summaryrefslogtreecommitdiff
path: root/contrib/nosefart/nes6502.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/nosefart/nes6502.c')
-rw-r--r--contrib/nosefart/nes6502.c2564
1 files changed, 2564 insertions, 0 deletions
diff --git a/contrib/nosefart/nes6502.c b/contrib/nosefart/nes6502.c
new file mode 100644
index 000000000..d84bae912
--- /dev/null
+++ b/contrib/nosefart/nes6502.c
@@ -0,0 +1,2564 @@
+/*
+** Nofrendo (c) 1998-2000 Matthew Conte (matt@conte.com)
+**
+**
+** This program is free software; you can redistribute it and/or
+** modify it under the terms of version 2 of the GNU Library General
+** Public License as published by the Free Software Foundation.
+**
+** This program is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+** Library General Public License for more details. To obtain a
+** copy of the GNU Library General Public License, write to the Free
+** Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+**
+** Any permitted reproduction of these routines, in whole or in part,
+** must bear this legend.
+**
+**
+** nes6502.c
+**
+** NES custom 6502 (2A03) CPU implementation
+** $Id: nes6502.c,v 1.2 2003/01/09 19:50:03 jkeil Exp $
+*/
+
+
+#include "types.h"
+#include "nes6502.h"
+#include "dis6502.h"
+#include <stdio.h>
+
+
+#define ADD_CYCLES(x) instruction_cycles += (x)
+#define INC_CYCLES() instruction_cycles++
+//#define ADD_CYCLES(x) remaining_cycles -= (x)
+//#define INC_CYCLES() remaining_cycles--
+
+/*
+** Check to see if an index reg addition overflowed to next page
+*/
+#define CHECK_INDEX_OVERFLOW(addr, reg) \
+{ \
+ if ((uint8) (addr) < (reg)) \
+ INC_CYCLES(); \
+}
+
+/*
+** Addressing mode macros
+*/
+
+#define NO_READ(value) /* empty */
+
+#define IMMEDIATE_BYTE(value) \
+{ \
+ value = bank_readbyte(PC++); \
+}
+
+
+#define ABSOLUTE_ADDR(address) \
+{ \
+ address = bank_readaddress(PC); \
+ PC += 2; \
+}
+
+#define ABSOLUTE(address, value) \
+{ \
+ ABSOLUTE_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define ABSOLUTE_BYTE(value) \
+{ \
+ ABSOLUTE(temp, value); \
+}
+
+#define ABS_IND_X_ADDR(address) \
+{ \
+ address = (bank_readaddress(PC) + X) & 0xFFFF; \
+ PC += 2; \
+ CHECK_INDEX_OVERFLOW(address, X); \
+}
+
+#define ABS_IND_X(address, value) \
+{ \
+ ABS_IND_X_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define ABS_IND_X_BYTE(value) \
+{ \
+ ABS_IND_X(temp, value); \
+}
+
+#define ABS_IND_Y_ADDR(address) \
+{ \
+ address = (bank_readaddress(PC) + Y) & 0xFFFF; \
+ PC += 2; \
+ CHECK_INDEX_OVERFLOW(address, Y); \
+}
+
+#define ABS_IND_Y(address, value) \
+{ \
+ ABS_IND_Y_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define ABS_IND_Y_BYTE(value) \
+{ \
+ ABS_IND_Y(temp, value); \
+}
+
+#define ZERO_PAGE_ADDR(address) \
+{ \
+ IMMEDIATE_BYTE(address); \
+}
+
+#define ZERO_PAGE(address, value) \
+{ \
+ ZERO_PAGE_ADDR(address); \
+ value = ZP_READ(address); \
+}
+
+#define ZERO_PAGE_BYTE(value) \
+{ \
+ ZERO_PAGE(btemp, value); \
+}
+
+/* Zero-page indexed Y doesn't really exist, just for LDX / STX */
+#define ZP_IND_X_ADDR(address) \
+{ \
+ address = bank_readbyte(PC++) + X; \
+}
+
+#define ZP_IND_X(bAddr, value) \
+{ \
+ ZP_IND_X_ADDR(bAddr); \
+ value = ZP_READ(bAddr); \
+}
+
+#define ZP_IND_X_BYTE(value) \
+{ \
+ ZP_IND_X(btemp, value); \
+}
+
+#define ZP_IND_Y_ADDR(address) \
+{ \
+ address = bank_readbyte(PC++) + Y; \
+}
+
+#define ZP_IND_Y(address, value) \
+{ \
+ ZP_IND_Y_ADDR(address); \
+ value = ZP_READ(address); \
+}
+
+#define ZP_IND_Y_BYTE(value) \
+{ \
+ ZP_IND_Y(btemp, value); \
+}
+
+/*
+** For conditional jump relative instructions
+** (BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS)
+*/
+#define RELATIVE_JUMP(cond) \
+{ \
+ if (cond) \
+ { \
+ IMMEDIATE_BYTE(btemp); \
+ if (((int8) btemp + (uint8) PC) & 0xFF00) \
+ ADD_CYCLES(4); \
+ else \
+ ADD_CYCLES(3); \
+ PC += ((int8) btemp); \
+ } \
+ else \
+ { \
+ PC++; \
+ ADD_CYCLES(2); \
+ } \
+}
+
+/*
+** This is actually indexed indirect, but I call it
+** indirect X to avoid confusion
+*/
+#define INDIR_X_ADDR(address) \
+{ \
+ btemp = bank_readbyte(PC++) + X; \
+ address = zp_address(btemp); \
+}
+
+#define INDIR_X(address, value) \
+{ \
+ INDIR_X_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define INDIR_X_BYTE(value) \
+{ \
+ INDIR_X(temp, value); \
+}
+
+/*
+** This is actually indirect indexed, but I call it
+** indirect y to avoid confusion
+*/
+#define INDIR_Y_ADDR(address) \
+{ \
+ IMMEDIATE_BYTE(btemp); \
+ address = (zp_address(btemp) + Y) & 0xFFFF; \
+ /* ???? */ \
+ CHECK_INDEX_OVERFLOW(address, Y); \
+}
+
+#define INDIR_Y(address, value) \
+{ \
+ INDIR_Y_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define INDIR_Y_BYTE(value) \
+{ \
+ /*IMMEDIATE_BYTE(btemp); \
+ temp = zp_address(btemp) + Y; \
+ CHECK_INDEX_OVERFLOW(temp, Y); \
+ value = mem_read(temp);*/ \
+ INDIR_Y(temp, value); \
+}
+
+
+#define JUMP(address) PC = bank_readaddress((address))
+
+/*
+** Interrupt macros
+*/
+#define NMI() \
+{ \
+ PUSH(PC >> 8); \
+ PUSH(PC & 0xFF); \
+ CLEAR_FLAG(B_FLAG); \
+ PUSH(P); \
+ SET_FLAG(I_FLAG); \
+ JUMP(NMI_VECTOR); \
+ int_pending &= ~NMI_MASK; \
+ ADD_CYCLES(INT_CYCLES); \
+}
+
+#define IRQ() \
+{ \
+ PUSH(PC >> 8); \
+ PUSH(PC & 0xFF); \
+ CLEAR_FLAG(B_FLAG); \
+ PUSH(P); \
+ SET_FLAG(I_FLAG); \
+ JUMP(IRQ_VECTOR); \
+ int_pending &= ~IRQ_MASK; \
+ ADD_CYCLES(INT_CYCLES); \
+}
+
+/*
+** Instruction macros
+*/
+
+/* Warning! NES CPU has no decimal mode, so by default this does no BCD! */
+#ifdef NES6502_DECIMAL
+#define ADC(cycles, read_func) \
+{ \
+ read_func(data); \
+ if (P & D_FLAG) \
+ { \
+ temp = (A & 0x0F) + (data & 0x0F) + (P & C_FLAG); \
+ if (temp >= 10) \
+ temp = (temp - 10) | 0x10; \
+ temp += (A & 0xF0) + (data & 0xF0); \
+ TEST_AND_FLAG(0 == ((A + data + (P & C_FLAG)) & 0xFF), Z_FLAG); \
+ TEST_AND_FLAG(temp & 0x80, N_FLAG); \
+ TEST_AND_FLAG(((~(A ^ data)) & (A ^ temp) & 0x80), V_FLAG); \
+ if (temp > 0x9F) \
+ temp += 0x60; \
+ TEST_AND_FLAG(temp > 0xFF, C_FLAG); \
+ A = (uint8) temp; \
+ } \
+ else \
+ { \
+ temp = A + data + (P & C_FLAG); \
+ /* Set C on carry */ \
+ TEST_AND_FLAG(temp > 0xFF, C_FLAG); \
+ /* Set V on overflow */ \
+ TEST_AND_FLAG(((~(A ^ data)) & (A ^ temp) & 0x80), V_FLAG); \
+ A = (uint8) temp; \
+ SET_NZ_FLAGS(A); \
+ }\
+ ADD_CYCLES(cycles); \
+}
+#else
+#define ADC(cycles, read_func) \
+{ \
+ read_func(data); \
+ temp = A + data + (P & C_FLAG); \
+ /* Set C on carry */ \
+ TEST_AND_FLAG(temp > 0xFF, C_FLAG); \
+ /* Set V on overflow */ \
+ TEST_AND_FLAG(((~(A ^ data)) & (A ^ temp) & 0x80), V_FLAG); \
+ A = (uint8) temp; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+#endif /* NES6502_DECIMAL */
+
+/* undocumented */
+#define ANC(cycles, read_func) \
+{ \
+ read_func(data); \
+ A &= data; \
+ SET_NZ_FLAGS(A); \
+ TEST_AND_FLAG(P & N_FLAG, C_FLAG); \
+ ADD_CYCLES(cycles); \
+}
+
+#define AND(cycles, read_func) \
+{ \
+ read_func(data); \
+ A &= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define ANE(cycles, read_func) \
+{ \
+ read_func(data); \
+ A = (A | 0xEE) & X & data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#ifdef NES6502_DECIMAL
+#define ARR(cycles, read_func) \
+{ \
+ read_func(data); \
+ data &= A; \
+ if (P & D_FLAG) \
+ { \
+ temp = (data >> 1) | ((P & C_FLAG) << 7); \
+ SET_NZ_FLAGS(temp); \
+ TEST_AND_FLAG((temp ^ data) & 0x40, V_FLAG); \
+ if (((data & 0x0F) + (data & 0x01)) > 5) \
+ temp = (temp & 0xF0) | ((temp + 0x6) & 0x0F); \
+ if (((data & 0xF0) + (data & 0x10)) > 0x50) \
+ { \
+ temp = (temp & 0x0F) | ((temp + 0x60) & 0xF0); \
+ SET_FLAG(C_FLAG); \
+ } \
+ else \
+ CLEAR_FLAG(C_FLAG); \
+ A = (uint8) temp; \
+ } \
+ else \
+ { \
+ A = (data >> 1) | ((P & C_FLAG) << 7); \
+ SET_NZ_FLAGS(A); \
+ TEST_AND_FLAG(A & 0x40, C_FLAG); \
+ TEST_AND_FLAG(((A >> 6) ^ (A >> 5)) & 1, V_FLAG); \
+ }\
+ ADD_CYCLES(cycles); \
+}
+#else
+#define ARR(cycles, read_func) \
+{ \
+ read_func(data); \
+ data &= A; \
+ A = (data >> 1) | ((P & C_FLAG) << 7); \
+ SET_NZ_FLAGS(A); \
+ TEST_AND_FLAG(A & 0x40, C_FLAG); \
+ TEST_AND_FLAG((A >> 6) ^ (A >> 5), V_FLAG); \
+ ADD_CYCLES(cycles); \
+}
+#endif /* NES6502_DECIMAL */
+
+#define ASL(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data <<= 1; \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define ASL_A() \
+{ \
+ TEST_AND_FLAG(A & 0x80, C_FLAG); \
+ A <<= 1; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define ASR(cycles, read_func) \
+{ \
+ read_func(data); \
+ data &= A; \
+ TEST_AND_FLAG(data & 0x01, C_FLAG); \
+ A = data >> 1; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define BCC() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_CLEAR(C_FLAG))); \
+}
+
+#define BCS() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_SET(C_FLAG))); \
+}
+
+#define BEQ() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_SET(Z_FLAG))); \
+}
+
+#define BIT(cycles, read_func) \
+{ \
+ read_func(data); \
+ TEST_AND_FLAG(0 == (data & A), Z_FLAG);\
+ CLEAR_FLAG(N_FLAG | V_FLAG); \
+ /* move bit 7/6 of data into N/V flags */ \
+ SET_FLAG(data & (N_FLAG | V_FLAG)); \
+ ADD_CYCLES(cycles); \
+}
+
+#define BMI() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_SET(N_FLAG))); \
+}
+
+#define BNE() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_CLEAR(Z_FLAG))); \
+}
+
+#define BPL() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_CLEAR(N_FLAG))); \
+}
+
+/* Software interrupt type thang */
+#define BRK() \
+{ \
+ PC++; \
+ PUSH(PC >> 8); \
+ PUSH(PC & 0xFF); \
+ SET_FLAG(B_FLAG); \
+ PUSH(P); \
+ SET_FLAG(I_FLAG); \
+ JUMP(IRQ_VECTOR); \
+ ADD_CYCLES(7); \
+}
+
+#define BVC() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_CLEAR(V_FLAG))); \
+}
+
+#define BVS() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_SET(V_FLAG))); \
+}
+
+#define CLC() \
+{ \
+ CLEAR_FLAG(C_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define CLD() \
+{ \
+ CLEAR_FLAG(D_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define CLI() \
+{ \
+ CLEAR_FLAG(I_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define CLV() \
+{ \
+ CLEAR_FLAG(V_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+/* TODO: ick! */
+#define _COMPARE(reg, value) \
+{ \
+ temp = (reg) - (value); \
+ /* C is clear when data > A */ \
+ TEST_AND_FLAG(0 == (temp & 0x8000), C_FLAG); \
+ SET_NZ_FLAGS((uint8) temp); /* handles Z flag */ \
+}
+
+#define CMP(cycles, read_func) \
+{ \
+ read_func(data); \
+ _COMPARE(A, data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define CPX(cycles, read_func) \
+{ \
+ read_func(data); \
+ _COMPARE(X, data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define CPY(cycles, read_func) \
+{ \
+ read_func(data); \
+ _COMPARE(Y, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define DCP(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ data--; \
+ write_func(addr, data); \
+ CMP(cycles, NO_READ); \
+}
+
+#define DEC(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ data--; \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define DEX() \
+{ \
+ X--; \
+ SET_NZ_FLAGS(X); \
+ ADD_CYCLES(2); \
+}
+
+#define DEY() \
+{ \
+ Y--; \
+ SET_NZ_FLAGS(Y); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented (double-NOP) */
+#define DOP(cycles) \
+{ \
+ PC++; \
+ ADD_CYCLES(cycles); \
+}
+
+#define EOR(cycles, read_func) \
+{ \
+ read_func(data); \
+ A ^= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define INC(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ data++; \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define INX() \
+{ \
+ X++; \
+ SET_NZ_FLAGS(X); \
+ ADD_CYCLES(2); \
+}
+
+#define INY() \
+{ \
+ Y++; \
+ SET_NZ_FLAGS(Y); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define ISB(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ data++; \
+ write_func(addr, data); \
+ SBC(cycles, NO_READ); \
+}
+
+#ifdef NES6502_TESTOPS
+#define JAM() \
+{ \
+ cpu_Jam(); \
+}
+#elif defined(NSF_PLAYER)
+#define JAM() \
+{ \
+}
+#else
+#define JAM() \
+{ \
+ char jambuf[20]; \
+ sprintf(jambuf, "JAM: PC=$%04X", PC); \
+ ASSERT_MSG(jambuf); \
+ ADD_CYCLES(2); \
+}
+#endif /* NES6502_TESTOPS */
+
+#define JMP_INDIRECT() \
+{ \
+ temp = bank_readaddress(PC); \
+ /* bug in crossing page boundaries */ \
+ if (0xFF == (uint8) temp) \
+ PC = (bank_readbyte(temp & ~0xFF) << 8) | bank_readbyte(temp); \
+ else \
+ JUMP(temp); \
+ ADD_CYCLES(5); \
+}
+
+#define JMP_ABSOLUTE() \
+{ \
+ JUMP(PC); \
+ ADD_CYCLES(3); \
+}
+
+#define JSR() \
+{ \
+ PC++; \
+ PUSH(PC >> 8); \
+ PUSH(PC & 0xFF); \
+ JUMP(PC - 1); \
+ ADD_CYCLES(6); \
+}
+
+/* undocumented */
+#define LAS(cycles, read_func) \
+{ \
+ read_func(data); \
+ A = X = S = (S & data); \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define LAX(cycles, read_func) \
+{ \
+ read_func(A); \
+ X = A; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define LDA(cycles, read_func) \
+{ \
+ read_func(A); \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define LDX(cycles, read_func) \
+{ \
+ read_func(X); \
+ SET_NZ_FLAGS(X);\
+ ADD_CYCLES(cycles); \
+}
+
+#define LDY(cycles, read_func) \
+{ \
+ read_func(Y); \
+ SET_NZ_FLAGS(Y);\
+ ADD_CYCLES(cycles); \
+}
+
+#define LSR(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ TEST_AND_FLAG(data & 0x01, C_FLAG); \
+ data >>= 1; \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define LSR_A() \
+{ \
+ TEST_AND_FLAG(A & 0x01, C_FLAG); \
+ A >>= 1; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define LXA(cycles, read_func) \
+{ \
+ read_func(data); \
+ A = X = ((A | 0xEE) & data); \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define NOP() \
+{ \
+ ADD_CYCLES(2); \
+}
+
+#define ORA(cycles, read_func) \
+{ \
+ read_func(data); \
+ A |= data; \
+ SET_NZ_FLAGS(A);\
+ ADD_CYCLES(cycles); \
+}
+
+#define PHA() \
+{ \
+ PUSH(A); \
+ ADD_CYCLES(3); \
+}
+
+#define PHP() \
+{ \
+ /* B flag is pushed on stack as well */ \
+ PUSH((P | B_FLAG)); \
+ ADD_CYCLES(3); \
+}
+
+#define PLA() \
+{ \
+ A = PULL(); \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(4); \
+}
+
+#define PLP() \
+{ \
+ P = PULL(); \
+ SET_FLAG(R_FLAG); /* ensure reserved flag is set */ \
+ ADD_CYCLES(4); \
+}
+
+/* undocumented */
+#define RLA(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data = (data << 1) | 1; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data <<= 1; \
+ } \
+ write_func(addr, data); \
+ A &= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* 9-bit rotation (carry flag used for rollover) */
+#define ROL(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data = (data << 1) | 1; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data <<= 1; \
+ } \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define ROL_A() \
+{ \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(A & 0x80, C_FLAG); \
+ A = (A << 1) | 1; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(A & 0x80, C_FLAG); \
+ A <<= 1; \
+ } \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+#define ROR(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data = (data >> 1) | 0x80; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data >>= 1; \
+ } \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define ROR_A() \
+{ \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(A & 1, C_FLAG); \
+ A = (A >> 1) | 0x80; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(A & 1, C_FLAG); \
+ A >>= 1; \
+ } \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define RRA(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data = (data >> 1) | 0x80; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data >>= 1; \
+ } \
+ write_func(addr, data); \
+ ADC(cycles, NO_READ); \
+}
+
+#define RTI() \
+{ \
+ P = PULL(); \
+ SET_FLAG(R_FLAG); /* ensure reserved flag is set */ \
+ PC = PULL(); \
+ PC |= PULL() << 8; \
+ ADD_CYCLES(6); \
+}
+
+#define RTS() \
+{ \
+ PC = PULL(); \
+ PC = (PC | (PULL() << 8)) + 1; \
+ ADD_CYCLES(6); \
+}
+
+/* undocumented */
+#define SAX(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ data = A & X; \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* Warning! NES CPU has no decimal mode, so by default this does no BCD! */
+#ifdef NES6502_DECIMAL
+#define SBC(cycles, read_func) \
+{ \
+ read_func(data); \
+ /* NOT(C) is considered borrow */ \
+ temp = A - data - ((P & C_FLAG) ^ C_FLAG); \
+ if (P & D_FLAG) \
+ { \
+ uint8 al, ah; \
+ al = (A & 0x0F) - (data & 0x0F) - ((P & C_FLAG) ^ C_FLAG); \
+ ah = (A >> 4) - (data >> 4); \
+ if (al & 0x10) \
+ { \
+ al -= 6; \
+ ah--; \
+ } \
+ if (ah & 0x10) \
+ ah -= 6; \
+ TEST_AND_FLAG(temp < 0x100, C_FLAG); \
+ TEST_AND_FLAG(((A ^ temp) & 0x80) && ((A ^ data) & 0x80), V_FLAG); \
+ SET_NZ_FLAGS(temp & 0xFF); \
+ A = (ah << 4) | (al & 0x0F); \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(((A ^ temp) & 0x80) && ((A ^ data) & 0x80), V_FLAG); \
+ TEST_AND_FLAG(temp < 0x100, C_FLAG); \
+ A = (uint8) temp; \
+ SET_NZ_FLAGS(A & 0xFF); \
+ } \
+ ADD_CYCLES(cycles); \
+}
+#else
+#define SBC(cycles, read_func) \
+{ \
+ read_func(data); \
+ temp = A - data - ((P & C_FLAG) ^ C_FLAG); \
+ TEST_AND_FLAG(((A ^ data) & (A ^ temp) & 0x80), V_FLAG); \
+ TEST_AND_FLAG(temp < 0x100, C_FLAG); \
+ A = (uint8) temp; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+#endif /* NES6502_DECIMAL */
+
+/* undocumented */
+#define SBX(cycles, read_func) \
+{ \
+ read_func(data); \
+ temp = (A & X) - data; \
+ TEST_AND_FLAG(temp < 0x100, C_FLAG); \
+ X = temp & 0xFF; \
+ SET_NZ_FLAGS(X); \
+ ADD_CYCLES(cycles); \
+}
+
+#define SEC() \
+{ \
+ SET_FLAG(C_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define SED() \
+{ \
+ SET_FLAG(D_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define SEI() \
+{ \
+ SET_FLAG(I_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define SHA(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ data = A & X & ((uint8) ((addr >> 8) + 1)); \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define SHS(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ S = A & X; \
+ data = S & ((uint8) ((addr >> 8) + 1)); \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define SHX(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ data = X & ((uint8) ((addr >> 8) + 1)); \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define SHY(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ data = Y & ((uint8) ((addr >> 8 ) + 1)); \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define SLO(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data <<= 1; \
+ write_func(addr, data); \
+ A |= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* unoffical */
+#define SRE(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data >>= 1; \
+ write_func(addr, data); \
+ A ^= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define STA(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ write_func(addr, A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define STX(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ write_func(addr, X); \
+ ADD_CYCLES(cycles); \
+}
+
+#define STY(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ write_func(addr, Y); \
+ ADD_CYCLES(cycles); \
+}
+
+#define TAX() \
+{ \
+ X = A; \
+ SET_NZ_FLAGS(X);\
+ ADD_CYCLES(2); \
+}
+
+#define TAY() \
+{ \
+ Y = A; \
+ SET_NZ_FLAGS(Y);\
+ ADD_CYCLES(2); \
+}
+
+/* undocumented (triple-NOP) */
+#define TOP() \
+{ \
+ PC += 2; \
+ ADD_CYCLES(4); \
+}
+
+#define TSX() \
+{ \
+ X = S; \
+ SET_NZ_FLAGS(X);\
+ ADD_CYCLES(2); \
+}
+
+#define TXA() \
+{ \
+ A = X; \
+ SET_NZ_FLAGS(A);\
+ ADD_CYCLES(2); \
+}
+
+#define TXS() \
+{ \
+ S = X; \
+ ADD_CYCLES(2); \
+}
+
+#define TYA() \
+{ \
+ A = Y; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+
+/*
+** Stack and data fetching macros
+*/
+
+/* Set/clear/test bits in the flags register */
+#define SET_FLAG(mask) P |= (mask)
+#define CLEAR_FLAG(mask) P &= ~(mask)
+#define IS_FLAG_SET(mask) (P & (mask))
+#define IS_FLAG_CLEAR(mask) (0 == IS_FLAG_SET((mask)))
+
+#define TEST_AND_FLAG(test, mask) \
+{ \
+ if ((test)) \
+ SET_FLAG((mask)); \
+ else \
+ CLEAR_FLAG((mask)); \
+}
+
+
+/*
+** flag register helper macros
+*/
+
+/* register push/pull */
+#ifdef NES6502_MEM_ACCESS_CTRL
+
+# define PUSH(value) stack_push((S--),(value))
+# define PULL() stack_pull((++S))
+
+#else
+
+# define PUSH(value) stack_page[S--] = (uint8) (value)
+# define PULL() stack_page[++S]
+
+#endif /* #ifdef NES6502_MEM_ACCESS_CTRL */
+
+/* Sets the Z and N flags based on given data, taken from precomputed table */
+#define SET_NZ_FLAGS(value) P &= ~(N_FLAG | Z_FLAG); \
+ P |= flag_table[(value)]
+
+#define GET_GLOBAL_REGS() \
+{ \
+ PC = reg_PC; \
+ A = reg_A; \
+ X = reg_X; \
+ Y = reg_Y; \
+ P = reg_P; \
+ S = reg_S; \
+}
+
+#define SET_LOCAL_REGS() \
+{ \
+ reg_PC = PC; \
+ reg_A = A; \
+ reg_X = X; \
+ reg_Y = Y; \
+ reg_P = P; \
+ reg_S = S; \
+}
+
+
+/* static data */
+static nes6502_memread *pmem_read, *pmr;
+static nes6502_memwrite *pmem_write, *pmw;
+
+/* lookup table for N/Z flags */
+static uint8 flag_table[256];
+
+/* internal critical CPU vars */
+static uint32 reg_PC;
+static uint8 reg_A, reg_P, reg_X, reg_Y, reg_S;
+static uint8 int_pending;
+static int dma_cycles;
+
+/* execution cycle count (can be reset by user) */
+static uint32 total_cycles = 0;
+
+/* memory region pointers */
+static uint8 *nes6502_banks[NES6502_NUMBANKS];
+static uint8 *ram = NULL;
+static uint8 *stack_page = NULL;
+
+/* access flag for memory
+ * $$$ ben : I add this for the playing time calculation.
+ * Only if compiled with NES6502_MEM_ACCESS.
+ */
+#ifdef NES6502_MEM_ACCESS_CTRL
+
+uint8 *acc_nes6502_banks[NES6502_NUMBANKS];
+static uint8 *acc_ram = NULL;
+static uint8 *acc_stack_page = NULL;
+uint8 nes6502_mem_access = 0;
+
+/* $$$ ben :
+ * Set memory access check flags, and store ORed frame global check
+ * for music time calculation.
+ */
+static void chk_mem_access(uint8 * access, int flags)
+{
+ uint8 oldchk = * access;
+ if ((oldchk&flags) != flags) {
+ nes6502_mem_access |= flags;
+ *access = oldchk|flags;
+ }
+}
+
+INLINE void stack_push(uint8 s, uint8 v)
+{
+ chk_mem_access(acc_stack_page+s, NES6502_WRITE_ACCESS);
+ stack_page[s] = v;
+}
+
+INLINE uint8 stack_pull(uint8 s)
+{
+ chk_mem_access(acc_stack_page+s, NES6502_READ_ACCESS);
+ return stack_page[s];
+}
+
+INLINE uint8 zp_read(register uint32 addr)
+{
+ chk_mem_access(acc_ram+addr, NES6502_READ_ACCESS);
+ return ram[addr];
+}
+
+INLINE void zp_write(register uint32 addr, uint8 v)
+{
+ chk_mem_access(acc_ram+addr, NES6502_WRITE_ACCESS);
+ ram[addr] = v;
+}
+
+#define ZP_READ(addr) zp_read((addr))
+#define ZP_WRITE(addr, value) zp_write((addr),(value))
+
+#define bank_readbyte(address) _bank_readbyte((address), NES6502_READ_ACCESS)
+#define bank_readbyte_pc(address) _bank_readbyte((address), NES6502_EXE_ACCESS)
+
+#else
+# define chk_mem_access(access, flags)
+
+/*
+** Zero-page helper macros
+*/
+#define ZP_READ(addr) ram[(addr)]
+#define ZP_WRITE(addr, value) ram[(addr)] = (uint8) (value)
+
+#define bank_readbyte(address) _bank_readbyte((address))
+#define bank_readbyte_pc(address) _bank_readbyte((address))
+
+#endif /* #ifdef NES6502_MEM_ACCESS_CTRL */
+
+#ifdef NES6502_MEM_ACCESS_CTRL
+int max_access[NES6502_NUMBANKS] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+
+INLINE uint8 _bank_readbyte(register uint32 address, const uint8 flags)
+#else
+INLINE uint8 _bank_readbyte(register uint32 address)
+#endif
+{
+ ASSERT(nes6502_banks[address >> NES6502_BANKSHIFT]);
+
+#ifdef NES6502_MEM_ACCESS_CTRL
+ //printf("chk_mem_access(acc_nes6502_banks[%d] + %d, %d)\n", address>>NES6502_BANKSHIFT, address & NES6502_BANKMASK, flags);
+
+ if((address & NES6502_BANKMASK) > max_access[address>>NES6502_BANKSHIFT])
+ {
+ max_access[address>>NES6502_BANKSHIFT] = address & NES6502_BANKMASK;
+ //printf("max_access[%d] increased to %d\n", address>>NES6502_BANKSHIFT, max_access[address>>NES6502_BANKSHIFT]);
+ }
+#endif
+ chk_mem_access(acc_nes6502_banks[address>>NES6502_BANKSHIFT]
+ + (address & NES6502_BANKMASK),
+ flags);
+
+ return nes6502_banks[address >> NES6502_BANKSHIFT][address & NES6502_BANKMASK];
+}
+
+
+INLINE void bank_writebyte(register uint32 address, register uint8 value)
+{
+ ASSERT(nes6502_banks[address >> NES6502_BANKSHIFT]);
+
+#ifdef NES6502_MEM_ACCESS_CTRL
+ //printf("chk_mem_access(acc_nes6502_banks[%d] + %d, %d)\n", address>>NES6502_BANKSHIFT, address & NES6502_BANKMASK, NES6502_WRITE_ACCESS);
+
+ if((address & NES6502_BANKMASK) > max_access[address>>NES6502_BANKSHIFT])
+ {
+ max_access[address>>NES6502_BANKSHIFT] = address & NES6502_BANKMASK;
+ //printf("max_access[%d] increased to %d\n", address>>NES6502_BANKSHIFT, max_access[address>>NES6502_BANKSHIFT]);
+ }
+#endif
+
+ chk_mem_access(acc_nes6502_banks[address>>NES6502_BANKSHIFT]
+ + (address & NES6502_BANKMASK),
+ NES6502_WRITE_ACCESS);
+
+ nes6502_banks[address >> NES6502_BANKSHIFT][address & NES6502_BANKMASK] = value;
+}
+
+/* Read a 16bit word */
+#define READ_SNES_16(bank,offset) \
+(\
+ (offset) [ (uint8 *) (bank) ] |\
+ ((unsigned int)( ((offset)+1) [ (uint8 *) (bank) ] ) << 8)\
+)
+
+INLINE uint32 zp_address(register uint8 address)
+{
+ chk_mem_access(acc_ram+address, NES6502_READ_ACCESS);
+ chk_mem_access(acc_ram+address+1, NES6502_READ_ACCESS);
+
+#if defined (HOST_LITTLE_ENDIAN) && defined(HOST_UNALIGN_WORD)
+ /* TODO: this fails if src address is $xFFF */
+ /* TODO: this fails if host architecture doesn't support byte alignment */
+ /* $$$ ben : DONE */
+ return (uint32) (*(uint16 *)(ram + address));
+#elif defined(TARGET_CPU_PPC)
+ return __lhbrx(ram, address);
+#else
+ return READ_SNES_16(ram,address);
+/* uint32 x = (uint32) *(uint16 *)(ram + address); */
+/* return (x << 8) | (x >> 8); */
+//#endif /* TARGET_CPU_PPC */
+#endif /* HOST_LITTLE_ENDIAN */
+}
+
+INLINE uint32 bank_readaddress(register uint32 address)
+{
+
+#ifdef NES6502_MEM_ACCESS_CTRL
+ {
+ const unsigned int offset = address & NES6502_BANKMASK;
+ uint8 * addr = acc_nes6502_banks[address >> NES6502_BANKSHIFT];
+ chk_mem_access(addr+offset+0, NES6502_READ_ACCESS);
+ chk_mem_access(addr+offset+1, NES6502_READ_ACCESS);
+ }
+#endif
+
+#if defined (HOST_LITTLE_ENDIAN) && defined(HOST_UNALIGN_WORD)
+ /* TODO: this fails if src address is $xFFF */
+ /* TODO: this fails if host architecture doesn't support byte alignment */
+ /* $$$ ben : DONE */
+ return (uint32) (*(uint16 *)(nes6502_banks[address >> NES6502_BANKSHIFT] + (address & NES6502_BANKMASK)));
+#elif defined(TARGET_CPU_PPC)
+ return __lhbrx(nes6502_banks[address >> NES6502_BANKSHIFT], address & NES6502_BANKMASK);
+#else
+ {
+ const unsigned int offset = address & NES6502_BANKMASK;
+ return READ_SNES_16(nes6502_banks[address >> NES6502_BANKSHIFT], offset);
+ }
+/* uint32 x = (uint32) *(uint16 *)(nes6502_banks[address >> NES6502_BANKSHIFT] + (address & NES6502_BANKMASK)); */
+/* return (x << 8) | (x >> 8); */
+//#endif /* TARGET_CPU_PPC */
+#endif /* HOST_LITTLE_ENDIAN */
+}
+
+
+/* read a byte of 6502 memory */
+static uint8 mem_read(uint32 address)
+{
+ /* TODO: following cases are N2A03-specific */
+ /* RAM */
+ if (address < 0x800) {
+ chk_mem_access(acc_ram + address, NES6502_READ_ACCESS);
+ return ram[address];
+ }
+ /* always paged memory */
+// else if (address >= 0x6000)
+ else if (address >= 0x8000) {
+ return bank_readbyte(address);
+ }
+ /* check memory range handlers */
+ else
+ {
+ for (pmr = pmem_read; pmr->min_range != 0xFFFFFFFF; pmr++)
+ {
+ if ((address >= pmr->min_range) && (address <= pmr->max_range))
+ return pmr->read_func(address);
+ }
+ }
+
+ /* return paged memory */
+ return bank_readbyte(address);
+}
+
+/* write a byte of data to 6502 memory */
+static void mem_write(uint32 address, uint8 value)
+{
+ /* RAM */
+ if (address < 0x800)
+ {
+ chk_mem_access(acc_ram + address, NES6502_WRITE_ACCESS);
+ ram[address] = value;
+ return;
+ }
+ /* check memory range handlers */
+ else
+ {
+ for (pmw = pmem_write; pmw->min_range != 0xFFFFFFFF; pmw++)
+ {
+ if ((address >= pmw->min_range) && (address <= pmw->max_range))
+ {
+ pmw->write_func(address, value);
+ return;
+ }
+ }
+ }
+
+ /* write to paged memory */
+ bank_writebyte(address, value);
+}
+
+/* set the current context */
+void nes6502_setcontext(nes6502_context *cpu)
+{
+ int loop;
+
+ ASSERT(cpu);
+
+ /* Set the page pointers */
+ for (loop = 0; loop < NES6502_NUMBANKS; loop++) {
+ nes6502_banks[loop] = cpu->mem_page[loop];
+#ifdef NES6502_MEM_ACCESS_CTRL
+ acc_nes6502_banks[loop] = cpu->acc_mem_page[loop];
+#endif
+ }
+
+ ram = nes6502_banks[0]; /* quicker zero-page/RAM references */
+ stack_page = ram + STACK_OFFSET;
+#ifdef NES6502_MEM_ACCESS_CTRL
+ acc_ram = acc_nes6502_banks[0]; /* quicker zero-page/RAM references */
+ acc_stack_page = acc_ram + STACK_OFFSET;
+#endif
+
+ pmem_read = cpu->read_handler;
+ pmem_write = cpu->write_handler;
+
+ reg_PC = cpu->pc_reg;
+ reg_A = cpu->a_reg;
+ reg_P = cpu->p_reg;
+ reg_X = cpu->x_reg;
+ reg_Y = cpu->y_reg;
+ reg_S = cpu->s_reg;
+ int_pending = cpu->int_pending;
+ dma_cycles = cpu->dma_cycles;
+}
+
+/* get the current context */
+void nes6502_getcontext(nes6502_context *cpu)
+{
+ int loop;
+
+ /* Set the page pointers */
+ for (loop = 0; loop < NES6502_NUMBANKS; loop++) {
+ cpu->mem_page[loop] = nes6502_banks[loop];
+#ifdef NES6502_MEM_ACCESS_CTRL
+ cpu->acc_mem_page[loop] = acc_nes6502_banks[loop];
+#endif
+ }
+
+ cpu->read_handler = pmem_read;
+ cpu->write_handler = pmem_write;
+
+ cpu->pc_reg = reg_PC;
+ cpu->a_reg = reg_A;
+ cpu->p_reg = reg_P;
+ cpu->x_reg = reg_X;
+ cpu->y_reg = reg_Y;
+ cpu->s_reg = reg_S;
+ cpu->int_pending = int_pending;
+ cpu->dma_cycles = dma_cycles;
+}
+
+/* DMA a byte of data from ROM */
+uint8 nes6502_getbyte(uint32 address)
+{
+ return bank_readbyte(address);
+}
+
+/* get number of elapsed cycles */
+uint32 nes6502_getcycles(boolean reset_flag)
+{
+ uint32 cycles = total_cycles;
+
+ if (reset_flag)
+ total_cycles = 0;
+
+ return cycles;
+}
+
+
+/* Execute instructions until count expires
+**
+** Returns the number of cycles *actually* executed
+** (note that this can be from 0-6 cycles more than you wanted)
+*/
+int nes6502_execute(int remaining_cycles)
+{
+ int instruction_cycles, old_cycles = total_cycles;
+ uint32 temp, addr; /* for macros */
+ uint32 PC;
+ uint8 A, X, Y, P, S;
+ uint8 opcode, data;
+ uint8 btemp, baddr; /* for macros */
+
+ GET_GLOBAL_REGS();
+
+#ifdef NES6502_MEM_ACCESS_CTRL
+ /* reset global memory access for this execute loop. */
+ nes6502_mem_access = 0;
+#endif
+
+ /* Continue until we run out of cycles */
+
+
+ while (remaining_cycles > 0)
+ {
+ instruction_cycles = 0;
+
+ /* check for DMA cycle burning */
+ if (dma_cycles)
+ {
+ if (remaining_cycles <= dma_cycles)
+ {
+ dma_cycles -= remaining_cycles;
+ total_cycles += remaining_cycles;
+ goto _execute_done;
+ }
+ else
+ {
+ remaining_cycles -= dma_cycles;
+ total_cycles += dma_cycles;
+ dma_cycles = 0;
+ }
+ }
+
+ if (int_pending)
+ {
+ /* NMI has highest priority */
+ if (int_pending & NMI_MASK)
+ {
+ NMI();
+ }
+ /* IRQ has lowest priority */
+ else /* if (int_pending & IRQ_MASK) */
+ {
+ if (IS_FLAG_CLEAR(I_FLAG))
+ IRQ();
+ }
+ }
+
+ /* Fetch instruction */
+ //nes6502_disasm(PC, P, A, X, Y, S);
+
+ opcode = bank_readbyte_pc(PC++);
+
+ /* Execute instruction */
+
+ switch (opcode)
+ {
+ case 0x00: /* BRK */
+ BRK();
+ break;
+
+ case 0x01: /* ORA ($nn,X) */
+ ORA(6, INDIR_X_BYTE);
+ break;
+
+ /* JAM */
+ case 0x02: /* JAM */
+ case 0x12: /* JAM */
+ case 0x22: /* JAM */
+ case 0x32: /* JAM */
+ case 0x42: /* JAM */
+ case 0x52: /* JAM */
+ case 0x62: /* JAM */
+ case 0x72: /* JAM */
+ case 0x92: /* JAM */
+ case 0xB2: /* JAM */
+ case 0xD2: /* JAM */
+ case 0xF2: /* JAM */
+ JAM();
+ /* kill switch for CPU emulation */
+ goto _execute_done;
+
+ case 0x03: /* SLO ($nn,X) */
+ SLO(8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0x04: /* NOP $nn */
+ case 0x44: /* NOP $nn */
+ case 0x64: /* NOP $nn */
+ DOP(3);
+ break;
+
+ case 0x05: /* ORA $nn */
+ ORA(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x06: /* ASL $nn */
+ ASL(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x07: /* SLO $nn */
+ SLO(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x08: /* PHP */
+ PHP();
+ break;
+
+ case 0x09: /* ORA #$nn */
+ ORA(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x0A: /* ASL A */
+ ASL_A();
+ break;
+
+ case 0x0B: /* ANC #$nn */
+ ANC(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x0C: /* NOP $nnnn */
+ TOP();
+ break;
+
+ case 0x0D: /* ORA $nnnn */
+ ORA(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x0E: /* ASL $nnnn */
+ ASL(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x0F: /* SLO $nnnn */
+ SLO(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x10: /* BPL $nnnn */
+ BPL();
+ break;
+
+ case 0x11: /* ORA ($nn),Y */
+ ORA(5, INDIR_Y_BYTE);
+ break;
+
+ case 0x13: /* SLO ($nn),Y */
+ SLO(8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0x14: /* NOP $nn,X */
+ case 0x34: /* NOP */
+ case 0x54: /* NOP $nn,X */
+ case 0x74: /* NOP $nn,X */
+ case 0xD4: /* NOP $nn,X */
+ case 0xF4: /* NOP ($nn,X) */
+ DOP(4);
+ break;
+
+ case 0x15: /* ORA $nn,X */
+ ORA(4, ZP_IND_X_BYTE);
+ break;
+
+ case 0x16: /* ASL $nn,X */
+ ASL(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x17: /* SLO $nn,X */
+ SLO(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x18: /* CLC */
+ CLC();
+ break;
+
+ case 0x19: /* ORA $nnnn,Y */
+ ORA(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0x1A: /* NOP */
+ case 0x3A: /* NOP */
+ case 0x5A: /* NOP */
+ case 0x7A: /* NOP */
+ case 0xDA: /* NOP */
+ case 0xFA: /* NOP */
+ NOP();
+ break;
+
+ case 0x1B: /* SLO $nnnn,Y */
+ SLO(7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0x1C: /* NOP $nnnn,X */
+ case 0x3C: /* NOP $nnnn,X */
+ case 0x5C: /* NOP $nnnn,X */
+ case 0x7C: /* NOP $nnnn,X */
+ case 0xDC: /* NOP $nnnn,X */
+ case 0xFC: /* NOP $nnnn,X */
+ TOP();
+ break;
+
+ case 0x1D: /* ORA $nnnn,X */
+ ORA(4, ABS_IND_X_BYTE);
+ break;
+
+ case 0x1E: /* ASL $nnnn,X */
+ ASL(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x1F: /* SLO $nnnn,X */
+ SLO(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x20: /* JSR $nnnn */
+ JSR();
+ break;
+
+ case 0x21: /* AND ($nn,X) */
+ AND(6, INDIR_X_BYTE);
+ break;
+
+ case 0x23: /* RLA ($nn,X) */
+ RLA(8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0x24: /* BIT $nn */
+ BIT(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x25: /* AND $nn */
+ AND(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x26: /* ROL $nn */
+ ROL(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x27: /* RLA $nn */
+ RLA(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x28: /* PLP */
+ PLP();
+ break;
+
+ case 0x29: /* AND #$nn */
+ AND(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x2A: /* ROL A */
+ ROL_A();
+ break;
+
+ case 0x2B: /* ANC #$nn */
+ ANC(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x2C: /* BIT $nnnn */
+ BIT(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x2D: /* AND $nnnn */
+ AND(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x2E: /* ROL $nnnn */
+ ROL(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x2F: /* RLA $nnnn */
+ RLA(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x30: /* BMI $nnnn */
+ BMI();
+ break;
+
+ case 0x31: /* AND ($nn),Y */
+ AND(5, INDIR_Y_BYTE);
+ break;
+
+ case 0x33: /* RLA ($nn),Y */
+ RLA(8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0x35: /* AND $nn,X */
+ AND(4, ZP_IND_X_BYTE);
+ break;
+
+ case 0x36: /* ROL $nn,X */
+ ROL(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x37: /* RLA $nn,X */
+ RLA(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x38: /* SEC */
+ SEC();
+ break;
+
+ case 0x39: /* AND $nnnn,Y */
+ AND(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0x3B: /* RLA $nnnn,Y */
+ RLA(7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0x3D: /* AND $nnnn,X */
+ AND(4, ABS_IND_X_BYTE);
+ break;
+
+ case 0x3E: /* ROL $nnnn,X */
+ ROL(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x3F: /* RLA $nnnn,X */
+ RLA(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x40: /* RTI */
+ RTI();
+ break;
+
+ case 0x41: /* EOR ($nn,X) */
+ EOR(6, INDIR_X_BYTE);
+ break;
+
+ case 0x43: /* SRE ($nn,X) */
+ SRE(8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0x45: /* EOR $nn */
+ EOR(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x46: /* LSR $nn */
+ LSR(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x47: /* SRE $nn */
+ SRE(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x48: /* PHA */
+ PHA();
+ break;
+
+ case 0x49: /* EOR #$nn */
+ EOR(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x4A: /* LSR A */
+ LSR_A();
+ break;
+
+ case 0x4B: /* ASR #$nn */
+ ASR(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x4C: /* JMP $nnnn */
+ JMP_ABSOLUTE();
+ break;
+
+ case 0x4D: /* EOR $nnnn */
+ EOR(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x4E: /* LSR $nnnn */
+ LSR(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x4F: /* SRE $nnnn */
+ SRE(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x50: /* BVC $nnnn */
+ BVC();
+ break;
+
+ case 0x51: /* EOR ($nn),Y */
+ EOR(5, INDIR_Y_BYTE);
+ break;
+
+ case 0x53: /* SRE ($nn),Y */
+ SRE(8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0x55: /* EOR $nn,X */
+ EOR(4, ZP_IND_X_BYTE);
+ break;
+
+ case 0x56: /* LSR $nn,X */
+ LSR(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x57: /* SRE $nn,X */
+ SRE(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x58: /* CLI */
+ CLI();
+ break;
+
+ case 0x59: /* EOR $nnnn,Y */
+ EOR(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0x5B: /* SRE $nnnn,Y */
+ SRE(7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0x5D: /* EOR $nnnn,X */
+ EOR(4, ABS_IND_X_BYTE);
+ break;
+
+ case 0x5E: /* LSR $nnnn,X */
+ LSR(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x5F: /* SRE $nnnn,X */
+ SRE(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x60: /* RTS */
+ RTS();
+ break;
+
+ case 0x61: /* ADC ($nn,X) */
+ ADC(6, INDIR_X_BYTE);
+ break;
+
+ case 0x63: /* RRA ($nn,X) */
+ RRA(8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0x65: /* ADC $nn */
+ ADC(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x66: /* ROR $nn */
+ ROR(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x67: /* RRA $nn */
+ RRA(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x68: /* PLA */
+ PLA();
+ break;
+
+ case 0x69: /* ADC #$nn */
+ ADC(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x6A: /* ROR A */
+ ROR_A();
+ break;
+
+ case 0x6B: /* ARR #$nn */
+ ARR(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x6C: /* JMP ($nnnn) */
+ JMP_INDIRECT();
+ break;
+
+ case 0x6D: /* ADC $nnnn */
+ ADC(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x6E: /* ROR $nnnn */
+ ROR(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x6F: /* RRA $nnnn */
+ RRA(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x70: /* BVS $nnnn */
+ BVS();
+ break;
+
+ case 0x71: /* ADC ($nn),Y */
+ ADC(5, INDIR_Y_BYTE);
+ break;
+
+ case 0x73: /* RRA ($nn),Y */
+ RRA(8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0x75: /* ADC $nn,X */
+ ADC(4, ZP_IND_X_BYTE);
+ break;
+
+ case 0x76: /* ROR $nn,X */
+ ROR(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x77: /* RRA $nn,X */
+ RRA(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x78: /* SEI */
+ SEI();
+ break;
+
+ case 0x79: /* ADC $nnnn,Y */
+ ADC(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0x7B: /* RRA $nnnn,Y */
+ RRA(7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0x7D: /* ADC $nnnn,X */
+ ADC(4, ABS_IND_X_BYTE);
+ break;
+
+ case 0x7E: /* ROR $nnnn,X */
+ ROR(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x7F: /* RRA $nnnn,X */
+ RRA(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x80: /* NOP #$nn */
+ case 0x82: /* NOP #$nn */
+ case 0x89: /* NOP #$nn */
+ case 0xC2: /* NOP #$nn */
+ case 0xE2: /* NOP #$nn */
+ DOP(2);
+ break;
+
+ case 0x81: /* STA ($nn,X) */
+ STA(6, INDIR_X_ADDR, mem_write, addr);
+ break;
+
+ case 0x83: /* SAX ($nn,X) */
+ SAX(6, INDIR_X_ADDR, mem_write, addr);
+ break;
+
+ case 0x84: /* STY $nn */
+ STY(3, ZERO_PAGE_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x85: /* STA $nn */
+ STA(3, ZERO_PAGE_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x86: /* STX $nn */
+ STX(3, ZERO_PAGE_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x87: /* SAX $nn */
+ SAX(3, ZERO_PAGE_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x88: /* DEY */
+ DEY();
+ break;
+
+ case 0x8A: /* TXA */
+ TXA();
+ break;
+
+ case 0x8B: /* ANE #$nn */
+ ANE(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x8C: /* STY $nnnn */
+ STY(4, ABSOLUTE_ADDR, mem_write, addr);
+ break;
+
+ case 0x8D: /* STA $nnnn */
+ STA(4, ABSOLUTE_ADDR, mem_write, addr);
+ break;
+
+ case 0x8E: /* STX $nnnn */
+ STX(4, ABSOLUTE_ADDR, mem_write, addr);
+ break;
+
+ case 0x8F: /* SAX $nnnn */
+ SAX(4, ABSOLUTE_ADDR, mem_write, addr);
+ break;
+
+ case 0x90: /* BCC $nnnn */
+ BCC();
+ break;
+
+ case 0x91: /* STA ($nn),Y */
+ STA(6, INDIR_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x93: /* SHA ($nn),Y */
+ SHA(6, INDIR_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x94: /* STY $nn,X */
+ STY(4, ZP_IND_X_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x95: /* STA $nn,X */
+ STA(4, ZP_IND_X_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x96: /* STX $nn,Y */
+ STX(4, ZP_IND_Y_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x97: /* SAX $nn,Y */
+ SAX(4, ZP_IND_Y_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x98: /* TYA */
+ TYA();
+ break;
+
+ case 0x99: /* STA $nnnn,Y */
+ STA(5, ABS_IND_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x9A: /* TXS */
+ TXS();
+ break;
+
+ case 0x9B: /* SHS $nnnn,Y */
+ SHS(5, ABS_IND_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x9C: /* SHY $nnnn,X */
+ SHY(5, ABS_IND_X_ADDR, mem_write, addr);
+ break;
+
+ case 0x9D: /* STA $nnnn,X */
+ STA(5, ABS_IND_X_ADDR, mem_write, addr);
+ break;
+
+ case 0x9E: /* SHX $nnnn,Y */
+ SHX(5, ABS_IND_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x9F: /* SHA $nnnn,Y */
+ SHA(5, ABS_IND_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0xA0: /* LDY #$nn */
+ LDY(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xA1: /* LDA ($nn,X) */
+ LDA(6, INDIR_X_BYTE);
+ break;
+
+ case 0xA2: /* LDX #$nn */
+ LDX(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xA3: /* LAX ($nn,X) */
+ LAX(6, INDIR_X_BYTE);
+ break;
+
+ case 0xA4: /* LDY $nn */
+ LDY(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xA5: /* LDA $nn */
+ LDA(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xA6: /* LDX $nn */
+ LDX(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xA7: /* LAX $nn */
+ LAX(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xA8: /* TAY */
+ TAY();
+ break;
+
+ case 0xA9: /* LDA #$nn */
+ LDA(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xAA: /* TAX */
+ TAX();
+ break;
+
+ case 0xAB: /* LXA #$nn */
+ LXA(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xAC: /* LDY $nnnn */
+ LDY(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xAD: /* LDA $nnnn */
+ LDA(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xAE: /* LDX $nnnn */
+ LDX(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xAF: /* LAX $nnnn */
+ LAX(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xB0: /* BCS $nnnn */
+ BCS();
+ break;
+
+ case 0xB1: /* LDA ($nn),Y */
+ LDA(5, INDIR_Y_BYTE);
+ break;
+
+ case 0xB3: /* LAX ($nn),Y */
+ LAX(5, INDIR_Y_BYTE);
+ break;
+
+ case 0xB4: /* LDY $nn,X */
+ LDY(4, ZP_IND_X_BYTE);
+ break;
+
+ case 0xB5: /* LDA $nn,X */
+ LDA(4, ZP_IND_X_BYTE);
+ break;
+
+ case 0xB6: /* LDX $nn,Y */
+ LDX(4, ZP_IND_Y_BYTE);
+ break;
+
+ case 0xB7: /* LAX $nn,Y */
+ LAX(4, ZP_IND_Y_BYTE);
+ break;
+
+ case 0xB8: /* CLV */
+ CLV();
+ break;
+
+ case 0xB9: /* LDA $nnnn,Y */
+ LDA(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xBA: /* TSX */
+ TSX();
+ break;
+
+ case 0xBB: /* LAS $nnnn,Y */
+ LAS(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xBC: /* LDY $nnnn,X */
+ LDY(4, ABS_IND_X_BYTE);
+ break;
+
+ case 0xBD: /* LDA $nnnn,X */
+ LDA(4, ABS_IND_X_BYTE);
+ break;
+
+ case 0xBE: /* LDX $nnnn,Y */
+ LDX(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xBF: /* LAX $nnnn,Y */
+ LAX(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xC0: /* CPY #$nn */
+ CPY(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xC1: /* CMP ($nn,X) */
+ CMP(6, INDIR_X_BYTE);
+ break;
+
+ case 0xC3: /* DCP ($nn,X) */
+ DCP(8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0xC4: /* CPY $nn */
+ CPY(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xC5: /* CMP $nn */
+ CMP(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xC6: /* DEC $nn */
+ DEC(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0xC7: /* DCP $nn */
+ DCP(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0xC8: /* INY */
+ INY();
+ break;
+
+ case 0xC9: /* CMP #$nn */
+ CMP(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xCA: /* DEX */
+ DEX();
+ break;
+
+ case 0xCB: /* SBX #$nn */
+ SBX(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xCC: /* CPY $nnnn */
+ CPY(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xCD: /* CMP $nnnn */
+ CMP(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xCE: /* DEC $nnnn */
+ DEC(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0xCF: /* DCP $nnnn */
+ DCP(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0xD0: /* BNE $nnnn */
+ BNE();
+ break;
+
+ case 0xD1: /* CMP ($nn),Y */
+ CMP(5, INDIR_Y_BYTE);
+ break;
+
+ case 0xD3: /* DCP ($nn),Y */
+ DCP(8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0xD5: /* CMP $nn,X */
+ CMP(4, ZP_IND_X_BYTE);
+ break;
+
+ case 0xD6: /* DEC $nn,X */
+ DEC(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0xD7: /* DCP $nn,X */
+ DCP(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0xD8: /* CLD */
+ CLD();
+ break;
+
+ case 0xD9: /* CMP $nnnn,Y */
+ CMP(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xDB: /* DCP $nnnn,Y */
+ DCP(7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0xDD: /* CMP $nnnn,X */
+ CMP(4, ABS_IND_X_BYTE);
+ break;
+
+ case 0xDE: /* DEC $nnnn,X */
+ DEC(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0xDF: /* DCP $nnnn,X */
+ DCP(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0xE0: /* CPX #$nn */
+ CPX(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xE1: /* SBC ($nn,X) */
+ SBC(6, INDIR_X_BYTE);
+ break;
+
+ case 0xE3: /* ISB ($nn,X) */
+ ISB(8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0xE4: /* CPX $nn */
+ CPX(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xE5: /* SBC $nn */
+ SBC(3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xE6: /* INC $nn */
+ INC(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0xE7: /* ISB $nn */
+ ISB(5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0xE8: /* INX */
+ INX();
+ break;
+
+ case 0xE9: /* SBC #$nn */
+ case 0xEB: /* USBC #$nn */
+ SBC(2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xEA: /* NOP */
+ NOP();
+ break;
+
+ case 0xEC: /* CPX $nnnn */
+ CPX(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xED: /* SBC $nnnn */
+ SBC(4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xEE: /* INC $nnnn */
+ INC(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0xEF: /* ISB $nnnn */
+ ISB(6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0xF0: /* BEQ $nnnn */
+ BEQ();
+ break;
+
+ case 0xF1: /* SBC ($nn),Y */
+ SBC(5, INDIR_Y_BYTE);
+ break;
+
+ case 0xF3: /* ISB ($nn),Y */
+ ISB(8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0xF5: /* SBC $nn,X */
+ SBC(4, ZP_IND_X_BYTE);
+ break;
+
+ case 0xF6: /* INC $nn,X */
+ INC(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0xF7: /* ISB $nn,X */
+ ISB(6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0xF8: /* SED */
+ SED();
+ break;
+
+ case 0xF9: /* SBC $nnnn,Y */
+ SBC(4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xFB: /* ISB $nnnn,Y */
+ ISB(7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0xFD: /* SBC $nnnn,X */
+ SBC(4, ABS_IND_X_BYTE);
+ break;
+
+ case 0xFE: /* INC $nnnn,X */
+ INC(7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0xFF: /* ISB $nnnn,X */
+ ISB(7, ABS_IND_X, mem_write, addr);
+ break;
+ }
+
+ /* Calculate remaining/elapsed clock cycles */
+ remaining_cycles -= instruction_cycles;
+ total_cycles += instruction_cycles;
+ }
+
+_execute_done:
+
+ /* restore local copy of regs */
+ SET_LOCAL_REGS();
+
+ /* Return our actual amount of executed cycles */
+ return (total_cycles - old_cycles);
+}
+
+/* Initialize tables, etc. */
+void nes6502_init(void)
+{
+ int index;
+
+ /* Build the N / Z flag lookup table */
+ flag_table[0] = Z_FLAG;
+
+ for (index = 1; index < 256; index++)
+ flag_table[index] = (index & 0x80) ? N_FLAG : 0;
+
+ reg_A = reg_X = reg_Y = 0;
+ reg_S = 0xFF; /* Stack grows down */
+}
+
+
+/* Issue a CPU Reset */
+void nes6502_reset(void)
+{
+ reg_P = Z_FLAG | R_FLAG | I_FLAG; /* Reserved bit always 1 */
+ int_pending = dma_cycles = 0; /* No pending interrupts */
+ reg_PC = bank_readaddress(RESET_VECTOR); /* Fetch reset vector */
+ /* TODO: 6 cycles for RESET? */
+}
+
+/* Non-maskable interrupt */
+void nes6502_nmi(void)
+{
+ int_pending |= NMI_MASK;
+}
+
+/* Interrupt request */
+void nes6502_irq(void)
+{
+ int_pending |= IRQ_MASK;
+}
+
+/* Set dma period (in cycles) */
+void nes6502_setdma(int cycles)
+{
+ dma_cycles += cycles;
+}
+
+#ifdef NES6502_MEM_ACCESS_CTRL
+void nes6502_chk_mem_access(uint8 * access, int flags)
+{
+ chk_mem_access(access, flags);
+}
+#endif
+
+/*
+** $Log: nes6502.c,v $
+** Revision 1.2 2003/05/01 22:34:19 benjihan
+** New NSF plugin
+**
+** Revision 1.1 2003/04/08 20:53:00 ben
+** Adding more files...
+**
+** Revision 1.6 2000/07/04 04:50:07 matt
+** minor change to includes
+**
+** Revision 1.5 2000/07/03 02:18:16 matt
+** added a few notes about potential failure cases
+**
+** Revision 1.4 2000/06/09 15:12:25 matt
+** initial revision
+**
+*/