diff options
Diffstat (limited to 'src/libac3/imdct.c')
-rw-r--r-- | src/libac3/imdct.c | 903 |
1 files changed, 350 insertions, 553 deletions
diff --git a/src/libac3/imdct.c b/src/libac3/imdct.c index a055f3399..a2e83d423 100644 --- a/src/libac3/imdct.c +++ b/src/libac3/imdct.c @@ -22,9 +22,7 @@ * */ -#ifdef HAVE_CONFIG_H #include "config.h" -#endif #include <stdlib.h> #include <stdio.h> @@ -32,31 +30,78 @@ #include "ac3.h" #include "ac3_internal.h" -#include "downmix.h" + +#include "decode.h" #include "imdct.h" -#include "srfft.h" + +void imdct_do_256(float data[],float delay[]); +void imdct_do_512(float data[],float delay[]); + +void imdct_do_256_mlib(float data[],float delay[]); +void imdct_do_512_mlib(float data[],float delay[]); + +typedef struct complex_s +{ + float real; + float imag; +} complex_t; + #define N 512 -/* static complex_t buf[128]; */ -//static complex_t buf[128] __attribute__((aligned(16))); -complex_t buf[128] __attribute__((aligned(16))); -/* Delay buffer for time domain interleaving */ -static float delay[6][256]; -static float delay1[6][256]; +/* 128 point bit-reverse LUT */ +static uint8_t bit_reverse_512[] = { + 0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70, + 0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78, + 0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74, + 0x0c, 0x4c, 0x2c, 0x6c, 0x1c, 0x5c, 0x3c, 0x7c, + 0x02, 0x42, 0x22, 0x62, 0x12, 0x52, 0x32, 0x72, + 0x0a, 0x4a, 0x2a, 0x6a, 0x1a, 0x5a, 0x3a, 0x7a, + 0x06, 0x46, 0x26, 0x66, 0x16, 0x56, 0x36, 0x76, + 0x0e, 0x4e, 0x2e, 0x6e, 0x1e, 0x5e, 0x3e, 0x7e, + 0x01, 0x41, 0x21, 0x61, 0x11, 0x51, 0x31, 0x71, + 0x09, 0x49, 0x29, 0x69, 0x19, 0x59, 0x39, 0x79, + 0x05, 0x45, 0x25, 0x65, 0x15, 0x55, 0x35, 0x75, + 0x0d, 0x4d, 0x2d, 0x6d, 0x1d, 0x5d, 0x3d, 0x7d, + 0x03, 0x43, 0x23, 0x63, 0x13, 0x53, 0x33, 0x73, + 0x0b, 0x4b, 0x2b, 0x6b, 0x1b, 0x5b, 0x3b, 0x7b, + 0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77, + 0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f}; + +static uint8_t bit_reverse_256[] = { + 0x00, 0x20, 0x10, 0x30, 0x08, 0x28, 0x18, 0x38, + 0x04, 0x24, 0x14, 0x34, 0x0c, 0x2c, 0x1c, 0x3c, + 0x02, 0x22, 0x12, 0x32, 0x0a, 0x2a, 0x1a, 0x3a, + 0x06, 0x26, 0x16, 0x36, 0x0e, 0x2e, 0x1e, 0x3e, + 0x01, 0x21, 0x11, 0x31, 0x09, 0x29, 0x19, 0x39, + 0x05, 0x25, 0x15, 0x35, 0x0d, 0x2d, 0x1d, 0x3d, + 0x03, 0x23, 0x13, 0x33, 0x0b, 0x2b, 0x1b, 0x3b, + 0x07, 0x27, 0x17, 0x37, 0x0f, 0x2f, 0x1f, 0x3f}; + +static complex_t buf[128]; + +/* Twiddle factor LUT */ +static complex_t *w[7]; +static complex_t w_1[1]; +static complex_t w_2[2]; +static complex_t w_4[4]; +static complex_t w_8[8]; +static complex_t w_16[16]; +static complex_t w_32[32]; +static complex_t w_64[64]; /* Twiddle factors for IMDCT */ -static float xcos1[128] __attribute__((aligned(16))); -static float xsin1[128] __attribute__((aligned(16))); - -/* more twiddle factors for IMDCT */ +static float xcos1[128]; +static float xsin1[128]; static float xcos2[64]; static float xsin2[64]; +/* Delay buffer for time domain interleaving */ +static float delay[6][256]; + /* Windowing function for Modified DCT - Thank you acroread */ -//static float window[] = { -float window[] = { +float imdct_window[] = { 0.00014, 0.00024, 0.00037, 0.00051, 0.00067, 0.00086, 0.00107, 0.00130, 0.00157, 0.00187, 0.00220, 0.00256, 0.00297, 0.00341, 0.00390, 0.00443, 0.00501, 0.00564, 0.00632, 0.00706, 0.00785, 0.00871, 0.00962, 0.01061, @@ -88,574 +133,326 @@ float window[] = { 0.99978, 0.99981, 0.99984, 0.99986, 0.99988, 0.99990, 0.99992, 0.99993, 0.99994, 0.99995, 0.99996, 0.99997, 0.99998, 0.99998, 0.99998, 0.99999, 0.99999, 0.99999, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, - 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 -}; - -//static const int pm128[128] = -const int pm128[128] = -{ - 0, 16, 32, 48, 64, 80, 96, 112, 8, 40, 72, 104, 24, 56, 88, 120, - 4, 20, 36, 52, 68, 84, 100, 116, 12, 28, 44, 60, 76, 92, 108, 124, - 2, 18, 34, 50, 66, 82, 98, 114, 10, 42, 74, 106, 26, 58, 90, 122, - 6, 22, 38, 54, 70, 86, 102, 118, 14, 46, 78, 110, 30, 62, 94, 126, - 1, 17, 33, 49, 65, 81, 97, 113, 9, 41, 73, 105, 25, 57, 89, 121, - 5, 21, 37, 53, 69, 85, 101, 117, 13, 29, 45, 61, 77, 93, 109, 125, - 3, 19, 35, 51, 67, 83, 99, 115, 11, 43, 75, 107, 27, 59, 91, 123, - 7, 23, 39, 55, 71, 87, 103, 119, 15, 31, 47, 63, 79, 95, 111, 127 -}; - -static const int pm64[64] = -{ - 0, 8, 16, 24, 32, 40, 48, 56, - 4, 20, 36, 52, 12, 28, 44, 60, - 2, 10, 18, 26, 34, 42, 50, 58, - 6, 14, 22, 30, 38, 46, 54, 62, - 1, 9, 17, 25, 33, 41, 49, 57, - 5, 21, 37, 53, 13, 29, 45, 61, - 3, 11, 19, 27, 35, 43, 51, 59, - 7, 23, 39, 55, 15, 31, 47, 63 -}; - - -void imdct_init (void) - { - int i; - float scale = 255.99609372; - - /* Twiddle factors to turn IFFT into IMDCT */ - - for (i=0; i < 128; i++) { - xcos1[i] = cos(2.0f * M_PI * (8*i+1)/(8*N)) * scale; - xsin1[i] = sin(2.0f * M_PI * (8*i+1)/(8*N)) * scale; - } + 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 }; - // More twiddle factors to turn IFFT into IMDCT */ - for (i=0; i < 64; i++) { - xcos2[i] = cos(2.0f * M_PI * (8*i+1)/(4*N)) * scale; - xsin2[i] = sin(2.0f * M_PI * (8*i+1)/(4*N)) * scale; - } -} - -void imdct_do_256 (float data[],float delay[]) +static inline void swap_cmplx(complex_t *a, complex_t *b) { - int i, j, k; - int p, q; + complex_t tmp; - float tmp_a_i; - float tmp_a_r; + tmp = *a; + *a = *b; + *b = tmp; +} - float *data_ptr; - float *delay_ptr; - float *window_ptr; - complex_t *buf1, *buf2; - buf1 = &buf[0]; - buf2 = &buf[64]; +static inline complex_t cmplx_mult(complex_t a, complex_t b) +{ + complex_t ret; -// Pre IFFT complex multiply plus IFFT complex conjugate - for (k=0; k<64; k++) { - /* X1[k] = X[2*k] */ - /* X2[k] = X[2*k+1] */ + ret.real = a.real * b.real - a.imag * b.imag; + ret.imag = a.real * b.imag + a.imag * b.real; - j = pm64[k]; - p = 2 * (128-2*j-1); - q = 2 * (2 * j); + return ret; +} - /* Z1[k] = (X1[128-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */ - buf1[k].re = data[p] * xcos2[j] - data[q] * xsin2[j]; - buf1[k].im = -1.0f * (data[q] * xcos2[j] + data[p] * xsin2[j]); - /* Z2[k] = (X2[128-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */ - buf2[k].re = data[p + 1] * xcos2[j] - data[q + 1] * xsin2[j]; - buf2[k].im = -1.0f * ( data[q + 1] * xcos2[j] + data[p + 1] * xsin2[j]); - } +void imdct_init(void) +{ + int i,k; + complex_t angle_step; + complex_t current_angle; - fft_64p(&buf1[0]); - fft_64p(&buf2[0]); - -#ifdef DEBUG - //DEBUG FFT -#if 0 - printf ("Post FFT, buf1\n"); - for (i=0; i < 64; i++) - printf("%d %f %f\n", i, buf_1[i].re, buf_1[i].im); - printf ("Post FFT, buf2\n"); - for (i=0; i < 64; i++) - printf("%d %f %f\n", i, buf_2[i].re, buf_2[i].im); -#endif +#ifdef LIBAC3_MLIB + return; #endif - - // Post IFFT complex multiply - for( i=0; i < 64; i++) { - tmp_a_r = buf1[i].re; - tmp_a_i = -buf1[i].im; - buf1[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); - buf1[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); - tmp_a_r = buf2[i].re; - tmp_a_i = -buf2[i].im; - buf2[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); - buf2[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); - } - - data_ptr = data; - delay_ptr = delay; - window_ptr = window; - - /* Window and convert to real valued signal */ - for(i=0; i< 64; i++) { - *data_ptr++ = -buf1[i].im * *window_ptr++ + *delay_ptr++; - *data_ptr++ = buf1[64-i-1].re * *window_ptr++ + *delay_ptr++; - } - - for(i=0; i< 64; i++) { - *data_ptr++ = -buf1[i].re * *window_ptr++ + *delay_ptr++; - *data_ptr++ = buf1[64-i-1].im * *window_ptr++ + *delay_ptr++; - } + /* Twiddle factors to turn IFFT into IMDCT */ + for( i=0; i < 128; i++) { + xcos1[i] = -cos(2.0f * M_PI * (8*i+1)/(8*N)) ; + xsin1[i] = -sin(2.0f * M_PI * (8*i+1)/(8*N)) ; + } - delay_ptr = delay; - - for(i=0; i< 64; i++) { - *delay_ptr++ = -buf2[i].re * *--window_ptr; - *delay_ptr++ = buf2[64-i-1].im * *--window_ptr; - } - - for(i=0; i< 64; i++) { - *delay_ptr++ = buf2[i].im * *--window_ptr; - *delay_ptr++ = -buf2[64-i-1].re * *--window_ptr; + /* More twiddle factors to turn IFFT into IMDCT */ + for( i=0; i < 64; i++) { + xcos2[i] = -cos(2.0f * M_PI * (8*i+1)/(4*N)) ; + xsin2[i] = -sin(2.0f * M_PI * (8*i+1)/(4*N)) ; + } + + /* Canonical twiddle factors for FFT */ + w[0] = w_1; + w[1] = w_2; + w[2] = w_4; + w[3] = w_8; + w[4] = w_16; + w[5] = w_32; + w[6] = w_64; + + for( i = 0; i < 7; i++) { + angle_step.real = cos(-2.0 * M_PI / (1 << (i+1))); + angle_step.imag = sin(-2.0 * M_PI / (1 << (i+1))); + + current_angle.real = 1.0; + current_angle.imag = 0.0; + + for (k = 0; k < 1 << i; k++) { + w[i][k] = current_angle; + current_angle = cmplx_mult(current_angle,angle_step); } + } } - -/** - * - **/ - -void imdct_do_256_nol (float data[], float delay[]) +void +imdct_do_512(float data[],float delay[]) { - int i, j, k; - int p, q; - - float tmp_a_i; - float tmp_a_r; - - float *data_ptr; - float *delay_ptr; - float *window_ptr; - - complex_t *buf1, *buf2; - - buf1 = &buf[0]; - buf2 = &buf[64]; - - /* Pre IFFT complex multiply plus IFFT cmplx conjugate */ - for(k=0; k<64; k++) { - /* X1[k] = X[2*k] */ - /* X2[k] = X[2*k+1] */ - j = pm64[k]; - p = 2 * (128-2*j-1); - q = 2 * (2 * j); - - /* Z1[k] = (X1[128-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */ - buf1[k].re = data[p] * xcos2[j] - data[q] * xsin2[j]; - buf1[k].im = -1.0f * (data[q] * xcos2[j] + data[p] * xsin2[j]); - /* Z2[k] = (X2[128-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */ - buf2[k].re = data[p + 1] * xcos2[j] - data[q + 1] * xsin2[j]; - buf2[k].im = -1.0f * ( data[q + 1] * xcos2[j] + data[p + 1] * xsin2[j]); - } - - - fft_64p(&buf1[0]); - fft_64p(&buf2[0]); - -#ifdef DEBUG - //DEBUG FFT -#if 0 - printf("Post FFT, buf1\n"); - for (i=0; i < 64; i++) - printf("%d %f %f\n", i, buf_1[i].re, buf_1[i].im); - printf("Post FFT, buf2\n"); - for (i=0; i < 64; i++) - printf("%d %f %f\n", i, buf_2[i].re, buf_2[i].im); -#endif -#endif - - /* Post IFFT complex multiply */ - for( i=0; i < 64; i++) { - /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */ - tmp_a_r = buf1[i].re; - tmp_a_i = -buf1[i].im; - buf1[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); - buf1[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); - /* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */ - tmp_a_r = buf2[i].re; - tmp_a_i = -buf2[i].im; - buf2[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); - buf2[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); - } - - data_ptr = data; - delay_ptr = delay; - window_ptr = window; - - /* Window and convert to real valued signal, no overlap */ - for(i=0; i< 64; i++) { - *data_ptr++ = -buf1[i].im * *window_ptr++; - *data_ptr++ = buf1[64-i-1].re * *window_ptr++; - } - - for(i=0; i< 64; i++) { - *data_ptr++ = -buf1[i].re * *window_ptr++ + *delay_ptr++; - *data_ptr++ = buf1[64-i-1].im * *window_ptr++ + *delay_ptr++; - } - - delay_ptr = delay; - - for(i=0; i< 64; i++) { - *delay_ptr++ = -buf2[i].re * *--window_ptr; - *delay_ptr++ = buf2[64-i-1].im * *--window_ptr; - } - - for(i=0; i< 64; i++) { - *delay_ptr++ = buf2[i].im * *--window_ptr; - *delay_ptr++ = -buf2[64-i-1].re * *--window_ptr; + int i,k; + int p,q; + int m; + int two_m; + int two_m_plus_one; + + float tmp_a_i; + float tmp_a_r; + float tmp_b_i; + float tmp_b_r; + + float *data_ptr; + float *delay_ptr; + float *window_ptr; + + // + // 512 IMDCT with source and dest data in 'data' + // + + // Pre IFFT complex multiply plus IFFT cmplx conjugate + for( i=0; i < 128; i++) { + /* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */ + buf[i].real = (data[256-2*i-1] * xcos1[i]) - (data[2*i] * xsin1[i]); + buf[i].imag = -1.0 * ((data[2*i] * xcos1[i]) + (data[256-2*i-1] * xsin1[i])); + } + + //Bit reversed shuffling + for(i=0; i<128; i++) { + k = bit_reverse_512[i]; + if (k < i) + swap_cmplx(&buf[i],&buf[k]); + } + + /* FFT Merge */ + for (m=0; m < 7; m++) { + if(m) + two_m = (1 << m); + else + two_m = 1; + + two_m_plus_one = (1 << (m+1)); + + for(k = 0; k < two_m; k++) { + for(i = 0; i < 128; i += two_m_plus_one) { + p = k + i; + q = p + two_m; + tmp_a_r = buf[p].real; + tmp_a_i = buf[p].imag; + tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag; + tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag; + buf[p].real = tmp_a_r + tmp_b_r; + buf[p].imag = tmp_a_i + tmp_b_i; + buf[q].real = tmp_a_r - tmp_b_r; + buf[q].imag = tmp_a_i - tmp_b_i; + } } + } + + /* Post IFFT complex multiply plus IFFT complex conjugate*/ + for( i=0; i < 128; i++) { + /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */ + tmp_a_r = buf[i].real; + tmp_a_i = -1.0 * buf[i].imag; + buf[i].real =(tmp_a_r * xcos1[i]) - (tmp_a_i * xsin1[i]); + buf[i].imag =(tmp_a_r * xsin1[i]) + (tmp_a_i * xcos1[i]); + } + + data_ptr = data; + delay_ptr = delay; + window_ptr = imdct_window; + + /* Window and convert to real valued signal */ + for(i=0; i< 64; i++) { + *data_ptr++ = 2.0f * (-buf[64+i].imag * *window_ptr++ + *delay_ptr++); + *data_ptr++ = 2.0f * ( buf[64-i-1].real * *window_ptr++ + *delay_ptr++); + } + + for(i=0; i< 64; i++) { + *data_ptr++ = 2.0f * (-buf[i].real * *window_ptr++ + *delay_ptr++); + *data_ptr++ = 2.0f * ( buf[128-i-1].imag * *window_ptr++ + *delay_ptr++); + } + + /* The trailing edge of the window goes into the delay line */ + delay_ptr = delay; + + for(i=0; i< 64; i++) { + *delay_ptr++ = -buf[64+i].real * *--window_ptr; + *delay_ptr++ = buf[64-i-1].imag * *--window_ptr; + } + + for(i=0; i<64; i++) { + *delay_ptr++ = buf[i].imag * *--window_ptr; + *delay_ptr++ = -buf[128-i-1].real * *--window_ptr; + } } -//FIXME remove - for timing code -///#include <sys/time.h> -//FIXME remove - - -void imdct_do_512 (float data[], float delay[]) +void +imdct_do_256(float data[],float delay[]) { - int i, j; - float tmp_a_r, tmp_a_i; - float *data_ptr; - float *delay_ptr; - float *window_ptr; - -// 512 IMDCT with source and dest data in 'data' -// Pre IFFT complex multiply plus IFFT complex conjugate - - for( i=0; i < 128; i++) { - j = pm128[i]; - //a = (data[256-2*j-1] - data[2*j]) * (xcos1[j] + xsin1[j]); - //c = data[2*j] * xcos1[j]; - //b = data[256-2*j-1] * xsin1[j]; - //buf1[i].re = a - b + c; - //buf1[i].im = b + c; - buf[i].re = (data[256-2*j-1] * xcos1[j]) - (data[2*j] * xsin1[j]); - buf[i].im = -1.0 * (data[2*j] * xcos1[j] + data[256-2*j-1] * xsin1[j]); - } - - fft_128p (&buf[0]); - -// Post IFFT complex multiply plus IFFT complex conjugate - for (i=0; i < 128; i++) { - tmp_a_r = buf[i].re; - tmp_a_i = buf[i].im; - //a = (tmp_a_r - tmp_a_i) * (xcos1[j] + xsin1[j]); - //b = tmp_a_r * xsin1[j]; - //c = tmp_a_i * xcos1[j]; - //buf[j].re = a - b + c; - //buf[j].im = b + c; - buf[i].re =(tmp_a_r * xcos1[i]) + (tmp_a_i * xsin1[i]); - buf[i].im =(tmp_a_r * xsin1[i]) - (tmp_a_i * xcos1[i]); + int i,k; + int p,q; + int m; + int two_m; + int two_m_plus_one; + + float tmp_a_i; + float tmp_a_r; + float tmp_b_i; + float tmp_b_r; + + float *data_ptr; + float *delay_ptr; + float *window_ptr; + + complex_t *buf_1, *buf_2; + + buf_1 = &buf[0]; + buf_2 = &buf[64]; + + /* Pre IFFT complex multiply plus IFFT cmplx conjugate */ + for(k=0; k<64; k++) { + /* X1[k] = X[2*k] */ + /* X2[k] = X[2*k+1] */ + + p = 2 * (128-2*k-1); + q = 2 * (2 * k); + + /* Z1[k] = (X1[128-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */ + buf_1[k].real = data[p] * xcos2[k] - data[q] * xsin2[k]; + buf_1[k].imag = -1.0f * (data[q] * xcos2[k] + data[p] * xsin2[k]); + /* Z2[k] = (X2[128-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */ + buf_2[k].real = data[p + 1] * xcos2[k] - data[q + 1] * xsin2[k]; + buf_2[k].imag = -1.0f * ( data[q + 1] * xcos2[k] + data[p + 1] * xsin2[k]); + } + + //IFFT Bit reversed shuffling + for(i=0; i<64; i++) { + k = bit_reverse_256[i]; + if (k < i) { + swap_cmplx(&buf_1[i],&buf_1[k]); + swap_cmplx(&buf_2[i],&buf_2[k]); } + } - data_ptr = data; - delay_ptr = delay; - window_ptr = window; - -// Window and convert to real valued signal - for (i=0; i< 64; i++) { - *data_ptr++ = -buf[64+i].im * *window_ptr++ + *delay_ptr++; - *data_ptr++ = buf[64-i-1].re * *window_ptr++ + *delay_ptr++; - } + /* FFT Merge */ + for (m=0; m < 6; m++) { + two_m = (1 << m); + two_m_plus_one = (1 << (m+1)); - for(i=0; i< 64; i++) { - *data_ptr++ = -buf[i].re * *window_ptr++ + *delay_ptr++; - *data_ptr++ = buf[128-i-1].im * *window_ptr++ + *delay_ptr++; + //FIXME + if(m) + two_m = (1 << m); + else + two_m = 1; + + for(k = 0; k < two_m; k++) { + for(i = 0; i < 64; i += two_m_plus_one) { + p = k + i; + q = p + two_m; + //Do block 1 + tmp_a_r = buf_1[p].real; + tmp_a_i = buf_1[p].imag; + tmp_b_r = buf_1[q].real * w[m][k].real - buf_1[q].imag * w[m][k].imag; + tmp_b_i = buf_1[q].imag * w[m][k].real + buf_1[q].real * w[m][k].imag; + buf_1[p].real = tmp_a_r + tmp_b_r; + buf_1[p].imag = tmp_a_i + tmp_b_i; + buf_1[q].real = tmp_a_r - tmp_b_r; + buf_1[q].imag = tmp_a_i - tmp_b_i; + + //Do block 2 + tmp_a_r = buf_2[p].real; + tmp_a_i = buf_2[p].imag; + tmp_b_r = buf_2[q].real * w[m][k].real - buf_2[q].imag * w[m][k].imag; + tmp_b_i = buf_2[q].imag * w[m][k].real + buf_2[q].real * w[m][k].imag; + buf_2[p].real = tmp_a_r + tmp_b_r; + buf_2[p].imag = tmp_a_i + tmp_b_i; + buf_2[q].real = tmp_a_r - tmp_b_r; + buf_2[q].imag = tmp_a_i - tmp_b_i; + } } + } + + /* Post IFFT complex multiply */ + for( i=0; i < 64; i++) { + /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */ + tmp_a_r = buf_1[i].real; + tmp_a_i = -buf_1[i].imag; + buf_1[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); + buf_1[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); + /* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */ + tmp_a_r = buf_2[i].real; + tmp_a_i = -buf_2[i].imag; + buf_2[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); + buf_2[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); + } + + data_ptr = data; + delay_ptr = delay; + window_ptr = imdct_window; + + /* Window and convert to real valued signal */ + for(i=0; i< 64; i++) { + *data_ptr++ = 2.0f * (-buf_1[i].imag * *window_ptr++ + *delay_ptr++); + *data_ptr++ = 2.0f * ( buf_1[64-i-1].real * *window_ptr++ + *delay_ptr++); + } + + for(i=0; i< 64; i++) { + *data_ptr++ = 2.0f * (-buf_1[i].real * *window_ptr++ + *delay_ptr++); + *data_ptr++ = 2.0f * ( buf_1[64-i-1].imag * *window_ptr++ + *delay_ptr++); + } + + delay_ptr = delay; -// The trailing edge of the window goes into the delay line - delay_ptr = delay; - - for(i=0; i< 64; i++) { - *delay_ptr++ = -buf[64+i].re * *--window_ptr; - *delay_ptr++ = buf[64-i-1].im * *--window_ptr; - } + for(i=0; i< 64; i++) { + *delay_ptr++ = -buf_2[i].real * *--window_ptr; + *delay_ptr++ = buf_2[64-i-1].imag * *--window_ptr; + } - for(i=0; i<64; i++) { - *delay_ptr++ = buf[i].im * *--window_ptr; - *delay_ptr++ = -buf[128-i-1].re * *--window_ptr; - } + for(i=0; i< 64; i++) { + *delay_ptr++ = buf_2[i].imag * *--window_ptr; + *delay_ptr++ = -buf_2[64-i-1].real * *--window_ptr; + } } +void +imdct(ac3_state_t *state,audblk_t *audblk, stream_samples_t samples) { + int i; -void imdct_do_512_nol (float data[], float delay[]) -{ - int i, j; - - float tmp_a_i; - float tmp_a_r; - - float *data_ptr; - float *delay_ptr; - float *window_ptr; - - // - // 512 IMDCT with source and dest data in 'data' - // - - // Pre IFFT complex multiply plus IFFT cmplx conjugate - - for( i=0; i < 128; i++) { - /* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) */ - j = pm128[i]; - //a = (data[256-2*j-1] - data[2*j]) * (xcos1[j] + xsin1[j]); - //c = data[2*j] * xcos1[j]; - //b = data[256-2*j-1] * xsin1[j]; - //buf1[i].re = a - b + c; - - //buf1[i].im = b + c; - buf[i].re = (data[256-2*j-1] * xcos1[j]) - (data[2*j] * xsin1[j]); - buf[i].im = -1.0 * (data[2*j] * xcos1[j] + data[256-2*j-1] * xsin1[j]); - } - - fft_128p (&buf[0]); - - /* Post IFFT complex multiply plus IFFT complex conjugate*/ - for (i=0; i < 128; i++) { - /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */ - /* int j1 = i; */ - tmp_a_r = buf[i].re; - tmp_a_i = buf[i].im; - //a = (tmp_a_r - tmp_a_i) * (xcos1[j] + xsin1[j]); - //b = tmp_a_r * xsin1[j]; - //c = tmp_a_i * xcos1[j]; - //buf[j].re = a - b + c; - //buf[j].im = b + c; - buf[i].re =(tmp_a_r * xcos1[i]) + (tmp_a_i * xsin1[i]); - buf[i].im =(tmp_a_r * xsin1[i]) - (tmp_a_i * xcos1[i]); - } - - data_ptr = data; - delay_ptr = delay; - window_ptr = window; - - /* Window and convert to real valued signal, no overlap here*/ - for (i=0; i< 64; i++) { - *data_ptr++ = -buf[64+i].im * *window_ptr++; - *data_ptr++ = buf[64-i-1].re * *window_ptr++; - } - - for(i=0; i< 64; i++) { - *data_ptr++ = -buf[i].re * *window_ptr++; - *data_ptr++ = buf[128-i-1].im * *window_ptr++; - } - - /* The trailing edge of the window goes into the delay line */ - delay_ptr = delay; - - for(i=0; i< 64; i++) { - *delay_ptr++ = -buf[64+i].re * *--window_ptr; - *delay_ptr++ = buf[64-i-1].im * *--window_ptr; - } - - for(i=0; i<64; i++) { - *delay_ptr++ = buf[i].im * *--window_ptr; - *delay_ptr++ = -buf[128-i-1].re * *--window_ptr; - } -} - -void imdct (bsi_t *bsi,audblk_t *audblk, stream_samples_t samples, int16_t *s16_samples, dm_par_t* dm_par) -{ - int i; - int doable = 0; - float *center=NULL, *left, *right, *left_sur, *right_sur; - float *delay_left, *delay_right; - float *delay1_left, *delay1_right, *delay1_center, *delay1_sr, *delay1_sl; - float right_tmp, left_tmp; - void (*do_imdct)(float data[], float deley[]); - - // test if dm in frequency is doable - if (!(doable = audblk->blksw[0])) - do_imdct = imdct_do_512; +#ifdef LIBAC3_MLIB + for(i=0; i<state->nfchans;i++) { + if(audblk->blksw[i]) + imdct_do_256_mlib(samples[i],delay[i]); else - do_imdct = imdct_do_256; - - // downmix in the frequency domain if all the channels - // use the same imdct - for (i=0; i < bsi->nfchans; i++) { - if (doable != audblk->blksw[i]) { - do_imdct = NULL; - break; - } - } + imdct_do_512_mlib(samples[i],delay[i]); + } + return; +#endif - if (do_imdct) { - //dowmix first and imdct - switch(bsi->acmod) { - case 7: // 3/2 - downmix_3f_2r_to_2ch (samples[0], dm_par); - break; - case 6: // 2/2 - downmix_2f_2r_to_2ch (samples[0], dm_par); - break; - case 5: // 3/1 - downmix_3f_1r_to_2ch (samples[0], dm_par); - break; - case 4: // 2/1 - downmix_2f_1r_to_2ch (samples[0], dm_par); - break; - case 3: // 3/0 - downmix_3f_0r_to_2ch (samples[0], dm_par); - break; - case 2: - break; - default: // 1/0 - if (bsi->acmod == 1) - center = samples[0]; - else if (bsi->acmod == 0) - center = samples[ac3_config.dual_mono_ch_sel]; - do_imdct(center, delay[0]); // no downmix - - stream_sample_1ch_to_s16 (s16_samples, center); - - return; - //goto done; - break; - } - - do_imdct (samples[0], delay[0]); - do_imdct (samples[1], delay[1]); - stream_sample_2ch_to_s16(s16_samples, samples[0], samples[1]); - - } else { //imdct and then dowmix - // delay and samples should be saved and mixed - //fprintf(stderr, "time domain downmix\n"); - for (i=0; i<bsi->nfchans; i++) { - if (audblk->blksw[i]) - imdct_do_256_nol (samples[i],delay1[i]); - else - imdct_do_512_nol (samples[i],delay1[i]); - } - - // mix the sample, overlap - switch(bsi->acmod) { - case 7: // 3/2 - left = samples[0]; - center = samples[1]; - right = samples[2]; - left_sur = samples[3]; - right_sur = samples[4]; - delay_left = delay[0]; - delay_right = delay[1]; - delay1_left = delay1[0]; - delay1_center = delay1[1]; - delay1_right = delay1[2]; - delay1_sl = delay1[3]; - delay1_sr = delay1[4]; - - for (i = 0; i < 256; i++) { - left_tmp = dm_par->unit * *left++ + dm_par->clev * *center + dm_par->slev * *left_sur++; - right_tmp= dm_par->unit * *right++ + dm_par->clev * *center++ + dm_par->slev * *right_sur++; - *s16_samples++ = (int16_t)(left_tmp + *delay_left); - *s16_samples++ = (int16_t)(right_tmp + *delay_right); - *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->clev * *delay1_center + dm_par->slev * *delay1_sl++; - *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->clev * *center++ + dm_par->slev * *delay1_sr++; - } - break; - case 6: // 2/2 - left = samples[0]; - right = samples[1]; - left_sur = samples[2]; - right_sur = samples[3]; - delay_left = delay[0]; - delay_right = delay[1]; - delay1_left = delay1[0]; - delay1_right = delay1[1]; - delay1_sl = delay1[2]; - delay1_sr = delay1[3]; - - for (i = 0; i < 256; i++) { - left_tmp = dm_par->unit * *left++ + dm_par->slev * *left_sur++; - right_tmp= dm_par->unit * *right++ + dm_par->slev * *right_sur++; - *s16_samples++ = (int16_t)(left_tmp + *delay_left); - *s16_samples++ = (int16_t)(right_tmp + *delay_right); - *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->slev * *delay1_sl++; - *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->slev * *delay1_sr++; - } - break; - case 5: // 3/1 - left = samples[0]; - center = samples[1]; - right = samples[2]; - right_sur = samples[3]; - delay_left = delay[0]; - delay_right = delay[1]; - delay1_left = delay1[0]; - delay1_center = delay1[1]; - delay1_right = delay1[2]; - delay1_sl = delay1[3]; - - for (i = 0; i < 256; i++) { - left_tmp = dm_par->unit * *left++ + dm_par->clev * *center - dm_par->slev * *right_sur; - right_tmp= dm_par->unit * *right++ + dm_par->clev * *center++ + dm_par->slev * *right_sur++; - *s16_samples++ = (int16_t)(left_tmp + *delay_left); - *s16_samples++ = (int16_t)(right_tmp + *delay_right); - *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->clev * *delay1_center + dm_par->slev * *delay1_sl; - *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->clev * *center++ + dm_par->slev * *delay1_sl++; - } - break; - case 4: // 2/1 - left = samples[0]; - right = samples[1]; - right_sur = samples[2]; - delay_left = delay[0]; - delay_right = delay[1]; - delay1_left = delay1[0]; - delay1_right = delay1[1]; - delay1_sl = delay1[2]; - - for (i = 0; i < 256; i++) { - left_tmp = dm_par->unit * *left++ - dm_par->slev * *right_sur; - right_tmp= dm_par->unit * *right++ + dm_par->slev * *right_sur++; - *s16_samples++ = (int16_t)(left_tmp + *delay_left); - *s16_samples++ = (int16_t)(right_tmp + *delay_right); - *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->slev * *delay1_sl; - *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->slev * *delay1_sl++; - } - break; - case 3: // 3/0 - left = samples[0]; - center = samples[1]; - right = samples[2]; - delay_left = delay[0]; - delay_right = delay[1]; - delay1_left = delay1[0]; - delay1_center = delay1[1]; - delay1_right = delay1[2]; - - for (i = 0; i < 256; i++) { - left_tmp = dm_par->unit * *left++ + dm_par->clev * *center; - right_tmp= dm_par->unit * *right++ + dm_par->clev * *center++; - *s16_samples++ = (int16_t)(left_tmp + *delay_left); - *s16_samples++ = (int16_t)(right_tmp + *delay_right); - *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->clev * *delay1_center; - *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->clev * *center++; - } - break; - case 2: // copy to output - for (i = 0; i < 256; i++) { - *s16_samples++ = (int16_t)samples[0][i]; - *s16_samples++ = (int16_t)samples[1][i]; - } - break; - } - } + for(i=0; i<state->nfchans;i++) { + if(audblk->blksw[i]) + imdct_do_256(samples[i],delay[i]); + else + imdct_do_512(samples[i],delay[i]); + } + + //XXX We don't bother with the IMDCT for the LFE as it's currently + //unused. + //if (state->lfeon) + // imdct_do_512(coeffs->lfe,samples->channel[5],delay[5]); + // } - |