summaryrefslogtreecommitdiff
path: root/src/libfaad/sbr_hfgen.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/libfaad/sbr_hfgen.c')
-rw-r--r--src/libfaad/sbr_hfgen.c478
1 files changed, 478 insertions, 0 deletions
diff --git a/src/libfaad/sbr_hfgen.c b/src/libfaad/sbr_hfgen.c
new file mode 100644
index 000000000..ed5f4135f
--- /dev/null
+++ b/src/libfaad/sbr_hfgen.c
@@ -0,0 +1,478 @@
+/*
+** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
+** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
+**
+** This program is free software; you can redistribute it and/or modify
+** it under the terms of the GNU General Public License as published by
+** the Free Software Foundation; either version 2 of the License, or
+** (at your option) any later version.
+**
+** This program is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+** GNU General Public License for more details.
+**
+** You should have received a copy of the GNU General Public License
+** along with this program; if not, write to the Free Software
+** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+**
+** Any non-GPL usage of this software or parts of this software is strictly
+** forbidden.
+**
+** Commercial non-GPL licensing of this software is possible.
+** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
+**
+** $Id: sbr_hfgen.c,v 1.1 2003/12/30 02:00:11 miguelfreitas Exp $
+**/
+
+/* High Frequency generation */
+
+#include "common.h"
+#include "structs.h"
+
+#ifdef SBR_DEC
+
+#include "sbr_syntax.h"
+#include "sbr_hfgen.h"
+#include "sbr_fbt.h"
+
+void hf_generation(sbr_info *sbr, const qmf_t Xlow[MAX_NTSRHFG][32],
+ qmf_t Xhigh[MAX_NTSRHFG][64]
+#ifdef SBR_LOW_POWER
+ ,real_t *deg
+#endif
+ ,uint8_t ch)
+{
+ uint8_t l, i, x;
+ ALIGN complex_t alpha_0[64], alpha_1[64];
+#ifdef SBR_LOW_POWER
+ ALIGN real_t rxx[64];
+#endif
+
+ uint8_t offset = sbr->tHFAdj;
+ uint8_t first = sbr->t_E[ch][0];
+ uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];
+
+// printf("%d %d\n", first, last);
+
+ calc_chirp_factors(sbr, ch);
+
+ for (i = first; i < last; i++)
+ {
+ memset(Xhigh[i + offset], 0, 64 * sizeof(qmf_t));
+ }
+
+ if ((ch == 0) && (sbr->Reset))
+ patch_construction(sbr);
+
+ /* calculate the prediction coefficients */
+ calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1
+#ifdef SBR_LOW_POWER
+ , rxx
+#endif
+ );
+
+#ifdef SBR_LOW_POWER
+ calc_aliasing_degree(sbr, rxx, deg);
+#endif
+
+ /* actual HF generation */
+ for (i = 0; i < sbr->noPatches; i++)
+ {
+ for (x = 0; x < sbr->patchNoSubbands[i]; x++)
+ {
+ complex_t a0, a1;
+ real_t bw, bw2;
+ uint8_t q, p, k, g;
+
+ /* find the low and high band for patching */
+ k = sbr->kx + x;
+ for (q = 0; q < i; q++)
+ {
+ k += sbr->patchNoSubbands[q];
+ }
+ p = sbr->patchStartSubband[i] + x;
+
+#ifdef SBR_LOW_POWER
+ if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
+ deg[k] = deg[p];
+ else
+ deg[k] = 0;
+#endif
+
+ g = sbr->table_map_k_to_g[k];
+
+ bw = sbr->bwArray[ch][g];
+ bw2 = MUL_C(bw, bw);
+
+ /* do the patching */
+ /* with or without filtering */
+ if (bw2 > 0)
+ {
+ RE(a0) = MUL_C(RE(alpha_0[p]), bw);
+ RE(a1) = MUL_C(RE(alpha_1[p]), bw2);
+#ifndef SBR_LOW_POWER
+ IM(a0) = MUL_C(IM(alpha_0[p]), bw);
+ IM(a1) = MUL_C(IM(alpha_1[p]), bw2);
+#endif
+
+ for (l = first; l < last; l++)
+ {
+ QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
+#ifndef SBR_LOW_POWER
+ QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
+#endif
+
+#ifdef SBR_LOW_POWER
+ QMF_RE(Xhigh[l + offset][k]) += (
+ MUL_R(RE(a0), QMF_RE(Xlow[l - 1 + offset][p])) +
+ MUL_R(RE(a1), QMF_RE(Xlow[l - 2 + offset][p])));
+#else
+ QMF_RE(Xhigh[l + offset][k]) += (
+ RE(a0) * QMF_RE(Xlow[l - 1 + offset][p]) -
+ IM(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
+ RE(a1) * QMF_RE(Xlow[l - 2 + offset][p]) -
+ IM(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
+ QMF_IM(Xhigh[l + offset][k]) += (
+ IM(a0) * QMF_RE(Xlow[l - 1 + offset][p]) +
+ RE(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
+ IM(a1) * QMF_RE(Xlow[l - 2 + offset][p]) +
+ RE(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
+#endif
+ }
+ } else {
+ for (l = first; l < last; l++)
+ {
+ QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
+#ifndef SBR_LOW_POWER
+ QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
+#endif
+ }
+ }
+ }
+ }
+
+ if (sbr->Reset)
+ {
+ limiter_frequency_table(sbr);
+ }
+}
+
+typedef struct
+{
+ complex_t r01;
+ complex_t r02;
+ complex_t r11;
+ complex_t r12;
+ complex_t r22;
+ real_t det;
+} acorr_coef;
+
+#define SBR_ABS(A) ((A) < 0) ? -(A) : (A)
+
+#ifdef SBR_LOW_POWER
+static void auto_correlation(sbr_info *sbr, acorr_coef *ac,
+ const qmf_t buffer[MAX_NTSRHFG][32],
+ uint8_t bd, uint8_t len)
+{
+ real_t r01 = 0, r02 = 0, r11 = 0;
+ int8_t j;
+ uint8_t offset = sbr->tHFAdj;
+ const real_t rel = 1 / (1 + 1e-6f);
+
+ for (j = offset; j < len + offset; j++)
+ {
+ r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]);
+ r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]);
+ r11 += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]);
+ }
+ RE(ac->r12) = r01 -
+ QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
+ QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]);
+ RE(ac->r22) = r11 -
+ QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
+ QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]);
+ RE(ac->r01) = r01;
+ RE(ac->r02) = r02;
+ RE(ac->r11) = r11;
+
+ ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_C(MUL_R(RE(ac->r12), RE(ac->r12)), rel);
+}
+#else
+static void auto_correlation(sbr_info *sbr, acorr_coef *ac, const qmf_t buffer[MAX_NTSRHFG][32],
+ uint8_t bd, uint8_t len)
+{
+ real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0;
+ const real_t rel = 1 / (1 + 1e-6f);
+ int8_t j;
+ uint8_t offset = sbr->tHFAdj;
+
+
+ for (j = offset; j < len + offset; j++)
+ {
+ r01r += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]) +
+ QMF_IM(buffer[j][bd]) * QMF_IM(buffer[j-1][bd]);
+ r01i += QMF_IM(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]) -
+ QMF_RE(buffer[j][bd]) * QMF_IM(buffer[j-1][bd]);
+ r02r += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]) +
+ QMF_IM(buffer[j][bd]) * QMF_IM(buffer[j-2][bd]);
+ r02i += QMF_IM(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]) -
+ QMF_RE(buffer[j][bd]) * QMF_IM(buffer[j-2][bd]);
+ r11r += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]) +
+ QMF_IM(buffer[j-1][bd]) * QMF_IM(buffer[j-1][bd]);
+ }
+
+ RE(ac->r01) = r01r;
+ IM(ac->r01) = r01i;
+ RE(ac->r02) = r02r;
+ IM(ac->r02) = r02i;
+ RE(ac->r11) = r11r;
+
+ RE(ac->r12) = r01r -
+ (QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) + QMF_IM(buffer[len+offset-1][bd]) * QMF_IM(buffer[len+offset-2][bd])) +
+ (QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]) + QMF_IM(buffer[offset-1][bd]) * QMF_IM(buffer[offset-2][bd]));
+ IM(ac->r12) = r01i -
+ (QMF_IM(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) - QMF_RE(buffer[len+offset-1][bd]) * QMF_IM(buffer[len+offset-2][bd])) +
+ (QMF_IM(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]) - QMF_RE(buffer[offset-1][bd]) * QMF_IM(buffer[offset-2][bd]));
+ RE(ac->r22) = r11r -
+ (QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) + QMF_IM(buffer[len+offset-2][bd]) * QMF_IM(buffer[len+offset-2][bd])) +
+ (QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]) + QMF_IM(buffer[offset-2][bd]) * QMF_IM(buffer[offset-2][bd]));
+
+ ac->det = RE(ac->r11) * RE(ac->r22) - rel * (RE(ac->r12) * RE(ac->r12) + IM(ac->r12) * IM(ac->r12));
+}
+#endif
+
+/* calculate linear prediction coefficients using the covariance method */
+static void calc_prediction_coef(sbr_info *sbr, const qmf_t Xlow[MAX_NTSRHFG][32],
+ complex_t *alpha_0, complex_t *alpha_1
+#ifdef SBR_LOW_POWER
+ , real_t *rxx
+#endif
+ )
+{
+ uint8_t k;
+ real_t tmp;
+ acorr_coef ac;
+
+ for (k = 1; k < sbr->f_master[0]; k++)
+ {
+ auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6);
+
+#ifdef SBR_LOW_POWER
+ if (ac.det == 0)
+ {
+ RE(alpha_1[k]) = 0;
+ } else {
+ tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11));
+ RE(alpha_1[k]) = SBR_DIV(tmp, ac.det);
+ }
+
+ if (RE(ac.r11) == 0)
+ {
+ RE(alpha_0[k]) = 0;
+ } else {
+ tmp = RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12));
+ RE(alpha_0[k]) = -SBR_DIV(tmp, RE(ac.r11));
+ }
+
+ if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4)))
+ {
+ RE(alpha_0[k]) = REAL_CONST(0);
+ RE(alpha_1[k]) = REAL_CONST(0);
+ }
+
+ /* reflection coefficient */
+ if (RE(ac.r11) == 0)
+ {
+ rxx[k] = REAL_CONST(0.0);
+ } else {
+ rxx[k] = -SBR_DIV(RE(ac.r01), RE(ac.r11));
+ if (rxx[k] > REAL_CONST(1.0)) rxx[k] = REAL_CONST(1.0);
+ if (rxx[k] < REAL_CONST(-1.0)) rxx[k] = REAL_CONST(-1.0);
+ }
+#else
+ if (ac.det == 0)
+ {
+ RE(alpha_1[k]) = 0;
+ IM(alpha_1[k]) = 0;
+ } else {
+ tmp = REAL_CONST(1.0) / ac.det;
+ RE(alpha_1[k]) = (RE(ac.r01) * RE(ac.r12) - IM(ac.r01) * IM(ac.r12) - RE(ac.r02) * RE(ac.r11)) * tmp;
+ IM(alpha_1[k]) = (IM(ac.r01) * RE(ac.r12) + RE(ac.r01) * IM(ac.r12) - IM(ac.r02) * RE(ac.r11)) * tmp;
+ }
+
+ if (RE(ac.r11) == 0)
+ {
+ RE(alpha_0[k]) = 0;
+ IM(alpha_0[k]) = 0;
+ } else {
+ tmp = 1.0f / RE(ac.r11);
+ RE(alpha_0[k]) = -(RE(ac.r01) + RE(alpha_1[k]) * RE(ac.r12) + IM(alpha_1[k]) * IM(ac.r12)) * tmp;
+ IM(alpha_0[k]) = -(IM(ac.r01) + IM(alpha_1[k]) * RE(ac.r12) - RE(alpha_1[k]) * IM(ac.r12)) * tmp;
+ }
+
+ if ((RE(alpha_0[k])*RE(alpha_0[k]) + IM(alpha_0[k])*IM(alpha_0[k]) >= 16) ||
+ (RE(alpha_1[k])*RE(alpha_1[k]) + IM(alpha_1[k])*IM(alpha_1[k]) >= 16))
+ {
+ RE(alpha_0[k]) = 0;
+ IM(alpha_0[k]) = 0;
+ RE(alpha_1[k]) = 0;
+ IM(alpha_1[k]) = 0;
+ }
+#endif
+ }
+}
+
+#ifdef SBR_LOW_POWER
+static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg)
+{
+ uint8_t k;
+
+ rxx[0] = REAL_CONST(0.0);
+ deg[1] = REAL_CONST(0.0);
+
+ for (k = 2; k < sbr->k0; k++)
+ {
+ deg[k] = 0.0;
+
+ if ((k % 2 == 0) && (rxx[k] < REAL_CONST(0.0)))
+ {
+ if (rxx[k-1] < 0.0)
+ {
+ deg[k] = REAL_CONST(1.0);
+
+ if (rxx[k-2] > REAL_CONST(0.0))
+ {
+ deg[k-1] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
+ }
+ } else if (rxx[k-2] > REAL_CONST(0.0)) {
+ deg[k] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
+ }
+ }
+
+ if ((k % 2 == 1) && (rxx[k] > REAL_CONST(0.0)))
+ {
+ if (rxx[k-1] > REAL_CONST(0.0))
+ {
+ deg[k] = REAL_CONST(1.0);
+
+ if (rxx[k-2] < REAL_CONST(0.0))
+ {
+ deg[k-1] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
+ }
+ } else if (rxx[k-2] < REAL_CONST(0.0)) {
+ deg[k] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
+ }
+ }
+ }
+}
+#endif
+
+/* FIXED POINT: bwArray = COEF */
+static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev)
+{
+ switch (invf_mode)
+ {
+ case 1: /* LOW */
+ if (invf_mode_prev == 0) /* NONE */
+ return COEF_CONST(0.6);
+ else
+ return COEF_CONST(0.75);
+
+ case 2: /* MID */
+ return COEF_CONST(0.9);
+
+ case 3: /* HIGH */
+ return COEF_CONST(0.98);
+
+ default: /* NONE */
+ if (invf_mode_prev == 1) /* LOW */
+ return COEF_CONST(0.6);
+ else
+ return COEF_CONST(0.0);
+ }
+}
+
+/* FIXED POINT: bwArray = COEF */
+static void calc_chirp_factors(sbr_info *sbr, uint8_t ch)
+{
+ uint8_t i;
+
+ for (i = 0; i < sbr->N_Q; i++)
+ {
+ sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]);
+
+ if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i])
+ sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.75)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.25));
+ else
+ sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.90625)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.09375));
+
+ if (sbr->bwArray[ch][i] < COEF_CONST(0.015625))
+ sbr->bwArray[ch][i] = COEF_CONST(0.0);
+
+ if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375))
+ sbr->bwArray[ch][i] = COEF_CONST(0.99609375);
+
+ sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i];
+ sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i];
+ }
+}
+
+static void patch_construction(sbr_info *sbr)
+{
+ uint8_t i, k;
+ uint8_t odd, sb;
+ uint8_t msb = sbr->k0;
+ uint8_t usb = sbr->kx;
+ uint8_t goalSbTab[] = { 21, 23, 43, 46, 64, 85, 93, 128, 0, 0, 0 };
+ /* (uint8_t)(2.048e6/sbr->sample_rate + 0.5); */
+ uint8_t goalSb = goalSbTab[get_sr_index(sbr->sample_rate)];
+
+ sbr->noPatches = 0;
+
+ if (goalSb < (sbr->kx + sbr->M))
+ {
+ for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++)
+ k = i+1;
+ } else {
+ k = sbr->N_master;
+ }
+
+ do
+ {
+ uint8_t j = k + 1;
+
+ do
+ {
+ j--;
+
+ sb = sbr->f_master[j];
+ odd = (sb - 2 + sbr->k0) % 2;
+ } while (sb > (sbr->k0 - 1 + msb - odd));
+
+ sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0);
+ sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd -
+ sbr->patchNoSubbands[sbr->noPatches];
+
+ if (sbr->patchNoSubbands[sbr->noPatches] > 0)
+ {
+ usb = sb;
+ msb = sb;
+ sbr->noPatches++;
+ } else {
+ msb = sbr->kx;
+ }
+
+ if (sbr->f_master[k] - sb < 3)
+ k = sbr->N_master;
+ } while (sb != (sbr->kx + sbr->M));
+
+ if ((sbr->patchNoSubbands[sbr->noPatches-1] < 3) && (sbr->noPatches > 1))
+ {
+ sbr->noPatches--;
+ }
+
+ sbr->noPatches = min(sbr->noPatches, 5);
+}
+
+#endif