summaryrefslogtreecommitdiff
path: root/src/libdts/decoder.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/libdts/decoder.c')
-rw-r--r--src/libdts/decoder.c851
1 files changed, 0 insertions, 851 deletions
diff --git a/src/libdts/decoder.c b/src/libdts/decoder.c
deleted file mode 100644
index 6023366b4..000000000
--- a/src/libdts/decoder.c
+++ /dev/null
@@ -1,851 +0,0 @@
-/*
- * Copyright (C) 2000-2003 the xine project
- *
- * This file is part of xine, a unix video player.
- *
- * xine is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * xine is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
- *
- * $Id: decoder.c,v 1.2 2003/12/07 15:34:30 f1rmb Exp $
- *
- * 04-08-2003 DTS software decode (C) James Courtier-Dutton
- *
- */
-
-#ifndef __sun
-/* required for swab() */
-#define _XOPEN_SOURCE 500
-#endif
-
-#include <stdlib.h>
-#include <unistd.h>
-#include <string.h>
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#include <netinet/in.h> /* ntohs */
-#include <assert.h>
-
-#include "xine_internal.h"
-#include "xineutils.h"
-#include "audio_out.h"
-#include "buffer.h"
-
-#include "dts_debug.h"
-#include "decoder.h"
-#include "decoder_internal.h"
-#include "print_info.h"
-
-#ifdef ENABLE_DTS_PARSE
-
-typedef struct {
- uint8_t *start;
- uint32_t byte_position;
- uint32_t bit_position;
- uint8_t byte;
-} getbits_state_t;
-
-static float AdjTable[] = {
- 1.0000,
- 1.1250,
- 1.2500,
- 1.4375
-};
-
-#include "huffman_tables.h"
-
-static int32_t getbits_init(getbits_state_t *state, uint8_t *start) {
- if ((state == NULL) || (start == NULL)) return -1;
- state->start = start;
- state->bit_position = 0;
- state->byte_position = 0;
- state->byte = start[0];
- return 0;
-}
-/* Non-optimized getbits. */
-/* This can easily be optimized for particular platforms. */
-static uint32_t getbits(getbits_state_t *state, uint32_t number_of_bits) {
- uint32_t result=0;
- uint8_t byte=0;
- if (number_of_bits > 32) {
- printf("Number of bits > 32 in getbits\n");
- abort();
- }
-
- if ((state->bit_position) > 0) { /* Last getbits left us in the middle of a byte. */
- if (number_of_bits > (8-state->bit_position)) { /* this getbits will span 2 or more bytes. */
- byte = state->byte;
- byte = byte >> (state->bit_position);
- result = byte;
- number_of_bits -= (8-state->bit_position);
- state->bit_position = 0;
- state->byte_position++;
- state->byte = state->start[state->byte_position];
- } else {
- byte=state->byte;
- state->byte = state->byte << number_of_bits;
- byte = byte >> (8 - number_of_bits);
- result = byte;
- state->bit_position += number_of_bits; /* Here it is impossible for bit_position > 8 */
- if (state->bit_position == 8) {
- state->bit_position = 0;
- state->byte_position++;
- state->byte = state->start[state->byte_position];
- }
- number_of_bits = 0;
- }
- }
- if ((state->bit_position) == 0)
- while (number_of_bits > 7) {
- result = (result << 8) + state->byte;
- state->byte_position++;
- state->byte = state->start[state->byte_position];
- number_of_bits -= 8;
- }
- if (number_of_bits > 0) { /* number_of_bits < 8 */
- byte = state->byte;
- state->byte = state->byte << number_of_bits;
- state->bit_position += number_of_bits; /* Here it is impossible for bit_position > 7 */
- if (state->bit_position > 7) printf ("bit_pos2 too large: %d\n",state->bit_position);
- byte = byte >> (8 - number_of_bits);
- result = (result << number_of_bits) + byte;
- number_of_bits = 0;
- }
-
- return result;
-}
-
-static int32_t huff_lookup(getbits_state_t *state, int32_t HuffTable[][2] ) {
- int32_t n=1;
- int32_t bit;
-
- {
- bit = getbits(state, 1);
- n = HuffTable[n][bit];
- } while (n > 0);
- /* printf("returning %d\n", n + HuffTable[0][0]); */
- return n + HuffTable[0][0];
-}
-
-
-static int32_t qscales(int32_t nQSelect, getbits_state_t *state, int32_t *nScale) {
-/* FIXME: IMPLEMENT */
-return 0;
-}
-
-/* Used by dts.wav files, only 14 bits of the 16 possible are used in the CD. */
-static void squash14to16(uint8_t *buf_from, uint8_t *buf_to, uint32_t number_of_bytes) {
- int32_t from;
- int32_t to=0;
- uint16_t sample1;
- uint16_t sample2;
- uint16_t sample3;
- uint16_t sample4;
- uint16_t sample16bit;
- /* This should convert the 14bit sync word into a 16bit one. */
- printf("libdts: squashing %d bytes.\n", number_of_bytes);
- for(from=0;from<number_of_bytes;from+=8) {
- sample1 = buf_from[from+0] | buf_from[from+1] << 8;
- sample1 = (sample1 & 0x1fff) | ((sample1 & 0x8000) >> 2);
- sample2 = buf_from[from+2] | buf_from[from+3] << 8;
- sample2 = (sample2 & 0x1fff) | ((sample2 & 0x8000) >> 2);
- sample16bit = (sample1 << 2) | (sample2 >> 12);
- buf_to[to++] = sample16bit >> 8; /* Add some swabbing in as well */
- buf_to[to++] = sample16bit & 0xff;
- sample3 = buf_from[from+4] | buf_from[from+5] << 8;
- sample3 = (sample3 & 0x1fff) | ((sample3 & 0x8000) >> 2);
- sample16bit = ((sample2 & 0xfff) << 4) | (sample3 >> 10);
- buf_to[to++] = sample16bit >> 8; /* Add some swabbing in as well */
- buf_to[to++] = sample16bit & 0xff;
- sample4 = buf_from[from+6] | buf_from[from+7] << 8;
- sample4 = (sample4 & 0x1fff) | ((sample4 & 0x8000) >> 2);
- sample16bit = ((sample3 & 0x3ff) << 6) | (sample4 >> 8);
- buf_to[to++] = sample16bit >> 8; /* Add some swabbing in as well */
- buf_to[to++] = sample16bit & 0xff;
- buf_to[to++] = sample4 & 0xff;
- }
-
-}
-
-#if 0
-/* FIXME: Make this re-entrant */
-static void InverseADPCM(void) {
-/*
- * NumADPCMCoeff =4, the number of ADPCM coefficients.
- * raADPCMcoeff[] are the ADPCM coefficients extracted
- * from the bit stream.
- * raSample[NumADPCMCoeff], ..., raSample[-1] are the
- * history from last subframe or subsubframe. It must
- * updated each time before reverse ADPCM is run for a
- * block of samples for each subband.
- */
-for (m=0; m<nNumSample; m++)
-for (n=0; n<NumADPCMCoeff; n++)
-raSample[m] += raADPCMcoeff[n]*raSample[m-n-1];
-}
-#endif
-
-
-void dts_parse_data (dts_decoder_t *this, buf_element_t *buf) {
- uint8_t *data_in = (uint8_t *)buf->content;
- getbits_state_t state;
- decoder_data_t decoder_data;
- decoder_data.sync_type=0;
- decoder_data.header_crc_check_bytes=0;
-
- int32_t n, ch, i;
- printf("libdts: buf->size = %d\n", buf->size);
- printf("libdts: parse1: ");
- for(i=0;i<16;i++) {
- printf("%02x ",data_in[i]);
- }
- printf("\n");
-
- if ((data_in[0] == 0x7f) &&
- (data_in[1] == 0xfe) &&
- (data_in[2] == 0x80) &&
- (data_in[3] == 0x01)) {
- decoder_data.sync_type=1;
- }
- if (data_in[0] == 0xff &&
- data_in[1] == 0x1f &&
- data_in[2] == 0x00 &&
- data_in[3] == 0xe8 &&
- data_in[4] == 0xf1 && /* DTS standard document was wrong here! */
- data_in[5] == 0x07 ) { /* DTS standard document was wrong here! */
- squash14to16(&data_in[0], &data_in[0], buf->size);
- buf->size = buf->size - (buf->size / 8); /* size = size * 7 / 8; */
- decoder_data.sync_type=2;
- }
- if (decoder_data.sync_type == 0) {
- printf("libdts: DTS Sync bad\n");
- return;
- }
- printf("libdts: DTS Sync OK. type=%d\n", decoder_data.sync_type);
- printf("libdts: parse2: ");
- for(i=0;i<16;i++) {
- printf("%02x ",data_in[i]);
- }
- printf("\n");
-
- getbits_init(&state, &data_in[4]);
-
- /* B.2 Unpack Frame Header Routine */
- /* Frame Type V FTYPE 1 bit */
- decoder_data.frame_type = getbits(&state, 1); /* 1: Normal Frame, 2:Termination Frame */
- /* Deficit Sample Count V SHORT 5 bits */
- decoder_data.deficit_sample_count = getbits(&state, 5);
- /* CRC Present Flag V CPF 1 bit */
- decoder_data.crc_present_flag = getbits(&state, 1);
- /* Number of PCM Sample Blocks V NBLKS 7 bits */
- decoder_data.number_of_pcm_blocks = getbits(&state, 7);
- /* Primary Frame Byte Size V FSIZE 14 bits */
- decoder_data.primary_frame_byte_size = getbits(&state, 14);
- /* Audio Channel Arrangement ACC AMODE 6 bits */
- decoder_data.audio_channel_arrangement = getbits(&state, 6);
- /* Core Audio Sampling Frequency ACC SFREQ 4 bits */
- decoder_data.core_audio_sampling_frequency = getbits(&state, 4);
- /* Transmission Bit Rate ACC RATE 5 bits */
- decoder_data.transmission_bit_rate = getbits(&state, 5);
- /* Embedded Down Mix Enabled V MIX 1 bit */
- decoder_data.embedded_down_mix_enabled = getbits(&state, 1);
- /* Embedded Dynamic Range Flag V DYNF 1 bit */
- decoder_data.embedded_dynamic_range_flag = getbits(&state, 1);
- /* Embedded Time Stamp Flag V TIMEF 1 bit */
- decoder_data.embedded_time_stamp_flag = getbits(&state, 1);
- /* Auxiliary Data Flag V AUXF 1 bit */
- decoder_data.auxiliary_data_flag = getbits(&state, 1);
- /* HDCD NV HDCD 1 bits */
- decoder_data.hdcd = getbits(&state, 1);
- /* Extension Audio Descriptor Flag ACC EXT_AUDIO_ID 3 bits */
- decoder_data.extension_audio_descriptor_flag = getbits(&state, 3);
- /* Extended Coding Flag ACC EXT_AUDIO 1 bit */
- decoder_data.extended_coding_flag = getbits(&state, 1);
- /* Audio Sync Word Insertion Flag ACC ASPF 1 bit */
- decoder_data.audio_sync_word_insertion_flag = getbits(&state, 1);
- /* Low Frequency Effects Flag V LFF 2 bits */
- decoder_data.low_frequency_effects_flag = getbits(&state, 2);
- /* Predictor History Flag Switch V HFLAG 1 bit */
- decoder_data.predictor_history_flag_switch = getbits(&state, 1);
- /* Header CRC Check Bytes V HCRC 16 bits */
- if (decoder_data.crc_present_flag == 1)
- decoder_data.header_crc_check_bytes = getbits(&state, 16);
- /* Multirate Interpolator Switch NV FILTS 1 bit */
- decoder_data.multirate_interpolator_switch = getbits(&state, 1);
- /* Encoder Software Revision ACC/NV VERNUM 4 bits */
- decoder_data.encoder_software_revision = getbits(&state, 4);
- /* Copy History NV CHIST 2 bits */
- decoder_data.copy_history = getbits(&state, 2);
- /* Source PCM Resolution ACC/NV PCMR 3 bits */
- decoder_data.source_pcm_resolution = getbits(&state, 3);
- /* Front Sum/Difference Flag V SUMF 1 bit */
- decoder_data.front_sum_difference_flag = getbits(&state, 1);
- /* Surrounds Sum/Difference Flag V SUMS 1 bit */
- decoder_data.surrounds_sum_difference_flag = getbits(&state, 1);
- /* Dialog Normalisation Parameter/Unspecified V DIALNORM/UNSPEC 4 bits */
- switch (decoder_data.encoder_software_revision) {
- case 6:
- decoder_data.dialog_normalisation_unspecified = 0;
- decoder_data.dialog_normalisation_parameter = getbits(&state, 4);
- decoder_data.dialog_normalisation_gain = - (16+decoder_data.dialog_normalisation_parameter);
- break;
- case 7:
- decoder_data.dialog_normalisation_unspecified = 0;
- decoder_data.dialog_normalisation_parameter = getbits(&state, 4);
- decoder_data.dialog_normalisation_gain = - (decoder_data.dialog_normalisation_parameter);
- break;
- default:
- decoder_data.dialog_normalisation_unspecified = getbits(&state, 4);
- decoder_data.dialog_normalisation_gain = decoder_data.dialog_normalisation_parameter = 0;
- break;
- }
-
- /* B.3 Audio Decoding */
- /* B.3.1 Primary Audio Coding Header */
-
- /* Number of Subframes V SUBFS 4 bits */
- decoder_data.number_of_subframes = getbits(&state, 4) + 1 ;
- /* Number of Primary Audio Channels V PCHS 3 bits */
- decoder_data.number_of_primary_audio_channels = getbits(&state, 3) + 1 ;
- /* Subband Activity Count V SUBS 5 bits per channel */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- decoder_data.subband_activity_count[ch] = getbits(&state, 5) + 2 ;
- }
- /* High Frequency VQ Start Subband V VQSUB 5 bits per channel */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- decoder_data.high_frequency_VQ_start_subband[ch] = getbits(&state, 5) + 1 ;
- }
- /* Joint Intensity Coding Index V JOINX 3 bits per channel */
- for (n=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- decoder_data.joint_intensity_coding_index[ch] = getbits(&state, 3) ;
- }
- /* Transient Mode Code Book V THUFF 2 bits per channel */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- decoder_data.transient_mode_code_book[ch] = getbits(&state, 2) ;
- }
- /* Scale Factor Code Book V SHUFF 3 bits per channel */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- decoder_data.scales_factor_code_book[ch] = getbits(&state, 3) ;
- }
- /* Bit Allocation Quantizer Select BHUFF V 3 bits per channel */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- decoder_data.bit_allocation_quantizer_select[ch] = getbits(&state, 3) ;
- }
- /* Quantization Index Codebook Select V SEL variable bits */
- /* ABITS=1: */
- n=0;
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++)
- decoder_data.quantization_index_codebook_select[ch][n] = getbits(&state, 1);
- /* ABITS = 2 to 5: */
- for (n=1; n<5; n++)
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++)
- decoder_data.quantization_index_codebook_select[ch][n] = getbits(&state, 2);
- /* ABITS = 6 to 10: */
- for (n=5; n<10; n++)
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++)
- decoder_data.quantization_index_codebook_select[ch][n] = getbits(&state, 3);
- /* ABITS = 11 to 26: */
- for (n=10; n<26; n++)
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++)
- decoder_data.quantization_index_codebook_select[ch][n] = 0; /* Not transmitted, set to zero. */
-
- /* Scale Factor Adjustment Index V ADJ 2 bits per occasion */
- /* ABITS = 1: */
- n = 0;
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- int32_t adj;
- if ( decoder_data.quantization_index_codebook_select[ch][n] == 0 ) { /* Transmitted only if quantization_index_codebook_select=0 (Huffman code used) */
- /* Extract ADJ index */
- adj = getbits(&state, 2);
- /* Look up ADJ table */
- decoder_data.scale_factor_adjustment_index[ch][n] = AdjTable[adj];
- }
- }
- /* ABITS = 2 to 5: */
- for (n=1; n<5; n++){
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++){
- int32_t adj;
- if ( decoder_data.quantization_index_codebook_select[ch][n] < 3 ) { /* Transmitted only when quantization_index_codebook_select<3 */
- /* Extract ADJ index */
- adj = getbits(&state, 2);
- /* Look up ADJ table */
- decoder_data.scale_factor_adjustment_index[ch][n] = AdjTable[adj];
- }
- }
- }
- /* ABITS = 6 to 10: */
- for (n=5; n<10; n++){
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++){
- int32_t adj;
- if ( decoder_data.quantization_index_codebook_select[ch][n] < 7 ) { /* Transmitted only when quantization_index_codebook_select<7 */
- /* Extract ADJ index */
- adj = getbits(&state, 2);
- /* Look up ADJ table */
- decoder_data.scale_factor_adjustment_index[ch][n] = AdjTable[adj];
- }
- }
- }
-
- if (decoder_data.crc_present_flag == 1) { /* Present only if CPF=1. */
- decoder_data.audio_header_crc_check_word = getbits(&state, 16);
- }
-
-/* B.3.2 Unpack Subframes */
-/* B.3.2.1 Primary Audio Coding Side Information */
-
-/* Subsubframe Count V SSC 2 bit */
- decoder_data.subsubframe_count = getbits(&state, 2) + 1;
-/* Partial Subsubframe Sample Count V PSC 3 bit */
- decoder_data.partial_subsubframe_sample_count = getbits(&state, 3);
-/* Prediction Mode V PMODE 1 bit per subband */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- for (n=0; n<decoder_data.subband_activity_count[ch]; n++) {
- decoder_data.prediction_mode[ch][n] = getbits(&state, 1);
- }
- }
-
-/* Prediction Coefficients VQ Address V PVQ 12 bits per occurrence */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- for (n=0; n<decoder_data.subband_activity_count[ch]; n++) {
- decoder_data.PVQIndex[ch][n] = 0;
- if ( decoder_data.prediction_mode[ch][n]>0 ) { /* Transmitted only when ADPCM active */
- /* Extract the VQindex */
- decoder_data.nVQIndex = getbits(&state,12);
- /* Look up the VQ table for prediction coefficients. */
- /* FIXME: How to implement LookUp? */
- decoder_data.PVQIndex[ch][n] = decoder_data.nVQIndex;
- /* FIXME: We don't have the ADPCMCoeff table. */
- /* ADPCMCoeffVQ.LookUp(nVQIndex, PVQ[ch][n]);*/ /* 4 coefficients FIXME: Need to work out what this does. */
- }
- }
- }
-
-
- /* Bit Allocation Index V ABITS variable bits */
- /* FIXME: No getbits here InverseQ does the getbits */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- /* Bit Allocation Quantizer Select tells which codebook was used */
- decoder_data.nQSelect = decoder_data.bit_allocation_quantizer_select[ch];
- /* Use this codebook to decode the bit stream for bit_allocation_index[ch][n] */
- for (n=0; n<decoder_data.high_frequency_VQ_start_subband[ch]; n++) {
- /* Not for VQ encoded subbands. */
- /* FIXME: What is Inverse Quantization(InverseQ) ? */
- /* This basically selects a huffman table number nQSelect, */
- /* and uses it to read a variable amount of bits and does a huffman search to find the value. */
- /* FIXME: Need to implement InverseQ, so we can uncomment this line */
- if (decoder_data.nQSelect == 6) {
- decoder_data.bit_allocation_index[ch][n] = getbits(&state,5);
- } else {
- printf("bit_alloc parse failed, (nQSelect != 6) not implemented yet.");
- abort();
- }
-
- /*QABITS.ppQ[nQSelect]->InverseQ(&state, bit_allocation_index[ch][n]); */
- }
- }
-
- /* Transition Mode V TMODE variable bits */
-
- /* Always assume no transition unless told */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++){
- for (n=0; n<decoder_data.subband_activity_count[ch]; n++) {
- decoder_data.transition_mode[ch][n] = 0;
- }
- /* Decode transition_mode[ch][n] */
- if ( decoder_data.subsubframe_count>1 ) {
- /* Transient possible only if more than one subsubframe. */
- for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
- /* transition_mode[ch][n] is encoded by a codebook indexed by transient_mode_code_book[ch] */
- decoder_data.nQSelect = decoder_data.transient_mode_code_book[ch];
- for (n=0; n<decoder_data.high_frequency_VQ_start_subband[ch]; n++) {
- /* No VQ encoded subbands */
- if ( decoder_data.bit_allocation_index[ch][n] >0 ) {
- /* Present only if bits allocated */
- /* Use codebook nQSelect to decode transition_mode from the bit stream */
- /* FIXME: What is Inverse Quantization(InverseQ) ? */
- if (decoder_data.nQSelect == 0) {
- decoder_data.transition_mode[ch][n] = huff_lookup(&state, HuffA4);
- } else {
- printf("transition mod parse failed, (nQSelect != 0) not implemented yet.");
- abort();
- }
-
- /* QTMODE.ppQ[nQSelect]->InverseQ(&state,transition_mode[ch][n]); */
- } else {
- decoder_data.transition_mode[ch][n] = 0;
- }
- }
- }
- }
- }
-
-/* WORKING ON THIS BIT */
-
-
-#if 0
- /* Scale Factors V SCALES variable bits */
- for (ch=0; ch<number_of_primary_audio_channels; ch++) {
- /* Clear scale_factors */
- for (n=0; n<subband_activity_count[ch]; n++) {
- scale_factors[ch][n][0] = 0;
- scale_factors[ch][n][1] = 0;
- }
- /* scales_factor_code_book indicates which codebook was used to encode scale_factors */
- nQSelect = scales_factor_code_book[ch];
- /* Select the root square table (scale_factors were nonlinearly */
- /* quantized). */
- /* Assume nQSelect != 6 */
- /* So RMS is always 6 bit. */
- if ( nQSelect == 6 ) {
- /* pScaleTable = &RMS7Bit;*/ /* 7-bit root square table */
- } else {
- /* pScaleTable = &RMS6Bit;*/ /* 6-bit root square table */
- }
- /*
- * Clear accumulation (if Huffman code was used, the difference
- * of scale_factors was encoded).
- */
- nScaleSum = 0;
- /*
- * Extract scale_factors for Subbands up to high_frequency_VQ_start_subband[ch]
- */
- for (n=0; n<high_frequency_VQ_start_subband[ch]; n++) {
- if ( bit_allocation_index[ch][n] >0 ) { /* Not present if no bit allocated */
- /*
- * First scale factor
- */
- /* Use the (Huffman) code indicated by nQSelect to decode */
- /* the quantization index of scale_factors from the bit stream */
- /* FIXME: What is Inverse Quantization(InverseQ) ? */
- qscales(nQSelect, &state, &nScale);
- /* QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale); */
- /* Take care of difference encoding */
- if ( nQSelect < 5 ) { /* Huffman encoded, nScale is the difference */
- nScaleSum += nScale; /* of the quantization indexes of scale_factors. */
- } else { /* Otherwise, nScale is the quantization */
- nScaleSum = nScale; /* level of scale_factors. */
- }
- /* Look up scale_factors from the root square table */
- /* FIXME: How to implement LookUp? */
- pScaleTable->LookUp(nScaleSum, scale_factors[ch][n][0])
- /*
- * Two scale factors transmitted if there is a transient
- */
- if (transition_mode[ch][n]>0) {
- /* Use the (Huffman) code indicated by nQSelect to decode */
- /* the quantization index of scale_factors from the bit stream */
- /* FIXME: What is Inverse Quantization(InverseQ) ? */
- QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
- /* Take care of difference encoding */
- if ( nQSelect < 5 ) /* Huffman encoded, nScale is the difference */
- nScaleSum += nScale; /* of the quantization indexes of scale_factors. */
- else /* Otherwise, nScale is the quantization */
- nScaleSum = nScale; /* level of scale_factors. */
- /* Look up scale_factors from the root square table */
- /* FIXME: How to implement LookUp? */
- pScaleTable->LookUp(nScaleSum, scale_factors[ch][n][1]);
- }
- }
- }
- /*
- * High frequency VQ subbands
- */
- for (n=high_frequency_VQ_start_subband[ch]; n<subband_activity_count[ch]; n++) {
- /* Use the code book indicated by nQSelect to decode */
- /* the quantization index of scale_factors from the bit stream */
- /* FIXME: What is Inverse Quantization(InverseQ) ? */
- QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
- /* Take care of difference encoding */
- if ( nQSelect < 5 ) /* Huffman encoded, nScale is the difference */
- nScaleSum += nScale; /* of the quantization indexes of scale_factors. */
- else /* Otherwise, nScale is the quantization */
- nScaleSum = nScale; /* level of scale_factors. */
- /* Look up scale_factors from the root square table */
- /* FIXME: How to implement LookUp? */
- pScaleTable->LookUp(nScaleSum, scale_factors[ch][n][0])
- }
- }
-
-/* #if 0 */
-/* FIXME: ALL CODE BELOW HERE does not compile yet. */
-
-
- /* Joint Subband Scale Factor Codebook Select V JOIN SHUFF 3 bits per channel */
- for (ch=0; ch<number_of_primary_audio_channels; ch++)
- if (joint_intensity_coding_index[ch]>0 ) /* Transmitted only if joint subband coding enabled. */
- joint_subband_scale_factor_codebook_select[ch] = getbits(&state,3);
-
- /* Scale Factors for Joint Subband Coding V JOIN SCALES variable bits */
- int nSourceCh;
- for (ch=0; ch<number_of_primary_audio_channels; ch++) {
- if (joint_intensity_coding_index[ch]>0 ) { /* Only if joint subband coding enabled. */
- nSourceCh = joint_intensity_coding_index[ch]-1; /* Get source channel. joint_intensity_coding_index counts */
- /* channels as 1,2,3,4,5, so minus 1. */
- nQSelect = joint_subband_scale_factor_codebook_select[ch]; /* Select code book. */
- for (n=subband_activity_count[ch]; n<subband_activity_count[nSourceCh]; n++) {
- /* Use the code book indicated by nQSelect to decode */
- /* the quantization index of scale_factors_for_joint_subband_coding */
- /* FIXME: What is Inverse Quantization(InverseQ) ? */
- QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nJScale);
- /* Bias by 64 */
- nJScale = nJScale + 64;
- /* Look up scale_factors_for_joint_subband_coding from the joint scale table */
- /* FIXME: How to implement LookUp? */
- JScaleTbl.LookUp(nJScale, scale_factors_for_joint_subband_coding[ch][n]);
- }
- }
- }
-
- /* Stereo Down-Mix Coefficients NV DOWN 7 bits per coefficient */
- if ( (MIX!=0) && (number_of_primary_audio_channels>2) ) {
- /* Extract down mix indexes */
- for (ch=0; ch<number_of_primary_audio_channels; ch++) { /* Each primary channel */
- stereo_down_mix_coefficients[ch][0] = getbits(&state,7);
- stereo_down_mix_coefficients[ch][1] = getbits(&state,7);
- }
- }
- /* Look up down mix coefficients */
- for (n=0; n<subband_activity_count; n++) { /* Each active subbands */
- LeftChannel = 0;
- RightChannel = 0;
- for (ch=0; ch<number_of_primary_audio_channels; ch++) { /* Each primary channels */
- LeftChannel += stereo_down_mix_coefficients[ch][0]*Sample[Ch];
- RightChannel += stereo_down_mix_coefficients[ch][1]*Sample[Ch];
- }
- }
- /* Down mixing may also be performed on the PCM samples after the filterbank reconstruction. */
-
- /* Dynamic Range Coefficient NV RANGE 8 bits */
- if ( embedded_dynamic_range_flag != 0 ) {
- nIndex = getbits(&state,8);
- /* FIXME: How to implement LookUp? */
- RANGEtbl.LookUp(nIndex,dynamic_range_coefficient);
- /* The following range adjustment is to be performed */
- /* after QMF reconstruction */
- for (ch=0; ch<number_of_primary_audio_channels; ch++)
- for (n=0; n<nNumSamples; n++)
- AudioCh[ch].ReconstructedSamples[n] *= dynamic_range_coefficient;
- }
-
- /* Side Information CRC Check Word V SICRC 16 bits */
- if ( CPF==1 ) /* Present only if CPF=1. */
- SICRC = getbits(&state,16);
-
- /* B.3.3 Primary Audio Data Arrays */
-
- /* VQ Encoded High Frequency Subbands NV HFREQ 10 bits per applicable subbands */
- for (ch=0; ch<number_of_primary_audio_channels; ch++) {
- for (n=high_frequency_VQ_start_subband[ch]; n<subband_activity_count[ch]; n++) {
- /* Extract the VQ address from the bit stream */
- nVQIndex = getbits(&state,10);
- /* Look up the VQ code book for 32 subband samples. */
- /* FIXME: How to implement LookUp? */
- HFreqVQ.LookUp(nVQIndex, VQ_encoded_high_frequency_subbands[ch][n])
- /* Scale and take the samples */
- Scale = (real)scale_factors[ch][n][0]; /* Get the scale factor */
- for (m=0; m<subsubframe_count*8; m++, nSample++) {
- aPrmCh[ch].aSubband[n].raSample[m] = rScale*VQ_encoded_high_frequency_subbands[ch][n][m];
- }
- }
- }
-
- /* Low Frequency Effect Data V LFE 8 bits per sample */
- if ( low_frequency_effects_flag>0 ) { /* Present only if flagged by low_frequency_effects_flag */
- /* extract low_frequency_effect_data samples from the bit stream */
- for (n=0; n<2*low_frequency_effects_flag*subsubframe_count; n++) {
- low_frequency_effect_data[n] = (signed int)(signed char)getbits(&state,8);
- /* Use char to get sign extension because it */
- /* is 8-bit 2's compliment. */
- /* Extract scale factor index from the bit stream */
- }
- LFEscaleIndex = getbits(&state,8);
- /* Look up the 7-bit root square quantization table */
- /* FIXME: How to implement LookUp? */
- pLFE_RMS->LookUp(LFEscaleIndex,nScale);
- /* Account for the quantizer step size which is 0.035 */
- rScale = nScale*0.035;
- /* Get the actual low_frequency_effect_data samples */
- for (n=0; n<2*low_frequency_effects_flag*subsubframe_count; n++) {
- LFECh.rLFE[k] = low_frequency_effect_data[n]*rScale;
- }
- /* Interpolation low_frequency_effect_data samples */
- LFECh.InterpolationFIR(low_frequency_effects_flag); /* low_frequency_effects_flag indicates which */
- /* interpolation filter to use */
- }
-
- /* Audio Data V AUDIO variable bits */
- /*
- * Select quantization step size table
- */
- if ( RATE == 0x1f ) {
- pStepSizeTable = &StepSizeLossLess; /* Lossless quantization */
- } else {
- pStepSizeTable = &StepSizeLossy; /* Lossy */
- }
- /*
- * Unpack the subband samples
- */
- for (nSubSubFrame=0; nSubSubFrame<subsubframe_count; nSubSubFrame++) {
- for (ch=0; ch<number_of_primary_audio_channels; ch++) {
- for (n=0; n<high_frequency_VQ_start_subband[ch]; n++) { /* Not high frequency VQ subbands */
- /*
- * Select the mid-tread linear quantizer
- */
- nABITS = bit_allocation_index[ch][n]; /* Select the mid-tread quantizer */
- pCQGroup = &pCQGroupAUDIO[nABITS-1];/* Select the group of */
- /* code books corresponding to the */
- /* the mid-tread linear quantizer. */
- nNumQ = pCQGroupAUDIO[nABITS-1].nNumQ-1;/* Number of code */
- /* books in this group */
- /*
- * Determine quantization index code book and its type
- */
- /* Select quantization index code book */
- nSEL = quantization_index_codebook_select[ch][nABITS-1];
- /* Determine its type */
- nQType = 1; /* Assume Huffman type by default */
- if ( nSEL==nNumQ ) { /* Not Huffman type */
- if ( nABITS<=7 ) {
- nQType = 3; /* Block code */
- } else {
- nQType = 2; /* No further encoding */
- }
- }
- if ( nABITS==0 ) { /* No bits allocated */
- nQType = 0;
- }
- /*
- * Extract bits from the bit stream
- * This retrieves 8 AUDIO values
- */
- switch ( nQType ) {
- case 0: /* No bits allocated */
- for (m=0; m<8; m++)
- AUDIO[m] = 0;
- break;
- case 1: /* Huffman code */
- for (m=0; m<8; m++)
- /* FIXME: What is Inverse Quantization(InverseQ) ? */
- pCQGroup->ppQ[nSEL]->InverseQ(InputFrame,AUDIO[m]);
- break;
- case 2: /* No further encoding */
- for (m=0; m<8; m++) {
- /* Extract quantization index from the bit stream */
- /* FIXME: What is Inverse Quantization(InverseQ) ? */
- pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
- /* Take care of 2's compliment */
- AUDIO[m] = pCQGroup->ppQ[nSEL]->SignExtension(nCode);
- }
- break;
- case 3: /* Block code */
- /* Block code is just 1 value with 4 samples derived from it.
- * with each sample a digit from the number (using a base derived from nABITS via a table)
- * E.g. nABITS = 10, base = 5 (Base value taken from table.)
- * 1st sample = (value % 5) - (int(5/2); (Values between -2 and +2 )
- * 2st sample = ((value / 5) % 5) - (int(5/2);
- * 3rd sample = ((value / 25) % 5) - (int(5/2);
- * 4th sample = ((value / 125) % 5) - (int(5/2);
- *
- */
- pCBQ = &pCBlockQ[nABITS-1]; /* Select block code book */
- m = 0;
- for (nBlock=0; nBlock<2; nBlock++) {
- /* Extract the block code index from the bit stream */
- /* FIXME: What is Inverse Quantization(InverseQ) ? */
- pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
- /* Look up 4 samples from the block code book */
- /* FIXME: How to implement LookUp? */
- pCBQ->LookUp(nCode,&AUDIO[m])
- m += 4;
- }
- break;
- default: /* Undefined */
- printf("ERROR: Unknown AUDIO quantization index code book.");
- }
- /*
- * Account for quantization step size and scale factor
- */
- /* Look up quantization step size */
- nABITS = bit_allocation_index[ch][n];
- /* FIXME: How to implement LookUp? */
- pStepSizeTable->LookUp(nABITS, rStepSize);
- /* Identify transient location */
- nTmode = transition_mode[ch][n];
- if ( nTmode == 0 ) /* No transient */
- nTmode = subsubframe_count;
- /* Determine proper scale factor */
- if (nSubSubFrame<nTmode) /* Pre-transient */
- rScale = rStepSize * scale_factors[ch][n][0]; /* Use first scale factor */
- else /* After-transient */
- rScale = rStepSize * scale_factors[ch][n][1]; /* Use second scale factor */
- /* Adjustmemt of scale factor */
- rScale *= scale_factor_adjustment_index[ch][quantization_index_codebook_select[ch][nABITS-1]]; /* scale_factor_adjustment_index[ ][ ] are assumed 1 */
- /* unless changed by bit */
- /* stream when quantization_index_codebook_select indicates */
- /* Huffman code. */
- /* Scale the samples */
- nSample = 8*nSubSubFrame; /* Set sample index */
- for (m=0; m<8; m++, nSample++)
- aPrmCh[ch].aSubband[n].aSample[nSample] = rScale*AUDIO[m];
- /*
- * Inverse ADPCM
- */
- if ( PMODE[ch][n] != 0 ) /* Only when prediction mode is on. */
- aPrmCh[ch].aSubband[n].InverseADPCM();
- /*
- * Check for DSYNC
- */
- if ( (nSubSubFrame==(subsubframe_count-1)) || (ASPF==1) ) {
- DSYNC = getbits(&state,16);
- if ( DSYNC != 0xffff )
- printf("DSYNC error at end of subsubframe #%d", nSubSubFrame);
- }
- }
- }
-/* B.3.4 Unpack Optional Information */
-/* TODO ^^^ */
-
-#endif
-/* CODE BELOW here does compile */
-
- printf("getbits status: byte_pos = %d, bit_pos = %d\n",
- state.byte_position,
- state.bit_position);
-#if 0
- for(n=0;n<2016;n++) {
- if((n % 32) == 0) printf("\n");
- printf("%02X ",state.start[state.byte_position+n]);
- }
- printf("\n");
-#endif
-
-#if 0
- if ((extension_audio_descriptor_flag == 0)
- || (extension_audio_descriptor_flag == 3)) {
- printf("libdts:trying extension...\n");
- channel_extension_sync_word = getbits(&state, 32);
- extension_primary_frame_byte_size = getbits(&state, 10);
- extension_channel_arrangement = getbits(&state, 4);
- }
-#endif
-
-#if 0
- extension_sync_word_SYNC96 = getbits(&state, 32);
- extension_frame_byte_data_size_FSIZE96 = getbits(&state, 12);
- revision_number = getbits(&state, 4);
-#endif
-dts_print_decoded_data(&decoder_data);
-}
-
-#endif