summaryrefslogtreecommitdiff
path: root/src/libfaad/ic_predict.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/libfaad/ic_predict.c')
-rw-r--r--src/libfaad/ic_predict.c177
1 files changed, 140 insertions, 37 deletions
diff --git a/src/libfaad/ic_predict.c b/src/libfaad/ic_predict.c
index 997b2c654..31ae5d668 100644
--- a/src/libfaad/ic_predict.c
+++ b/src/libfaad/ic_predict.c
@@ -1,6 +1,6 @@
/*
-** FAAD - Freeware Advanced Audio Decoder
-** Copyright (C) 2002 M. Bakker
+** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
+** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
@@ -16,7 +16,13 @@
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
-** $Id: ic_predict.c,v 1.2 2002/12/16 19:00:14 miguelfreitas Exp $
+** Any non-GPL usage of this software or parts of this software is strictly
+** forbidden.
+**
+** Commercial non-GPL licensing of this software is possible.
+** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
+**
+** $Id: ic_predict.c,v 1.3 2003/12/30 02:00:10 miguelfreitas Exp $
**/
#include "common.h"
@@ -28,63 +34,161 @@
#include "ic_predict.h"
#include "pns.h"
+
+static void flt_round(float32_t *pf)
+{
+ int32_t flg;
+ uint32_t tmp, tmp1, tmp2;
+
+ tmp = *(uint32_t*)pf;
+ flg = tmp & (uint32_t)0x00008000;
+ tmp &= (uint32_t)0xffff0000;
+ tmp1 = tmp;
+ /* round 1/2 lsb toward infinity */
+ if (flg)
+ {
+ tmp &= (uint32_t)0xff800000; /* extract exponent and sign */
+ tmp |= (uint32_t)0x00010000; /* insert 1 lsb */
+ tmp2 = tmp; /* add 1 lsb and elided one */
+ tmp &= (uint32_t)0xff800000; /* extract exponent and sign */
+
+ *pf = *(float32_t*)&tmp1 + *(float32_t*)&tmp2 - *(float32_t*)&tmp;
+ } else {
+ *pf = *(float32_t*)&tmp;
+ }
+}
+
+static int16_t quant_pred(float32_t x)
+{
+ int16_t q;
+ uint32_t *tmp = (uint32_t*)&x;
+
+ q = (int16_t)(*tmp>>16);
+
+ return q;
+}
+
+static float32_t inv_quant_pred(int16_t q)
+{
+ float32_t x;
+ uint32_t *tmp = (uint32_t*)&x;
+ *tmp = ((uint32_t)q)<<16;
+
+ return x;
+}
+
static void ic_predict(pred_state *state, real_t input, real_t *output, uint8_t pred)
{
+ uint16_t tmp;
+ int16_t i, j;
real_t dr1, predictedvalue;
real_t e0, e1;
real_t k1, k2;
- real_t *r;
- real_t *KOR;
- real_t *VAR;
+ real_t r[2];
+ real_t COR[2];
+ real_t VAR[2];
- r = state->r; /* delay elements */
- KOR = state->KOR; /* correlations */
- VAR = state->VAR; /* variances */
+ r[0] = inv_quant_pred(state->r[0]);
+ r[1] = inv_quant_pred(state->r[1]);
+ COR[0] = inv_quant_pred(state->COR[0]);
+ COR[1] = inv_quant_pred(state->COR[1]);
+ VAR[0] = inv_quant_pred(state->VAR[0]);
+ VAR[1] = inv_quant_pred(state->VAR[1]);
- if (VAR[0] == 0)
- k1 = 0;
- else
- k1 = KOR[0]/VAR[0]*B;
+
+#if 1
+ tmp = state->VAR[0];
+ j = (tmp >> 7);
+ i = tmp & 0x7f;
+ if (j >= 128)
+ {
+ j -= 128;
+ k1 = COR[0] * exp_table[j] * mnt_table[i];
+ } else {
+ k1 = REAL_CONST(0);
+ }
+#else
+
+ {
+#define B 0.953125
+ real_t c = COR[0];
+ real_t v = VAR[0];
+ real_t tmp;
+ if (c == 0 || v <= 1)
+ {
+ k1 = 0;
+ } else {
+ tmp = B / v;
+ flt_round(&tmp);
+ k1 = c * tmp;
+ }
+ }
+#endif
if (pred)
{
- /* only needed for the actual predicted value, k1 is always needed */
- if (VAR[1] == 0)
- k2 = 0;
- else
- k2 = KOR[1]/VAR[1]*B;
+#if 1
+ tmp = state->VAR[1];
+ j = (tmp >> 7);
+ i = tmp & 0x7f;
+ if (j >= 128)
+ {
+ j -= 128;
+ k2 = COR[1] * exp_table[j] * mnt_table[i];
+ } else {
+ k2 = REAL_CONST(0);
+ }
+#else
- predictedvalue = MUL(k1, r[0]) + MUL(k2, r[1]);
+#define B 0.953125
+ real_t c = COR[1];
+ real_t v = VAR[1];
+ real_t tmp;
+ if (c == 0 || v <= 1)
+ {
+ k2 = 0;
+ } else {
+ tmp = B / v;
+ flt_round(&tmp);
+ k2 = c * tmp;
+ }
+#endif
+ predictedvalue = k1*r[0] + k2*r[1];
+ flt_round(&predictedvalue);
*output = input + predictedvalue;
- } else {
- *output = input;
}
/* calculate new state data */
e0 = *output;
- e1 = e0 - MUL(k1, r[0]);
+ e1 = e0 - k1*r[0];
+ dr1 = k1*e0;
- dr1 = MUL(k1, e0);
+ VAR[0] = ALPHA*VAR[0] + 0.5f * (r[0]*r[0] + e0*e0);
+ COR[0] = ALPHA*COR[0] + r[0]*e0;
+ VAR[1] = ALPHA*VAR[1] + 0.5f * (r[1]*r[1] + e1*e1);
+ COR[1] = ALPHA*COR[1] + r[1]*e1;
- VAR[0] = MUL(ALPHA, VAR[0]) + MUL(REAL_CONST(0.5), (MUL(r[0], r[0]) + MUL(e0, e0)));
- KOR[0] = MUL(ALPHA, KOR[0]) + MUL(r[0], e0);
- VAR[1] = MUL(ALPHA, VAR[1]) + MUL(REAL_CONST(0.5), (MUL(r[1], r[1]) + MUL(e1, e1)));
- KOR[1] = MUL(ALPHA, KOR[1]) + MUL(r[1], e1);
+ r[1] = A * (r[0]-dr1);
+ r[0] = A * e0;
- r[1] = MUL(A, (r[0]-dr1));
- r[0] = MUL(A, e0);
+ state->r[0] = quant_pred(r[0]);
+ state->r[1] = quant_pred(r[1]);
+ state->COR[0] = quant_pred(COR[0]);
+ state->COR[1] = quant_pred(COR[1]);
+ state->VAR[0] = quant_pred(VAR[0]);
+ state->VAR[1] = quant_pred(VAR[1]);
}
static void reset_pred_state(pred_state *state)
{
state->r[0] = 0;
state->r[1] = 0;
- state->KOR[0] = 0;
- state->KOR[1] = 0;
- state->VAR[0] = REAL_CONST(1.0);
- state->VAR[1] = REAL_CONST(1.0);
+ state->COR[0] = 0;
+ state->COR[1] = 0;
+ state->VAR[0] = 0x3F80;
+ state->VAR[1] = 0x3F80;
}
void pns_reset_pred_state(ic_stream *ics, pred_state *state)
@@ -125,7 +229,7 @@ void reset_all_predictors(pred_state *state, uint16_t frame_len)
/* intra channel prediction */
void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state,
- uint16_t frame_len)
+ uint16_t frame_len, uint8_t sf_index)
{
uint8_t sfb;
uint16_t bin;
@@ -134,7 +238,7 @@ void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state,
{
reset_all_predictors(state, frame_len);
} else {
- for (sfb = 0; sfb < ics->pred.limit; sfb++)
+ for (sfb = 0; sfb < max_pred_sfb(sf_index); sfb++)
{
uint16_t low = ics->swb_offset[sfb];
uint16_t high = ics->swb_offset[sfb+1];
@@ -142,8 +246,7 @@ void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state,
for (bin = low; bin < high; bin++)
{
ic_predict(&state[bin], spec[bin], &spec[bin],
- (ics->predictor_data_present &&
- ics->pred.prediction_used[sfb]));
+ (ics->predictor_data_present && ics->pred.prediction_used[sfb]));
}
}