summaryrefslogtreecommitdiff
path: root/src/libfaad/specrec.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/libfaad/specrec.c')
-rw-r--r--src/libfaad/specrec.c344
1 files changed, 344 insertions, 0 deletions
diff --git a/src/libfaad/specrec.c b/src/libfaad/specrec.c
new file mode 100644
index 000000000..7d97e2a76
--- /dev/null
+++ b/src/libfaad/specrec.c
@@ -0,0 +1,344 @@
+/*
+** FAAD - Freeware Advanced Audio Decoder
+** Copyright (C) 2002 M. Bakker
+**
+** This program is free software; you can redistribute it and/or modify
+** it under the terms of the GNU General Public License as published by
+** the Free Software Foundation; either version 2 of the License, or
+** (at your option) any later version.
+**
+** This program is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+** GNU General Public License for more details.
+**
+** You should have received a copy of the GNU General Public License
+** along with this program; if not, write to the Free Software
+** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+**
+** $Id: specrec.c,v 1.1 2002/07/14 23:43:01 miguelfreitas Exp $
+**/
+
+/*
+ Spectral reconstruction:
+ - grouping/sectioning
+ - inverse quantization
+ - applying scalefactors
+*/
+
+#include "common.h"
+
+#include "specrec.h"
+#include "syntax.h"
+#include "data.h"
+
+
+#define bit_set(A, B) ((A) & (1<<(B)))
+
+/* 4.5.2.3.4 */
+/*
+ - determine the number of windows in a window_sequence named num_windows
+ - determine the number of window_groups named num_window_groups
+ - determine the number of windows in each group named window_group_length[g]
+ - determine the total number of scalefactor window bands named num_swb for
+ the actual window type
+ - determine swb_offset[swb], the offset of the first coefficient in
+ scalefactor window band named swb of the window actually used
+ - determine sect_sfb_offset[g][section],the offset of the first coefficient
+ in section named section. This offset depends on window_sequence and
+ scale_factor_grouping and is needed to decode the spectral_data().
+*/
+uint8_t window_grouping_info(ic_stream *ics, uint8_t fs_index,
+ uint8_t object_type, uint16_t frame_len)
+{
+ uint8_t i, g;
+
+ switch (ics->window_sequence) {
+ case ONLY_LONG_SEQUENCE:
+ case LONG_START_SEQUENCE:
+ case LONG_STOP_SEQUENCE:
+ ics->num_windows = 1;
+ ics->num_window_groups = 1;
+ ics->window_group_length[ics->num_window_groups-1] = 1;
+#ifdef LD_DEC
+ if (object_type == LD)
+ {
+ ics->num_swb = num_swb_512_window[fs_index];
+ } else {
+#endif
+ ics->num_swb = num_swb_1024_window[fs_index];
+#ifdef LD_DEC
+ }
+#endif
+
+ /* preparation of sect_sfb_offset for long blocks */
+ /* also copy the last value! */
+#ifdef LD_DEC
+ if (object_type == LD)
+ {
+ for (i = 0; i < ics->num_swb; i++)
+ {
+ ics->sect_sfb_offset[0][i] = swb_offset_512_window[fs_index][i];
+ ics->swb_offset[i] = swb_offset_512_window[fs_index][i];
+ }
+ ics->sect_sfb_offset[0][ics->num_swb] = frame_len;
+ ics->swb_offset[ics->num_swb] = frame_len;
+ } else {
+#endif
+ for (i = 0; i < ics->num_swb; i++)
+ {
+ ics->sect_sfb_offset[0][i] = swb_offset_1024_window[fs_index][i];
+ ics->swb_offset[i] = swb_offset_1024_window[fs_index][i];
+ }
+ ics->sect_sfb_offset[0][ics->num_swb] = frame_len;
+ ics->swb_offset[ics->num_swb] = frame_len;
+#ifdef LD_DEC
+ }
+#endif
+ return 0;
+ case EIGHT_SHORT_SEQUENCE:
+ ics->num_windows = 8;
+ ics->num_window_groups = 1;
+ ics->window_group_length[ics->num_window_groups-1] = 1;
+ ics->num_swb = num_swb_128_window[fs_index];
+
+ for (i = 0; i < ics->num_swb; i++)
+ ics->swb_offset[i] = swb_offset_128_window[fs_index][i];
+ ics->swb_offset[ics->num_swb] = frame_len/8;
+
+ for (i = 0; i < ics->num_windows-1; i++) {
+ if (bit_set(ics->scale_factor_grouping, 6-i) == 0)
+ {
+ ics->num_window_groups += 1;
+ ics->window_group_length[ics->num_window_groups-1] = 1;
+ } else {
+ ics->window_group_length[ics->num_window_groups-1] += 1;
+ }
+ }
+
+ /* preparation of sect_sfb_offset for short blocks */
+ for (g = 0; g < ics->num_window_groups; g++)
+ {
+ uint16_t width;
+ uint8_t sect_sfb = 0;
+ uint16_t offset = 0;
+
+ for (i = 0; i < ics->num_swb; i++)
+ {
+ if (i+1 == ics->num_swb)
+ {
+ width = (frame_len/8) - swb_offset_128_window[fs_index][i];
+ } else {
+ width = swb_offset_128_window[fs_index][i+1] -
+ swb_offset_128_window[fs_index][i];
+ }
+ width *= ics->window_group_length[g];
+ ics->sect_sfb_offset[g][sect_sfb++] = offset;
+ offset += width;
+ }
+ ics->sect_sfb_offset[g][sect_sfb] = offset;
+ }
+ return 0;
+ default:
+ return 1;
+ }
+}
+
+/*
+ For ONLY_LONG_SEQUENCE windows (num_window_groups = 1,
+ window_group_length[0] = 1) the spectral data is in ascending spectral
+ order.
+ For the EIGHT_SHORT_SEQUENCE window, the spectral order depends on the
+ grouping in the following manner:
+ - Groups are ordered sequentially
+ - Within a group, a scalefactor band consists of the spectral data of all
+ grouped SHORT_WINDOWs for the associated scalefactor window band. To
+ clarify via example, the length of a group is in the range of one to eight
+ SHORT_WINDOWs.
+ - If there are eight groups each with length one (num_window_groups = 8,
+ window_group_length[0..7] = 1), the result is a sequence of eight spectra,
+ each in ascending spectral order.
+ - If there is only one group with length eight (num_window_groups = 1,
+ window_group_length[0] = 8), the result is that spectral data of all eight
+ SHORT_WINDOWs is interleaved by scalefactor window bands.
+ - Within a scalefactor window band, the coefficients are in ascending
+ spectral order.
+*/
+void quant_to_spec(ic_stream *ics, real_t *spec_data, uint16_t frame_len)
+{
+ int8_t i;
+ uint8_t g, sfb, win;
+ uint16_t width, bin;
+ real_t *start_inptr, *start_win_ptr, *win_ptr;
+
+ real_t tmp_spec[1024];
+ real_t *tmp_spec_ptr, *spec_ptr;
+
+ tmp_spec_ptr = tmp_spec;
+ for (i = frame_len/16-1; i >= 0; --i)
+ {
+ *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0;
+ *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0;
+ *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0;
+ *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0;
+ *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0;
+ *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0;
+ *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0;
+ *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0;
+ }
+
+ spec_ptr = spec_data;
+ tmp_spec_ptr = tmp_spec;
+ start_win_ptr = tmp_spec_ptr;
+
+ for (g = 0; g < ics->num_window_groups; g++)
+ {
+ uint16_t j = 0;
+ uint16_t win_inc = 0;
+
+ start_inptr = spec_ptr;
+
+ win_inc = ics->swb_offset[ics->num_swb];
+
+ for (sfb = 0; sfb < ics->num_swb; sfb++)
+ {
+ width = ics->swb_offset[sfb+1] - ics->swb_offset[sfb];
+
+ win_ptr = start_win_ptr;
+
+ for (win = 0; win < ics->window_group_length[g]; win++)
+ {
+ tmp_spec_ptr = win_ptr + j;
+
+ for (bin = 0; bin < width; bin += 4)
+ {
+ *tmp_spec_ptr++ = *spec_ptr++;
+ *tmp_spec_ptr++ = *spec_ptr++;
+ *tmp_spec_ptr++ = *spec_ptr++;
+ *tmp_spec_ptr++ = *spec_ptr++;
+ }
+
+ win_ptr += win_inc;
+ }
+ j += width;
+ }
+ start_win_ptr += (spec_ptr - start_inptr);
+ }
+
+ spec_ptr = spec_data;
+ tmp_spec_ptr = tmp_spec;
+
+ for (i = frame_len/16 - 1; i >= 0; --i)
+ {
+ *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++;
+ *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++;
+ *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++;
+ *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++;
+ *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++;
+ *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++;
+ *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++;
+ *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++;
+ }
+}
+
+void build_tables(real_t *iq_table, real_t *pow2_table)
+{
+ uint16_t i;
+
+ /* build pow(x, 4/3) table for inverse quantization */
+ for(i = 0; i < IQ_TABLE_SIZE; i++)
+ {
+ iq_table[i] = (real_t)exp(log(i) * 4.0/3.0);
+ }
+
+ /* build pow(2, 0.25*x) table for scalefactors */
+ for(i = 0; i < POW_TABLE_SIZE; i++)
+ {
+ pow2_table[i] = (real_t)exp(LN2 * 0.25 * (i-100));
+ }
+}
+
+static INLINE real_t iquant(int16_t q, real_t *iq_table)
+{
+ if (q > 0)
+ {
+ if (q < IQ_TABLE_SIZE)
+ return iq_table[q];
+ else
+ return MUL(iq_table[q>>3], 16);
+ } else if (q < 0) {
+ q = -q;
+ if (q < IQ_TABLE_SIZE)
+ return -iq_table[q];
+ else
+ return -MUL(iq_table[q>>3], 16);
+ } else {
+ return 0.0f;
+ }
+}
+
+void inverse_quantization(real_t *x_invquant, int16_t *x_quant, real_t *iq_table,
+ uint16_t frame_len)
+{
+ int8_t i;
+ int16_t *in_ptr = x_quant;
+ real_t *out_ptr = x_invquant;
+
+ for(i = frame_len/8-1; i >= 0; --i)
+ {
+ *out_ptr++ = iquant(*in_ptr++, iq_table);
+ *out_ptr++ = iquant(*in_ptr++, iq_table);
+ *out_ptr++ = iquant(*in_ptr++, iq_table);
+ *out_ptr++ = iquant(*in_ptr++, iq_table);
+ *out_ptr++ = iquant(*in_ptr++, iq_table);
+ *out_ptr++ = iquant(*in_ptr++, iq_table);
+ *out_ptr++ = iquant(*in_ptr++, iq_table);
+ *out_ptr++ = iquant(*in_ptr++, iq_table);
+ }
+}
+
+static INLINE real_t get_scale_factor_gain(uint16_t scale_factor, real_t *pow2_table)
+{
+ if (scale_factor < POW_TABLE_SIZE)
+ return pow2_table[scale_factor];
+ else
+ return (real_t)exp(LN2 * 0.25 * (scale_factor - 100));
+}
+
+void apply_scalefactors(ic_stream *ics, real_t *x_invquant, real_t *pow2_table,
+ uint16_t frame_len)
+{
+ uint8_t g, sfb;
+ uint16_t top;
+ real_t *fp, scale;
+ uint8_t groups = 0;
+ uint16_t nshort = frame_len/8;
+
+ for (g = 0; g < ics->num_window_groups; g++)
+ {
+ uint16_t k = 0;
+
+ /* using this 128*groups doesn't hurt long blocks, because
+ long blocks only have 1 group, so that means 'groups' is
+ always 0 for long blocks
+ */
+ fp = x_invquant + (groups*nshort);
+
+ for (sfb = 0; sfb < ics->max_sfb; sfb++)
+ {
+ top = ics->sect_sfb_offset[g][sfb+1];
+
+ scale = get_scale_factor_gain(ics->scale_factors[g][sfb], pow2_table);
+
+ /* minimum size of a sf band is 4 and always a multiple of 4 */
+ for ( ; k < top; k+=4)
+ {
+ *fp = MUL(*fp, scale); fp++;
+ *fp = MUL(*fp, scale); fp++;
+ *fp = MUL(*fp, scale); fp++;
+ *fp = MUL(*fp, scale); fp++;
+ }
+ }
+ groups += ics->window_group_length[g];
+ }
+}