = c_fragment; + debug_init("%d ", c_fragment); + + debug_init("\n"); + + if (j + 2 <= s->fragment_width) + current_fragment += 2; + else + current_fragment++; + current_macroblock++; + } + + current_fragment += s->fragment_width; + } + + return 0; /* successful path out */ +} + +/* + * This function wipes out all of the fragment data. + */ +static void init_frame(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i; + + /* zero out all of the fragment information */ + s->coded_fragment_list_index = 0; + for (i = 0; i < s->fragment_count; i++) { + s->all_fragments[i].coeff_count = 0; + s->all_fragments[i].motion_x = 127; + s->all_fragments[i].motion_y = 127; + s->all_fragments[i].next_coeff= NULL; + s->coeffs[i].index= + s->coeffs[i].coeff=0; + s->coeffs[i].next= NULL; + } +} + +/* + * This function sets up the dequantization tables used for a particular + * frame. + */ +static void init_dequantizer(Vp3DecodeContext *s) +{ + int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index]; + int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index]; + int i, plane, inter, qri, bmi, bmj, qistart; + + debug_vp3(" vp3: initializing dequantization tables\n"); + + for(inter=0; inter<2; inter++){ + for(plane=0; plane<3; plane++){ + int sum=0; + for(qri=0; qri<s->qr_count[inter][plane]; qri++){ + sum+= s->qr_size[inter][plane][qri]; + if(s->quality_index <= sum) + break; + } + qistart= sum - s->qr_size[inter][plane][qri]; + bmi= s->qr_base[inter][plane][qri ]; + bmj= s->qr_base[inter][plane][qri+1]; + for(i=0; i<64; i++){ + int coeff= ( 2*(sum -s->quality_index)*s->base_matrix[bmi][i] + - 2*(qistart-s->quality_index)*s->base_matrix[bmj][i] + + s->qr_size[inter][plane][qri]) + / (2*s->qr_size[inter][plane][qri]); + + int qmin= 8<<(inter + !i); + int qscale= i ? ac_scale_factor : dc_scale_factor; + + s->qmat[inter][plane][i]= av_clip((qscale * coeff)/100 * 4, qmin, 4096); + } + } + } + + memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune +} + +/* + * This function initializes the loop filter boundary limits if the frame's + * quality index is different from the previous frame's. + */ +static void init_loop_filter(Vp3DecodeContext *s) +{ + int *bounding_values= s->bounding_values_array+127; + int filter_limit; + int x; + + filter_limit = s->filter_limit_values[s->quality_index]; + + /* set up the bounding values */ + memset(s->bounding_values_array, 0, 256 * sizeof(int)); + for (x = 0; x < filter_limit; x++) { + bounding_values[-x - filter_limit] = -filter_limit + x; + bounding_values[-x] = -x; + bounding_values[x] = x; + bounding_values[x + filter_limit] = filter_limit - x; + } +} + +/* + * This function unpacks all of the superblock/macroblock/fragment coding + * information from the bitstream. + */ +static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) +{ + int bit = 0; + int current_superblock = 0; + int current_run = 0; + int decode_fully_flags = 0; + int decode_partial_blocks = 0; + int first_c_fragment_seen; + + int i, j; + int current_fragment; + + debug_vp3(" vp3: unpacking superblock coding\n"); + + if (s->keyframe) { + + debug_vp3(" keyframe-- all superblocks are fully coded\n"); + memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); + + } else { + + /* unpack the list of partially-coded superblocks */ + bit = get_bits(gb, 1); + /* toggle the bit because as soon as the first run length is + * fetched the bit will be toggled again */ + bit ^= 1; + while (current_superblock < s->superblock_count) { + if (current_run-- == 0) { + bit ^= 1; + current_run = get_vlc2(gb, + s->superblock_run_length_vlc.table, 6, 2); + if (current_run == 33) + current_run += get_bits(gb, 12); + debug_block_coding(" setting superblocks %d..%d to %s\n", + current_superblock, + current_superblock + current_run - 1, + (bit) ? "partially coded" : "not coded"); + + /* if any of the superblocks are not partially coded, flag + * a boolean to decode the list of fully-coded superblocks */ + if (bit == 0) { + decode_fully_flags = 1; + } else { + + /* make a note of the fact that there are partially coded + * superblocks */ + decode_partial_blocks = 1; + } + } + s->superblock_coding[current_superblock++] = bit; + } + + /* unpack the list of fully coded superblocks if any of the blocks were + * not marked as partially coded in the previous step */ + if (decode_fully_flags) { + + current_superblock = 0; + current_run = 0; + bit = get_bits(gb, 1); + /* toggle the bit because as soon as the first run length is + * fetched the bit will be toggled again */ + bit ^= 1; + while (current_superblock < s->superblock_count) { + + /* skip any superblocks already marked as partially coded */ + if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { + + if (current_run-- == 0) { + bit ^= 1; + current_run = get_vlc2(gb, + s->superblock_run_length_vlc.table, 6, 2); + if (current_run == 33) + current_run += get_bits(gb, 12); + } + + debug_block_coding(" setting superblock %d to %s\n", + current_superblock, + (bit) ? "fully coded" : "not coded"); + s->superblock_coding[current_superblock] = 2*bit; + } + current_superblock++; + } + } + + /* if there were partial blocks, initialize bitstream for + * unpacking fragment codings */ + if (decode_partial_blocks) { + + current_run = 0; + bit = get_bits(gb, 1); + /* toggle the bit because as soon as the first run length is + * fetched the bit will be toggled again */ + bit ^= 1; + } + } + + /* figure out which fragments are coded; iterate through each + * superblock (all planes) */ + s->coded_fragment_list_index = 0; + s->next_coeff= s->coeffs + s->fragment_count; + s->first_coded_y_fragment = s->first_coded_c_fragment = 0; + s->last_coded_y_fragment = s->last_coded_c_fragment = -1; + first_c_fragment_seen = 0; + memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); + for (i = 0; i < s->superblock_count; i++) { + + /* iterate through all 16 fragments in a superblock */ + for (j = 0; j < 16; j++) { + + /* if the fragment is in bounds, check its coding status */ + current_fragment = s->superblock_fragments[i * 16 + j]; + if (current_fragment >= s->fragment_count) { + av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n", + current_fragment, s->fragment_count); + return 1; + } + if (current_fragment != -1) { + if (s->superblock_coding[i] == SB_NOT_CODED) { + + /* copy all the fragments from the prior frame */ + s->all_fragments[current_fragment].coding_method = + MODE_COPY; + + } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { + + /* fragment may or may not be coded; this is the case + * that cares about the fragment coding runs */ + if (current_run-- == 0) { + bit ^= 1; + current_run = get_vlc2(gb, + s->fragment_run_length_vlc.table, 5, 2); + } + + if (bit) { + /* default mode; actual mode will be decoded in + * the next phase */ + s->all_fragments[current_fragment].coding_method = + MODE_INTER_NO_MV; + s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment; + s->coded_fragment_list[s->coded_fragment_list_index] = + current_fragment; + if ((current_fragment >= s->fragment_start[1]) && + (s->last_coded_y_fragment == -1) && + (!first_c_fragment_seen)) { + s->first_coded_c_fragment = s->coded_fragment_list_index; + s->last_coded_y_fragment = s->first_coded_c_fragment - 1; + first_c_fragment_seen = 1; + } + s->coded_fragment_list_index++; + s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV; + debug_block_coding(" superblock %d is partially coded, fragment %d is coded\n", + i, current_fragment); + } else { + /* not coded; copy this fragment from the prior frame */ + s->all_fragments[current_fragment].coding_method = + MODE_COPY; + debug_block_coding(" superblock %d is partially coded, fragment %d is not coded\n", + i, current_fragment); + } + + } else { + + /* fragments are fully coded in this superblock; actual + * coding will be determined in next step */ + s->all_fragments[current_fragment].coding_method = + MODE_INTER_NO_MV; + s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment; + s->coded_fragment_list[s->coded_fragment_list_index] = + current_fragment; + if ((current_fragment >= s->fragment_start[1]) && + (s->last_coded_y_fragment == -1) && + (!first_c_fragment_seen)) { + s->first_coded_c_fragment = s->coded_fragment_list_index; + s->last_coded_y_fragment = s->first_coded_c_fragment - 1; + first_c_fragment_seen = 1; + } + s->coded_fragment_list_index++; + s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV; + debug_block_coding(" superblock %d is fully coded, fragment %d is coded\n", + i, current_fragment); + } + } + } + } + + if (!first_c_fragment_seen) + /* only Y fragments coded in this frame */ + s->last_coded_y_fragment = s->coded_fragment_list_index - 1; + else + /* end the list of coded C fragments */ + s->last_coded_c_fragment = s->coded_fragment_list_index - 1; + + debug_block_coding(" %d total coded fragments, y: %d -> %d, c: %d -> %d\n", + s->coded_fragment_list_index, + s->first_coded_y_fragment, + s->last_coded_y_fragment, + s->first_coded_c_fragment, + s->last_coded_c_fragment); + + return 0; +} + +/* + * This function unpacks all the coding mode data for individual macroblocks + * from the bitstream. + */ +static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i, j, k; + int scheme; + int current_macroblock; + int current_fragment; + int coding_mode; + + debug_vp3(" vp3: unpacking encoding modes\n"); + + if (s->keyframe) { + debug_vp3(" keyframe-- all blocks are coded as INTRA\n"); + + for (i = 0; i < s->fragment_count; i++) + s->all_fragments[i].coding_method = MODE_INTRA; + + } else { + + /* fetch the mode coding scheme for this frame */ + scheme = get_bits(gb, 3); + debug_modes(" using mode alphabet %d\n", scheme); + + /* is it a custom coding scheme? */ + if (scheme == 0) { + debug_modes(" custom mode alphabet ahead:\n"); + for (i = 0; i < 8; i++) + ModeAlphabet[scheme][get_bits(gb, 3)] = i; + } + + for (i = 0; i < 8; i++) + debug_modes(" mode[%d][%d] = %d\n", scheme, i, + ModeAlphabet[scheme][i]); + + /* iterate through all of the macroblocks that contain 1 or more + * coded fragments */ + for (i = 0; i < s->u_superblock_start; i++) { + + for (j = 0; j < 4; j++) { + current_macroblock = s->superblock_macroblocks[i * 4 + j]; + if ((current_macroblock == -1) || + (s->macroblock_coding[current_macroblock] == MODE_COPY)) + continue; + if (current_macroblock >= s->macroblock_count) { + av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n", + current_macroblock, s->macroblock_count); + return 1; + } + + /* mode 7 means get 3 bits for each coding mode */ + if (scheme == 7) + coding_mode = get_bits(gb, 3); + else + coding_mode = ModeAlphabet[scheme] + [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; + + s->macroblock_coding[current_macroblock] = coding_mode; + for (k = 0; k < 6; k++) { + current_fragment = + s->macroblock_fragments[current_macroblock * 6 + k]; + if (current_fragment == -1) + continue; + if (current_fragment >= s->fragment_count) { + av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n", + current_fragment, s->fragment_count); + return 1; + } + if (s->all_fragments[current_fragment].coding_method != + MODE_COPY) + s->all_fragments[current_fragment].coding_method = + coding_mode; + } + + debug_modes(" coding method for macroblock starting @ fragment %d = %d\n", + s->macroblock_fragments[current_macroblock * 6], coding_mode); + } + } + } + + return 0; +} + +/* + * This function unpacks all the motion vectors for the individual + * macroblocks from the bitstream. + */ +static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i, j, k; + int coding_mode; + int motion_x[6]; + int motion_y[6]; + int last_motion_x = 0; + int last_motion_y = 0; + int prior_last_motion_x = 0; + int prior_last_motion_y = 0; + int current_macroblock; + int current_fragment; + + debug_vp3(" vp3: unpacking motion vectors\n"); + if (s->keyframe) { + + debug_vp3(" keyframe-- there are no motion vectors\n"); + + } else { + + memset(motion_x, 0, 6 * sizeof(int)); + memset(motion_y, 0, 6 * sizeof(int)); + + /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ + coding_mode = get_bits(gb, 1); + debug_vectors(" using %s scheme for unpacking motion vectors\n", + (coding_mode == 0) ? "VLC" : "fixed-length"); + + /* iterate through all of the macroblocks that contain 1 or more + * coded fragments */ + for (i = 0; i < s->u_superblock_start; i++) { + + for (j = 0; j < 4; j++) { + current_macroblock = s->superblock_macroblocks[i * 4 + j]; + if ((current_macroblock == -1) || + (s->macroblock_coding[current_macroblock] == MODE_COPY)) + continue; + if (current_macroblock >= s->macroblock_count) { + av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n", + current_macroblock, s->macroblock_count); + return 1; + } + + current_fragment = s->macroblock_fragments[current_macroblock * 6]; + if (current_fragment >= s->fragment_count) { + av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n", + current_fragment, s->fragment_count); + return 1; + } + switch (s->macroblock_coding[current_macroblock]) { + + case MODE_INTER_PLUS_MV: + case MODE_GOLDEN_MV: + /* all 6 fragments use the same motion vector */ + if (coding_mode == 0) { + motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; + motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; + } else { + motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; + motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; + } + + for (k = 1; k < 6; k++) { + motion_x[k] = motion_x[0]; + motion_y[k] = motion_y[0]; + } + + /* vector maintenance, only on MODE_INTER_PLUS_MV */ + if (s->macroblock_coding[current_macroblock] == + MODE_INTER_PLUS_MV) { + prior_last_motion_x = last_motion_x; + prior_last_motion_y = last_motion_y; + last_motion_x = motion_x[0]; + last_motion_y = motion_y[0]; + } + break; + + case MODE_INTER_FOURMV: + /* fetch 4 vectors from the bitstream, one for each + * Y fragment, then average for the C fragment vectors */ + motion_x[4] = motion_y[4] = 0; + for (k = 0; k < 4; k++) { + if (coding_mode == 0) { + motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; + motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; + } else { + motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; + motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; + } + motion_x[4] += motion_x[k]; + motion_y[4] += motion_y[k]; + } + + motion_x[5]= + motion_x[4]= RSHIFT(motion_x[4], 2); + motion_y[5]= + motion_y[4]= RSHIFT(motion_y[4], 2); + + /* vector maintenance; vector[3] is treated as the + * last vector in this case */ + prior_last_motion_x = last_motion_x; + prior_last_motion_y = last_motion_y; + last_motion_x = motion_x[3]; + last_motion_y = motion_y[3]; + break; + + case MODE_INTER_LAST_MV: + /* all 6 fragments use the last motion vector */ + motion_x[0] = last_motion_x; + motion_y[0] = last_motion_y; + for (k = 1; k < 6; k++) { + motion_x[k] = motion_x[0]; + motion_y[k] = motion_y[0]; + } + + /* no vector maintenance (last vector remains the + * last vector) */ + break; + + case MODE_INTER_PRIOR_LAST: + /* all 6 fragments use the motion vector prior to the + * last motion vector */ + motion_x[0] = prior_last_motion_x; + motion_y[0] = prior_last_motion_y; + for (k = 1; k < 6; k++) { + motion_x[k] = motion_x[0]; + motion_y[k] = motion_y[0]; + } + + /* vector maintenance */ + prior_last_motion_x = last_motion_x; + prior_last_motion_y = last_motion_y; + last_motion_x = motion_x[0]; + last_motion_y = motion_y[0]; + break; + + default: + /* covers intra, inter without MV, golden without MV */ + memset(motion_x, 0, 6 * sizeof(int)); + memset(motion_y, 0, 6 * sizeof(int)); + + /* no vector maintenance */ + break; + } + + /* assign the motion vectors to the correct fragments */ + debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n", + current_fragment, + s->macroblock_coding[current_macroblock]); + for (k = 0; k < 6; k++) { + current_fragment = + s->macroblock_fragments[current_macroblock * 6 + k]; + if (current_fragment == -1) + continue; + if (current_fragment >= s->fragment_count) { + av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n", + current_fragment, s->fragment_count); + return 1; + } + s->all_fragments[current_fragment].motion_x = motion_x[k]; + s->all_fragments[current_fragment].motion_y = motion_y[k]; + debug_vectors(" vector %d: fragment %d = (%d, %d)\n", + k, current_fragment, motion_x[k], motion_y[k]); + } + } + } + } + + return 0; +} + +/* + * This function is called by unpack_dct_coeffs() to extract the VLCs from + * the bitstream. The VLCs encode tokens which are used to unpack DCT + * data. This function unpacks all the VLCs for either the Y plane or both + * C planes, and is called for DC coefficients or different AC coefficient + * levels (since different coefficient types require different VLC tables. + * + * This function returns a residual eob run. E.g, if a particular token gave + * instructions to EOB the next 5 fragments and there were only 2 fragments + * left in the current fragment range, 3 would be returned so that it could + * be passed into the next call to this same function. + */ +static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, + VLC *table, int coeff_index, + int first_fragment, int last_fragment, + int eob_run) +{ + int i; + int token; + int zero_run = 0; + DCTELEM coeff = 0; + Vp3Fragment *fragment; + uint8_t *perm= s->scantable.permutated; + int bits_to_get; + + if ((first_fragment >= s->fragment_count) || + (last_fragment >= s->fragment_count)) { + + av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n", + first_fragment, last_fragment); + return 0; + } + + for (i = first_fragment; i <= last_fragment; i++) { + + fragment = &s->all_fragments[s->coded_fragment_list[i]]; + if (fragment->coeff_count > coeff_index) + continue; + + if (!eob_run) { + /* decode a VLC into a token */ + token = get_vlc2(gb, table->table, 5, 3); + debug_vlc(" token = %2d, ", token); + /* use the token to get a zero run, a coefficient, and an eob run */ + if (token <= 6) { + eob_run = eob_run_base[token]; + if (eob_run_get_bits[token]) + eob_run += get_bits(gb, eob_run_get_bits[token]); + coeff = zero_run = 0; + } else { + bits_to_get = coeff_get_bits[token]; + if (!bits_to_get) + coeff = coeff_tables[token][0]; + else + coeff = coeff_tables[token][get_bits(gb, bits_to_get)]; + + zero_run = zero_run_base[token]; + if (zero_run_get_bits[token]) + zero_run += get_bits(gb, zero_run_get_bits[token]); + } + } + + if (!eob_run) { + fragment->coeff_count += zero_run; + if (fragment->coeff_count < 64){ + fragment->next_coeff->coeff= coeff; + fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already? + fragment->next_coeff->next= s->next_coeff; + s->next_coeff->next=NULL; + fragment->next_coeff= s->next_coeff++; + } + debug_vlc(" fragment %d coeff = %d\n", + s->coded_fragment_list[i], fragment->next_coeff[coeff_index]); + } else { + fragment->coeff_count |= 128; + debug_vlc(" fragment %d eob with %d coefficients\n", + s->coded_fragment_list[i], fragment->coeff_count&127); + eob_run--; + } + } + + return eob_run; +} + +/* + * This function unpacks all of the DCT coefficient data from the + * bitstream. + */ +static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) +{ + int i; + int dc_y_table; + int dc_c_table; + int ac_y_table; + int ac_c_table; + int residual_eob_run = 0; + + /* fetch the DC table indices */ + dc_y_table = get_bits(gb, 4); + dc_c_table = get_bits(gb, 4); + + /* unpack the Y plane DC coefficients */ + debug_vp3(" vp3: unpacking Y plane DC coefficients using table %d\n", + dc_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, + s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); + + /* unpack the C plane DC coefficients */ + debug_vp3(" vp3: unpacking C plane DC coefficients using table %d\n", + dc_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, + s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); + + /* fetch the AC table indices */ + ac_y_table = get_bits(gb, 4); + ac_c_table = get_bits(gb, 4); + + /* unpack the group 1 AC coefficients (coeffs 1-5) */ + for (i = 1; i <= 5; i++) { + + debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", + i, ac_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, + s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); + + debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", + i, ac_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, + s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); + } + + /* unpack the group 2 AC coefficients (coeffs 6-14) */ + for (i = 6; i <= 14; i++) { + + debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", + i, ac_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, + s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); + + debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", + i, ac_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, + s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); + } + + /* unpack the group 3 AC coefficients (coeffs 15-27) */ + for (i = 15; i <= 27; i++) { + + debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", + i, ac_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, + s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); + + debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", + i, ac_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, + s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); + } + + /* unpack the group 4 AC coefficients (coeffs 28-63) */ + for (i = 28; i <= 63; i++) { + + debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n", + i, ac_y_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, + s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); + + debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n", + i, ac_c_table); + residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, + s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); + } + + return 0; +} + +/* + * This function reverses the DC prediction for each coded fragment in + * the frame. Much of this function is adapted directly from the original + * VP3 source code. + */ +#define COMPATIBLE_FRAME(x) \ + (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) +#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY) +#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this + +static void reverse_dc_prediction(Vp3DecodeContext *s, + int first_fragment, + int fragment_width, + int fragment_height) +{ + +#define PUL 8 +#define PU 4 +#define PUR 2 +#define PL 1 + + int x, y; + int i = first_fragment; + + int predicted_dc; + + /* DC values for the left, up-left, up, and up-right fragments */ + int vl, vul, vu, vur; + + /* indices for the left, up-left, up, and up-right fragments */ + int l, ul, u, ur; + + /* + * The 6 fields mean: + * 0: up-left multiplier + * 1: up multiplier + * 2: up-right multiplier + * 3: left multiplier + */ + int predictor_transform[16][4] = { + { 0, 0, 0, 0}, + { 0, 0, 0,128}, // PL + { 0, 0,128, 0}, // PUR + { 0, 0, 53, 75}, // PUR|PL + { 0,128, 0, 0}, // PU + { 0, 64, 0, 64}, // PU|PL + { 0,128, 0, 0}, // PU|PUR + { 0, 0, 53, 75}, // PU|PUR|PL + {128, 0, 0, 0}, // PUL + { 0, 0, 0,128}, // PUL|PL + { 64, 0, 64, 0}, // PUL|PUR + { 0, 0, 53, 75}, // PUL|PUR|PL + { 0,128, 0, 0}, // PUL|PU + {-104,116, 0,116}, // PUL|PU|PL + { 24, 80, 24, 0}, // PUL|PU|PUR + {-104,116, 0,116} // PUL|PU|PUR|PL + }; + + /* This table shows which types of blocks can use other blocks for + * prediction. For example, INTRA is the only mode in this table to + * have a frame number of 0. That means INTRA blocks can only predict + * from other INTRA blocks. There are 2 golden frame coding types; + * blocks encoding in these modes can only predict from other blocks + * that were encoded with these 1 of these 2 modes. */ + unsigned char compatible_frame[8] = { + 1, /* MODE_INTER_NO_MV */ + 0, /* MODE_INTRA */ + 1, /* MODE_INTER_PLUS_MV */ + 1, /* MODE_INTER_LAST_MV */ + 1, /* MODE_INTER_PRIOR_MV */ + 2, /* MODE_USING_GOLDEN */ + 2, /* MODE_GOLDEN_MV */ + 1 /* MODE_INTER_FOUR_MV */ + }; + int current_frame_type; + + /* there is a last DC predictor for each of the 3 frame types */ + short last_dc[3]; + + int transform = 0; + + debug_vp3(" vp3: reversing DC prediction\n"); + + vul = vu = vur = vl = 0; + last_dc[0] = last_dc[1] = last_dc[2] = 0; + + /* for each fragment row... */ + for (y = 0; y < fragment_height; y++) { + + /* for each fragment in a row... */ + for (x = 0; x < fragment_width; x++, i++) { + + /* reverse prediction if this block was coded */ + if (s->all_fragments[i].coding_method != MODE_COPY) { + + current_frame_type = + compatible_frame[s->all_fragments[i].coding_method]; + debug_dc_pred(" frag %d: orig DC = %d, ", + i, DC_COEFF(i)); + + transform= 0; + if(x){ + l= i-1; + vl = DC_COEFF(l); + if(FRAME_CODED(l) && COMPATIBLE_FRAME(l)) + transform |= PL; + } + if(y){ + u= i-fragment_width; + vu = DC_COEFF(u); + if(FRAME_CODED(u) && COMPATIBLE_FRAME(u)) + transform |= PU; + if(x){ + ul= i-fragment_width-1; + vul = DC_COEFF(ul); + if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul)) + transform |= PUL; + } + if(x + 1 < fragment_width){ + ur= i-fragment_width+1; + vur = DC_COEFF(ur); + if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur)) + transform |= PUR; + } + } + + debug_dc_pred("transform = %d, ", transform); + + if (transform == 0) { + + /* if there were no fragments to predict from, use last + * DC saved */ + predicted_dc = last_dc[current_frame_type]; + debug_dc_pred("from last DC (%d) = %d\n", + current_frame_type, DC_COEFF(i)); + + } else { + + /* apply the appropriate predictor transform */ + predicted_dc = + (predictor_transform[transform][0] * vul) + + (predictor_transform[transform][1] * vu) + + (predictor_transform[transform][2] * vur) + + (predictor_transform[transform][3] * vl); + + predicted_dc /= 128; + + /* check for outranging on the [ul u l] and + * [ul u ur l] predictors */ + if ((transform == 13) || (transform == 15)) { + if (FFABS(predicted_dc - vu) > 128) + predicted_dc = vu; + else if (FFABS(predicted_dc - vl) > 128) + predicted_dc = vl; + else if (FFABS(predicted_dc - vul) > 128) + predicted_dc = vul; + } + + debug_dc_pred("from pred DC = %d\n", + DC_COEFF(i)); + } + + /* at long last, apply the predictor */ + if(s->coeffs[i].index){ + *s->next_coeff= s->coeffs[i]; + s->coeffs[i].index=0; + s->coeffs[i].coeff=0; + s->coeffs[i].next= s->next_coeff++; + } + s->coeffs[i].coeff += predicted_dc; + /* save the DC */ + last_dc[current_frame_type] = DC_COEFF(i); + if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){ + s->all_fragments[i].coeff_count= 129; +// s->all_fragments[i].next_coeff= s->next_coeff; + s->coeffs[i].next= s->next_coeff; + (s->next_coeff++)->next=NULL; + } + } + } + } +} + + +static void horizontal_filter(unsigned char *first_pixel, int stride, + int *bounding_values); +static void vertical_filter(unsigned char *first_pixel, int stride, + int *bounding_values); + +/* + * Perform the final rendering for a particular slice of data. + * The slice number ranges from 0..(macroblock_height - 1). + */ +static void render_slice(Vp3DecodeContext *s, int slice) +{ + int x; + int m, n; + int16_t *dequantizer; + DECLARE_ALIGNED_16(DCTELEM, block[64]); + int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; + int motion_halfpel_index; + uint8_t *motion_source; + int plane; + int current_macroblock_entry = slice * s->macroblock_width * 6; + + if (slice >= s->macroblock_height) + return; + + for (plane = 0; plane < 3; plane++) { + uint8_t *output_plane = s->current_frame.data [plane]; + uint8_t * last_plane = s-> last_frame.data [plane]; + uint8_t *golden_plane = s-> golden_frame.data [plane]; + int stride = s->current_frame.linesize[plane]; + int plane_width = s->width >> !!plane; + int plane_height = s->height >> !!plane; + int y = slice * FRAGMENT_PIXELS << !plane ; + int slice_height = y + (FRAGMENT_PIXELS << !plane); + int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane]; + + if (!s->flipped_image) stride = -stride; + + + if(FFABS(stride) > 2048) + return; //various tables are fixed size + + /* for each fragment row in the slice (both of them)... */ + for (; y < slice_height; y += 8) { + + /* for each fragment in a row... */ + for (x = 0; x < plane_width; x += 8, i++) { + + if ((i < 0) || (i >= s->fragment_count)) { + av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i); + return; + } + + /* transform if this block was coded */ + if ((s->all_fragments[i].coding_method != MODE_COPY) && + !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) { + + if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || + (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) + motion_source= golden_plane; + else + motion_source= last_plane; + + motion_source += s->all_fragments[i].first_pixel; + motion_halfpel_index = 0; + + /* sort out the motion vector if this fragment is coded + * using a motion vector method */ + if ((s->all_fragments[i].coding_method > MODE_INTRA) && + (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { + int src_x, src_y; + motion_x = s->all_fragments[i].motion_x; + motion_y = s->all_fragments[i].motion_y; + if(plane){ + motion_x= (motion_x>>1) | (motion_x&1); + motion_y= (motion_y>>1) | (motion_y&1); + } + + src_x= (motion_x>>1) + x; + src_y= (motion_y>>1) + y; + if ((motion_x == 127) || (motion_y == 127)) + av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y); + + motion_halfpel_index = motion_x & 0x01; + motion_source += (motion_x >> 1); + + motion_halfpel_index |= (motion_y & 0x01) << 1; + motion_source += ((motion_y >> 1) * stride); + + if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){ + uint8_t *temp= s->edge_emu_buffer; + if(stride<0) temp -= 9*stride; + else temp += 9*stride; + + ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height); + motion_source= temp; + } + } + + + /* first, take care of copying a block from either the + * previous or the golden frame */ + if (s->all_fragments[i].coding_method != MODE_INTRA) { + /* Note, it is possible to implement all MC cases with + put_no_rnd_pixels_l2 which would look more like the + VP3 source but this would be slower as + put_no_rnd_pixels_tab is better optimzed */ + if(motion_halfpel_index != 3){ + s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( + output_plane + s->all_fragments[i].first_pixel, + motion_source, stride, 8); + }else{ + int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1 + s->dsp.put_no_rnd_pixels_l2[1]( + output_plane + s->all_fragments[i].first_pixel, + motion_source - d, + motion_source + stride + 1 + d, + stride, 8); + } + dequantizer = s->qmat[1][plane]; + }else{ + dequantizer = s->qmat[0][plane]; + } + + /* dequantize the DCT coefficients */ + debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n", + i, s->all_fragments[i].coding_method, + DC_COEFF(i), dequantizer[0]); + + if(s->avctx->idct_algo==FF_IDCT_VP3){ + Coeff *coeff= s->coeffs + i; + memset(block, 0, sizeof(block)); + while(coeff->next){ + block[coeff->index]= coeff->coeff * dequantizer[coeff->index]; + coeff= coeff->next; + } + }else{ + Coeff *coeff= s->coeffs + i; + memset(block, 0, sizeof(block)); + while(coeff->next){ + block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2; + coeff= coeff->next; + } + } + + /* invert DCT and place (or add) in final output */ + + if (s->all_fragments[i].coding_method == MODE_INTRA) { + if(s->avctx->idct_algo!=FF_IDCT_VP3) + block[0] += 128<<3; + s->dsp.idct_put( + output_plane + s->all_fragments[i].first_pixel, + stride, + block); + } else { + s->dsp.idct_add( + output_plane + s->all_fragments[i].first_pixel, + stride, + block); + } + + debug_idct("block after idct_%s():\n", + (s->all_fragments[i].coding_method == MODE_INTRA)? + "put" : "add"); + for (m = 0; m < 8; m++) { + for (n = 0; n < 8; n++) { + debug_idct(" %3d", *(output_plane + + s->all_fragments[i].first_pixel + (m * stride + n))); + } + debug_idct("\n"); + } + debug_idct("\n"); + + } else { + + /* copy directly from the previous frame */ + s->dsp.put_pixels_tab[1][0]( + output_plane + s->all_fragments[i].first_pixel, + last_plane + s->all_fragments[i].first_pixel, + stride, 8); + + } +#if 0 + /* perform the left edge filter if: + * - the fragment is not on the left column + * - the fragment is coded in this frame + * - the fragment is not coded in this frame but the left + * fragment is coded in this frame (this is done instead + * of a right edge filter when rendering the left fragment + * since this fragment is not available yet) */ + if ((x > 0) && + ((s->all_fragments[i].coding_method != MODE_COPY) || + ((s->all_fragments[i].coding_method == MODE_COPY) && + (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) { + horizontal_filter( + output_plane + s->all_fragments[i].first_pixel + 7*stride, + -stride, s->bounding_values_array + 127); + } + + /* perform the top edge filter if: + * - the fragment is not on the top row + * - the fragment is coded in this frame + * - the fragment is not coded in this frame but the above + * fragment is coded in this frame (this is done instead + * of a bottom edge filter when rendering the above + * fragment since this fragment is not available yet) */ + if ((y > 0) && + ((s->all_fragments[i].coding_method != MODE_COPY) || + ((s->all_fragments[i].coding_method == MODE_COPY) && + (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) { + vertical_filter( + output_plane + s->all_fragments[i].first_pixel - stride, + -stride, s->bounding_values_array + 127); + } +#endif + } + } + } + + /* this looks like a good place for slice dispatch... */ + /* algorithm: + * if (slice == s->macroblock_height - 1) + * dispatch (both last slice & 2nd-to-last slice); + * else if (slice > 0) + * dispatch (slice - 1); + */ + + emms_c(); +} + +static void horizontal_filter(unsigned char *first_pixel, int stride, + int *bounding_values) +{ + unsigned char *end; + int filter_value; + + for (end= first_pixel + 8*stride; first_pixel != end; first_pixel += stride) { + filter_value = + (first_pixel[-2] - first_pixel[ 1]) + +3*(first_pixel[ 0] - first_pixel[-1]); + filter_value = bounding_values[(filter_value + 4) >> 3]; + first_pixel[-1] = av_clip_uint8(first_pixel[-1] + filter_value); + first_pixel[ 0] = av_clip_uint8(first_pixel[ 0] - filter_value); + } +} + +static void vertical_filter(unsigned char *first_pixel, int stride, + int *bounding_values) +{ + unsigned char *end; + int filter_value; + const int nstride= -stride; + + for (end= first_pixel + 8; first_pixel < end; first_pixel++) { + filter_value = + (first_pixel[2 * nstride] - first_pixel[ stride]) + +3*(first_pixel[0 ] - first_pixel[nstride]); + filter_value = bounding_values[(filter_value + 4) >> 3]; + first_pixel[nstride] = av_clip_uint8(first_pixel[nstride] + filter_value); + first_pixel[0] = av_clip_uint8(first_pixel[0] - filter_value); + } +} + +static void apply_loop_filter(Vp3DecodeContext *s) +{ + int plane; + int x, y; + int *bounding_values= s->bounding_values_array+127; + +#if 0 + int bounding_values_array[256]; + int filter_limit; + + /* find the right loop limit value */ + for (x = 63; x >= 0; x--) { + if (vp31_ac_scale_factor[x] >= s->quality_index) + break; + } + filter_limit = vp31_filter_limit_values[s->quality_index]; + + /* set up the bounding values */ + memset(bounding_values_array, 0, 256 * sizeof(int)); + for (x = 0; x < filter_limit; x++) { + bounding_values[-x - filter_limit] = -filter_limit + x; + bounding_values[-x] = -x; + bounding_values[x] = x; + bounding_values[x + filter_limit] = filter_limit - x; + } +#endif + + for (plane = 0; plane < 3; plane++) { + int width = s->fragment_width >> !!plane; + int height = s->fragment_height >> !!plane; + int fragment = s->fragment_start [plane]; + int stride = s->current_frame.linesize[plane]; + uint8_t *plane_data = s->current_frame.data [plane]; + if (!s->flipped_image) stride = -stride; + + for (y = 0; y < height; y++) { + + for (x = 0; x < width; x++) { +START_TIMER + /* do not perform left edge filter for left columns frags */ + if ((x > 0) && + (s->all_fragments[fragment].coding_method != MODE_COPY)) { + horizontal_filter( + plane_data + s->all_fragments[fragment].first_pixel, + stride, bounding_values); + } + + /* do not perform top edge filter for top row fragments */ + if ((y > 0) && + (s->all_fragments[fragment].coding_method != MODE_COPY)) { + vertical_filter( + plane_data + s->all_fragments[fragment].first_pixel, + stride, bounding_values); + } + + /* do not perform right edge filter for right column + * fragments or if right fragment neighbor is also coded + * in this frame (it will be filtered in next iteration) */ + if ((x < width - 1) && + (s->all_fragments[fragment].coding_method != MODE_COPY) && + (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { + horizontal_filter( + plane_data + s->all_fragments[fragment + 1].first_pixel, + stride, bounding_values); + } + + /* do not perform bottom edge filter for bottom row + * fragments or if bottom fragment neighbor is also coded + * in this frame (it will be filtered in the next row) */ + if ((y < height - 1) && + (s->all_fragments[fragment].coding_method != MODE_COPY) && + (s->all_fragments[fragment + width].coding_method == MODE_COPY)) { + vertical_filter( + plane_data + s->all_fragments[fragment + width].first_pixel, + stride, bounding_values); + } + + fragment++; +STOP_TIMER("loop filter") + } + } + } +} + +/* + * This function computes the first pixel addresses for each fragment. + * This function needs to be invoked after the first frame is allocated + * so that it has access to the plane strides. + */ +static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) +{ + + int i, x, y; + + /* figure out the first pixel addresses for each of the fragments */ + /* Y plane */ + i = 0; + for (y = s->fragment_height; y > 0; y--) { + for (x = 0; x < s->fragment_width; x++) { + s->all_fragments[i++].first_pixel = + s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS - + s->golden_frame.linesize[0] + + x * FRAGMENT_PIXELS; + debug_init(" fragment %d, first pixel @ %d\n", + i-1, s->all_fragments[i-1].first_pixel); + } + } + + /* U plane */ + i = s->fragment_start[1]; + for (y = s->fragment_height / 2; y > 0; y--) { + for (x = 0; x < s->fragment_width / 2; x++) { + s->all_fragments[i++].first_pixel = + s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS - + s->golden_frame.linesize[1] + + x * FRAGMENT_PIXELS; + debug_init(" fragment %d, first pixel @ %d\n", + i-1, s->all_fragments[i-1].first_pixel); + } + } + + /* V plane */ + i = s->fragment_start[2]; + for (y = s->fragment_height / 2; y > 0; y--) { + for (x = 0; x < s->fragment_width / 2; x++) { + s->all_fragments[i++].first_pixel = + s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS - + s->golden_frame.linesize[2] + + x * FRAGMENT_PIXELS; + debug_init(" fragment %d, first pixel @ %d\n", + i-1, s->all_fragments[i-1].first_pixel); + } + } +} + +/* FIXME: this should be merged with the above! */ +static void theora_calculate_pixel_addresses(Vp3DecodeContext *s) +{ + + int i, x, y; + + /* figure out the first pixel addresses for each of the fragments */ + /* Y plane */ + i = 0; + for (y = 1; y <= s->fragment_height; y++) { + for (x = 0; x < s->fragment_width; x++) { + s->all_fragments[i++].first_pixel = + s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS - + s->golden_frame.linesize[0] + + x * FRAGMENT_PIXELS; + debug_init(" fragment %d, first pixel @ %d\n", + i-1, s->all_fragments[i-1].first_pixel); + } + } + + /* U plane */ + i = s->fragment_start[1]; + for (y = 1; y <= s->fragment_height / 2; y++) { + for (x = 0; x < s->fragment_width / 2; x++) { + s->all_fragments[i++].first_pixel = + s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS - + s->golden_frame.linesize[1] + + x * FRAGMENT_PIXELS; + debug_init(" fragment %d, first pixel @ %d\n", + i-1, s->all_fragments[i-1].first_pixel); + } + } + + /* V plane */ + i = s->fragment_start[2]; + for (y = 1; y <= s->fragment_height / 2; y++) { + for (x = 0; x < s->fragment_width / 2; x++) { + s->all_fragments[i++].first_pixel = + s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS - + s->golden_frame.linesize[2] + + x * FRAGMENT_PIXELS; + debug_init(" fragment %d, first pixel @ %d\n", + i-1, s->all_fragments[i-1].first_pixel); + } + } +} + +/* + * This is the ffmpeg/libavcodec API init function. + */ +static int vp3_decode_init(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + int i, inter, plane; + int c_width; + int c_height; + int y_superblock_count; + int c_superblock_count; + + if (avctx->codec_tag == MKTAG('V','P','3','0')) + s->version = 0; + else + s->version = 1; + + s->avctx = avctx; + s->width = (avctx->width + 15) & 0xFFFFFFF0; + s->height = (avctx->height + 15) & 0xFFFFFFF0; + avctx->pix_fmt = PIX_FMT_YUV420P; + avctx->has_b_frames = 0; + if(avctx->idct_algo==FF_IDCT_AUTO) + avctx->idct_algo=FF_IDCT_VP3; + dsputil_init(&s->dsp, avctx); + + ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct); + + /* initialize to an impossible value which will force a recalculation + * in the first frame decode */ + s->quality_index = -1; + + s->y_superblock_width = (s->width + 31) / 32; + s->y_superblock_height = (s->height + 31) / 32; + y_superblock_count = s->y_superblock_width * s->y_superblock_height; + + /* work out the dimensions for the C planes */ + c_width = s->width / 2; + c_height = s->height / 2; + s->c_superblock_width = (c_width + 31) / 32; + s->c_superblock_height = (c_height + 31) / 32; + c_superblock_count = s->c_superblock_width * s->c_superblock_height; + + s->superblock_count = y_superblock_count + (c_superblock_count * 2); + s->u_superblock_start = y_superblock_count; + s->v_superblock_start = s->u_superblock_start + c_superblock_count; + s->superblock_coding = av_malloc(s->superblock_count); + + s->macroblock_width = (s->width + 15) / 16; + s->macroblock_height = (s->height + 15) / 16; + s->macroblock_count = s->macroblock_width * s->macroblock_height; + + s->fragment_width = s->width / FRAGMENT_PIXELS; + s->fragment_height = s->height / FRAGMENT_PIXELS; + + /* fragment count covers all 8x8 blocks for all 3 planes */ + s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2; + s->fragment_start[1] = s->fragment_width * s->fragment_height; + s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4; + + debug_init(" Y plane: %d x %d\n", s->width, s->height); + debug_init(" C plane: %d x %d\n", c_width, c_height); + debug_init(" Y superblocks: %d x %d, %d total\n", + s->y_superblock_width, s->y_superblock_height, y_superblock_count); + debug_init(" C superblocks: %d x %d, %d total\n", + s->c_superblock_width, s->c_superblock_height, c_superblock_count); + debug_init(" total superblocks = %d, U starts @ %d, V starts @ %d\n", + s->superblock_count, s->u_superblock_start, s->v_superblock_start); + debug_init(" macroblocks: %d x %d, %d total\n", + s->macroblock_width, s->macroblock_height, s->macroblock_count); + debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n", + s->fragment_count, + s->fragment_width, + s->fragment_height, + s->fragment_start[1], + s->fragment_start[2]); + + s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment)); + s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65); + s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int)); + s->pixel_addresses_inited = 0; + + if (!s->theora_tables) + { + for (i = 0; i < 64; i++) { + s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i]; + s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i]; + s->base_matrix[0][i] = vp31_intra_y_dequant[i]; + s->base_matrix[1][i] = vp31_intra_c_dequant[i]; + s->base_matrix[2][i] = vp31_inter_dequant[i]; + s->filter_limit_values[i] = vp31_filter_limit_values[i]; + } + + for(inter=0; inter<2; inter++){ + for(plane=0; plane<3; plane++){ + s->qr_count[inter][plane]= 1; + s->qr_size [inter][plane][0]= 63; + s->qr_base [inter][plane][0]= + s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter; + } + } + + /* init VLC tables */ + for (i = 0; i < 16; i++) { + + /* DC histograms */ + init_vlc(&s->dc_vlc[i], 5, 32, + &dc_bias[i][0][1], 4, 2, + &dc_bias[i][0][0], 4, 2, 0); + + /* group 1 AC histograms */ + init_vlc(&s->ac_vlc_1[i], 5, 32, + &ac_bias_0[i][0][1], 4, 2, + &ac_bias_0[i][0][0], 4, 2, 0); + + /* group 2 AC histograms */ + init_vlc(&s->ac_vlc_2[i], 5, 32, + &ac_bias_1[i][0][1], 4, 2, + &ac_bias_1[i][0][0], 4, 2, 0); + + /* group 3 AC histograms */ + init_vlc(&s->ac_vlc_3[i], 5, 32, + &ac_bias_2[i][0][1], 4, 2, + &ac_bias_2[i][0][0], 4, 2, 0); + + /* group 4 AC histograms */ + init_vlc(&s->ac_vlc_4[i], 5, 32, + &ac_bias_3[i][0][1], 4, 2, + &ac_bias_3[i][0][0], 4, 2, 0); + } + } else { + for (i = 0; i < 16; i++) { + + /* DC histograms */ + init_vlc(&s->dc_vlc[i], 5, 32, + &s->huffman_table[i][0][1], 4, 2, + &s->huffman_table[i][0][0], 4, 2, 0); + + /* group 1 AC histograms */ + init_vlc(&s->ac_vlc_1[i], 5, 32, + &s->huffman_table[i+16][0][1], 4, 2, + &s->huffman_table[i+16][0][0], 4, 2, 0); + + /* group 2 AC histograms */ + init_vlc(&s->ac_vlc_2[i], 5, 32, + &s->huffman_table[i+16*2][0][1], 4, 2, + &s->huffman_table[i+16*2][0][0], 4, 2, 0); + + /* group 3 AC histograms */ + init_vlc(&s->ac_vlc_3[i], 5, 32, + &s->huffman_table[i+16*3][0][1], 4, 2, + &s->huffman_table[i+16*3][0][0], 4, 2, 0); + + /* group 4 AC histograms */ + init_vlc(&s->ac_vlc_4[i], 5, 32, + &s->huffman_table[i+16*4][0][1], 4, 2, + &s->huffman_table[i+16*4][0][0], 4, 2, 0); + } + } + + init_vlc(&s->superblock_run_length_vlc, 6, 34, + &superblock_run_length_vlc_table[0][1], 4, 2, + &superblock_run_length_vlc_table[0][0], 4, 2, 0); + + init_vlc(&s->fragment_run_length_vlc, 5, 30, + &fragment_run_length_vlc_table[0][1], 4, 2, + &fragment_run_length_vlc_table[0][0], 4, 2, 0); + + init_vlc(&s->mode_code_vlc, 3, 8, + &mode_code_vlc_table[0][1], 2, 1, + &mode_code_vlc_table[0][0], 2, 1, 0); + + init_vlc(&s->motion_vector_vlc, 6, 63, + &motion_vector_vlc_table[0][1], 2, 1, + &motion_vector_vlc_table[0][0], 2, 1, 0); + + /* work out the block mapping tables */ + s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int)); + s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int)); + s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int)); + s->macroblock_coding = av_malloc(s->macroblock_count + 1); + init_block_mapping(s); + + for (i = 0; i < 3; i++) { + s->current_frame.data[i] = NULL; + s->last_frame.data[i] = NULL; + s->golden_frame.data[i] = NULL; + } + + return 0; +} + +/* + * This is the ffmpeg/libavcodec API frame decode function. + */ +static int vp3_decode_frame(AVCodecContext *avctx, + void *data, int *data_size, + uint8_t *buf, int buf_size) +{ + Vp3DecodeContext *s = avctx->priv_data; + GetBitContext gb; + static int counter = 0; + int i; + + init_get_bits(&gb, buf, buf_size * 8); + + if (s->theora && get_bits1(&gb)) + { +#if 1 + av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n"); + return -1; +#else + int ptype = get_bits(&gb, 7); + + skip_bits(&gb, 6*8); /* "theora" */ + + switch(ptype) + { + case 1: + theora_decode_comments(avctx, &gb); + break; + case 2: + theora_decode_tables(avctx, &gb); + init_dequantizer(s); + break; + default: + av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype); + } + return buf_size; +#endif + } + + s->keyframe = !get_bits1(&gb); + if (!s->theora) + skip_bits(&gb, 1); + s->last_quality_index = s->quality_index; + + s->nqis=0; + do{ + s->qis[s->nqis++]= get_bits(&gb, 6); + } while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb)); + + s->quality_index= s->qis[0]; + + if (s->avctx->debug & FF_DEBUG_PICT_INFO) + av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n", + s->keyframe?"key":"", counter, s->quality_index); + counter++; + + if (s->quality_index != s->last_quality_index) { + init_dequantizer(s); + init_loop_filter(s); + } + + if (s->keyframe) { + if (!s->theora) + { + skip_bits(&gb, 4); /* width code */ + skip_bits(&gb, 4); /* height code */ + if (s->version) + { + s->version = get_bits(&gb, 5); + if (counter == 1) + av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version); + } + } + if (s->version || s->theora) + { + if (get_bits1(&gb)) + av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n"); + skip_bits(&gb, 2); /* reserved? */ + } + + if (s->last_frame.data[0] == s->golden_frame.data[0]) { + if (s->golden_frame.data[0]) + avctx->release_buffer(avctx, &s->golden_frame); + s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */ + } else { + if (s->golden_frame.data[0]) + avctx->release_buffer(avctx, &s->golden_frame); + if (s->last_frame.data[0]) + avctx->release_buffer(avctx, &s->last_frame); + } + + s->golden_frame.reference = 3; + if(avctx->get_buffer(avctx, &s->golden_frame) < 0) { + av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n"); + return -1; + } + + /* golden frame is also the current frame */ + s->current_frame= s->golden_frame; + + /* time to figure out pixel addresses? */ + if (!s->pixel_addresses_inited) + { + if (!s->flipped_image) + vp3_calculate_pixel_addresses(s); + else + theora_calculate_pixel_addresses(s); + s->pixel_addresses_inited = 1; + } + } else { + /* allocate a new current frame */ + s->current_frame.reference = 3; + if (!s->pixel_addresses_inited) { + av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n"); + return -1; + } + if(avctx->get_buffer(avctx, &s->current_frame) < 0) { + av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n"); + return -1; + } + } + + s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame + s->current_frame.qstride= 0; + + {START_TIMER + init_frame(s, &gb); + STOP_TIMER("init_frame")} + +#if KEYFRAMES_ONLY +if (!s->keyframe) { + + memcpy(s->current_frame.data[0], s->golden_frame.data[0], + s->current_frame.linesize[0] * s->height); + memcpy(s->current_frame.data[1], s->golden_frame.data[1], + s->current_frame.linesize[1] * s->height / 2); + memcpy(s->current_frame.data[2], s->golden_frame.data[2], + s->current_frame.linesize[2] * s->height / 2); + +} else { +#endif + + {START_TIMER + if (unpack_superblocks(s, &gb)){ + av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n"); + return -1; + } + STOP_TIMER("unpack_superblocks")} + {START_TIMER + if (unpack_modes(s, &gb)){ + av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n"); + return -1; + } + STOP_TIMER("unpack_modes")} + {START_TIMER + if (unpack_vectors(s, &gb)){ + av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n"); + return -1; + } + STOP_TIMER("unpack_vectors")} + {START_TIMER + if (unpack_dct_coeffs(s, &gb)){ + av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n"); + return -1; + } + STOP_TIMER("unpack_dct_coeffs")} + {START_TIMER + + reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height); + if ((avctx->flags & CODEC_FLAG_GRAY) == 0) { + reverse_dc_prediction(s, s->fragment_start[1], + s->fragment_width / 2, s->fragment_height / 2); + reverse_dc_prediction(s, s->fragment_start[2], + s->fragment_width / 2, s->fragment_height / 2); + } + STOP_TIMER("reverse_dc_prediction")} + {START_TIMER + + for (i = 0; i < s->macroblock_height; i++) + render_slice(s, i); + STOP_TIMER("render_fragments")} + + {START_TIMER + apply_loop_filter(s); + STOP_TIMER("apply_loop_filter")} +#if KEYFRAMES_ONLY +} +#endif + + *data_size=sizeof(AVFrame); + *(AVFrame*)data= s->current_frame; + + /* release the last frame, if it is allocated and if it is not the + * golden frame */ + if ((s->last_frame.data[0]) && + (s->last_frame.data[0] != s->golden_frame.data[0])) + avctx->release_buffer(avctx, &s->last_frame); + + /* shuffle frames (last = current) */ + s->last_frame= s->current_frame; + s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */ + + return buf_size; +} + +/* + * This is the ffmpeg/libavcodec API module cleanup function. + */ +static int vp3_decode_end(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + + av_free(s->all_fragments); + av_free(s->coeffs); + av_free(s->coded_fragment_list); + av_free(s->superblock_fragments); + av_free(s->superblock_macroblocks); + av_free(s->macroblock_fragments); + av_free(s->macroblock_coding); + + /* release all frames */ + if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0]) + avctx->release_buffer(avctx, &s->golden_frame); + if (s->last_frame.data[0]) + avctx->release_buffer(avctx, &s->last_frame); + /* no need to release the current_frame since it will always be pointing + * to the same frame as either the golden or last frame */ + + return 0; +} + +static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb) +{ + Vp3DecodeContext *s = avctx->priv_data; + + if (get_bits(gb, 1)) { + int token; + if (s->entries >= 32) { /* overflow */ + av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); + return -1; + } + token = get_bits(gb, 5); + //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size); + s->huffman_table[s->hti][token][0] = s->hbits; + s->huffman_table[s->hti][token][1] = s->huff_code_size; + s->entries++; + } + else { + if (s->huff_code_size >= 32) {/* overflow */ + av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); + return -1; + } + s->huff_code_size++; + s->hbits <<= 1; + read_huffman_tree(avctx, gb); + s->hbits |= 1; + read_huffman_tree(avctx, gb); + s->hbits >>= 1; + s->huff_code_size--; + } + return 0; +} + +static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) +{ + Vp3DecodeContext *s = avctx->priv_data; + + s->theora = get_bits_long(gb, 24); + av_log(avctx, AV_LOG_INFO, "Theora bitstream version %X\n", s->theora); + + /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */ + /* but previous versions have the image flipped relative to vp3 */ + if (s->theora < 0x030200) + { + s->flipped_image = 1; + av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n"); + } + + s->width = get_bits(gb, 16) << 4; + s->height = get_bits(gb, 16) << 4; + + if(avcodec_check_dimensions(avctx, s->width, s->height)){ + av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height); + s->width= s->height= 0; + return -1; + } + + if (s->theora >= 0x030400) + { + skip_bits(gb, 32); /* total number of superblocks in a frame */ + // fixme, the next field is 36bits long + skip_bits(gb, 32); /* total number of blocks in a frame */ + skip_bits(gb, 4); /* total number of blocks in a frame */ + skip_bits(gb, 32); /* total number of macroblocks in a frame */ + + skip_bits(gb, 24); /* frame width */ + skip_bits(gb, 24); /* frame height */ + } + else + { + skip_bits(gb, 24); /* frame width */ + skip_bits(gb, 24); /* frame height */ + } + + if (s->theora >= 0x030200) { + skip_bits(gb, 8); /* offset x */ + skip_bits(gb, 8); /* offset y */ + } + + skip_bits(gb, 32); /* fps numerator */ + skip_bits(gb, 32); /* fps denumerator */ + skip_bits(gb, 24); /* aspect numerator */ + skip_bits(gb, 24); /* aspect denumerator */ + + if (s->theora < 0x030200) + skip_bits(gb, 5); /* keyframe frequency force */ + skip_bits(gb, 8); /* colorspace */ + if (s->theora >= 0x030400) + skip_bits(gb, 2); /* pixel format: 420,res,422,444 */ + skip_bits(gb, 24); /* bitrate */ + + skip_bits(gb, 6); /* quality hint */ + + if (s->theora >= 0x030200) + { + skip_bits(gb, 5); /* keyframe frequency force */ + + if (s->theora < 0x030400) + skip_bits(gb, 5); /* spare bits */ + } + +// align_get_bits(gb); + + avctx->width = s->width; + avctx->height = s->height; + + return 0; +} + +static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) +{ + Vp3DecodeContext *s = avctx->priv_data; + int i, n, matrices, inter, plane; + + if (s->theora >= 0x030200) { + n = get_bits(gb, 3); + /* loop filter limit values table */ + for (i = 0; i < 64; i++) + s->filter_limit_values[i] = get_bits(gb, n); + } + + if (s->theora >= 0x030200) + n = get_bits(gb, 4) + 1; + else + n = 16; + /* quality threshold table */ + for (i = 0; i < 64; i++) + s->coded_ac_scale_factor[i] = get_bits(gb, n); + + if (s->theora >= 0x030200) + n = get_bits(gb, 4) + 1; + else + n = 16; + /* dc scale factor table */ + for (i = 0; i < 64; i++) + s->coded_dc_scale_factor[i] = get_bits(gb, n); + + if (s->theora >= 0x030200) + matrices = get_bits(gb, 9) + 1; + else + matrices = 3; + + if(matrices > 384){ + av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n"); + return -1; + } + + for(n=0; n<matrices; n++){ + for (i = 0; i < 64; i++) + s->base_matrix[n][i]= get_bits(gb, 8); + } + + for (inter = 0; inter <= 1; inter++) { + for (plane = 0; plane <= 2; plane++) { + int newqr= 1; + if (inter || plane > 0) + newqr = get_bits(gb, 1); + if (!newqr) { + int qtj, plj; + if(inter && get_bits(gb, 1)){ + qtj = 0; + plj = plane; + }else{ + qtj= (3*inter + plane - 1) / 3; + plj= (plane + 2) % 3; + } + s->qr_count[inter][plane]= s->qr_count[qtj][plj]; + memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0])); + memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0])); + } else { + int qri= 0; + int qi = 0; + + for(;;){ + i= get_bits(gb, av_log2(matrices-1)+1); + if(i>= matrices){ + av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n"); + return -1; + } + s->qr_base[inter][plane][qri]= i; + if(qi >= 63) + break; + i = get_bits(gb, av_log2(63-qi)+1) + 1; + s->qr_size[inter][plane][qri++]= i; + qi += i; + } + + if (qi > 63) { + av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi); + return -1; + } + s->qr_count[inter][plane]= qri; + } + } + } + + /* Huffman tables */ + for (s->hti = 0; s->hti < 80; s->hti++) { + s->entries = 0; + s->huff_code_size = 1; + if (!get_bits(gb, 1)) { + s->hbits = 0; + read_huffman_tree(avctx, gb); + s->hbits = 1; + read_huffman_tree(avctx, gb); + } + } + + s->theora_tables = 1; + + return 0; +} + +#if ENABLE_THEORA_DECODER +static int theora_decode_init(AVCodecContext *avctx) +{ + Vp3DecodeContext *s = avctx->priv_data; + GetBitContext gb; + int ptype; + uint8_t *header_start[3]; + int header_len[3]; + int i; + + s->theora = 1; + + if (!avctx->extradata_size) + { + av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n"); + return -1; + } + + if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size, + 42, header_start, header_len) < 0) { + av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n"); + return -1; + } + + for(i=0;i<3;i++) { + init_get_bits(&gb, header_start[i], header_len[i]); + + ptype = get_bits(&gb, 8); + debug_vp3("Theora headerpacket type: %x\n", ptype); + + if (!(ptype & 0x80)) + { + av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n"); +// return -1; + } + + // FIXME: Check for this as well. + skip_bits(&gb, 6*8); /* "theora" */ + + switch(ptype) + { + case 0x80: + theora_decode_header(avctx, &gb); + break; + case 0x81: +// FIXME: is this needed? it breaks sometimes +// theora_decode_comments(avctx, gb); + break; + case 0x82: + theora_decode_tables(avctx, &gb); + break; + default: + av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80); + break; + } + if(8*header_len[i] != get_bits_count(&gb)) + av_log(avctx, AV_LOG_ERROR, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype); + if (s->theora < 0x030200) + break; + } + + vp3_decode_init(avctx); + return 0; +} +#endif + +AVCodec vp3_decoder = { + "vp3", + CODEC_TYPE_VIDEO, + CODEC_ID_VP3, + sizeof(Vp3DecodeContext), + vp3_decode_init, + NULL, + vp3_decode_end, + vp3_decode_frame, + 0, + NULL +}; + +#if ENABLE_THEORA_DECODER +AVCodec theora_decoder = { + "theora", + CODEC_TYPE_VIDEO, + CODEC_ID_THEORA, + sizeof(Vp3DecodeContext), + theora_decode_init, + NULL, + vp3_decode_end, + vp3_decode_frame, + 0, + NULL +}; +#endif |