diff options
Diffstat (limited to 'src/libfaad/specrec.c')
-rw-r--r-- | src/libfaad/specrec.c | 344 |
1 files changed, 344 insertions, 0 deletions
diff --git a/src/libfaad/specrec.c b/src/libfaad/specrec.c new file mode 100644 index 000000000..7d97e2a76 --- /dev/null +++ b/src/libfaad/specrec.c @@ -0,0 +1,344 @@ +/* +** FAAD - Freeware Advanced Audio Decoder +** Copyright (C) 2002 M. Bakker +** +** This program is free software; you can redistribute it and/or modify +** it under the terms of the GNU General Public License as published by +** the Free Software Foundation; either version 2 of the License, or +** (at your option) any later version. +** +** This program is distributed in the hope that it will be useful, +** but WITHOUT ANY WARRANTY; without even the implied warranty of +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +** GNU General Public License for more details. +** +** You should have received a copy of the GNU General Public License +** along with this program; if not, write to the Free Software +** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. +** +** $Id: specrec.c,v 1.1 2002/07/14 23:43:01 miguelfreitas Exp $ +**/ + +/* + Spectral reconstruction: + - grouping/sectioning + - inverse quantization + - applying scalefactors +*/ + +#include "common.h" + +#include "specrec.h" +#include "syntax.h" +#include "data.h" + + +#define bit_set(A, B) ((A) & (1<<(B))) + +/* 4.5.2.3.4 */ +/* + - determine the number of windows in a window_sequence named num_windows + - determine the number of window_groups named num_window_groups + - determine the number of windows in each group named window_group_length[g] + - determine the total number of scalefactor window bands named num_swb for + the actual window type + - determine swb_offset[swb], the offset of the first coefficient in + scalefactor window band named swb of the window actually used + - determine sect_sfb_offset[g][section],the offset of the first coefficient + in section named section. This offset depends on window_sequence and + scale_factor_grouping and is needed to decode the spectral_data(). +*/ +uint8_t window_grouping_info(ic_stream *ics, uint8_t fs_index, + uint8_t object_type, uint16_t frame_len) +{ + uint8_t i, g; + + switch (ics->window_sequence) { + case ONLY_LONG_SEQUENCE: + case LONG_START_SEQUENCE: + case LONG_STOP_SEQUENCE: + ics->num_windows = 1; + ics->num_window_groups = 1; + ics->window_group_length[ics->num_window_groups-1] = 1; +#ifdef LD_DEC + if (object_type == LD) + { + ics->num_swb = num_swb_512_window[fs_index]; + } else { +#endif + ics->num_swb = num_swb_1024_window[fs_index]; +#ifdef LD_DEC + } +#endif + + /* preparation of sect_sfb_offset for long blocks */ + /* also copy the last value! */ +#ifdef LD_DEC + if (object_type == LD) + { + for (i = 0; i < ics->num_swb; i++) + { + ics->sect_sfb_offset[0][i] = swb_offset_512_window[fs_index][i]; + ics->swb_offset[i] = swb_offset_512_window[fs_index][i]; + } + ics->sect_sfb_offset[0][ics->num_swb] = frame_len; + ics->swb_offset[ics->num_swb] = frame_len; + } else { +#endif + for (i = 0; i < ics->num_swb; i++) + { + ics->sect_sfb_offset[0][i] = swb_offset_1024_window[fs_index][i]; + ics->swb_offset[i] = swb_offset_1024_window[fs_index][i]; + } + ics->sect_sfb_offset[0][ics->num_swb] = frame_len; + ics->swb_offset[ics->num_swb] = frame_len; +#ifdef LD_DEC + } +#endif + return 0; + case EIGHT_SHORT_SEQUENCE: + ics->num_windows = 8; + ics->num_window_groups = 1; + ics->window_group_length[ics->num_window_groups-1] = 1; + ics->num_swb = num_swb_128_window[fs_index]; + + for (i = 0; i < ics->num_swb; i++) + ics->swb_offset[i] = swb_offset_128_window[fs_index][i]; + ics->swb_offset[ics->num_swb] = frame_len/8; + + for (i = 0; i < ics->num_windows-1; i++) { + if (bit_set(ics->scale_factor_grouping, 6-i) == 0) + { + ics->num_window_groups += 1; + ics->window_group_length[ics->num_window_groups-1] = 1; + } else { + ics->window_group_length[ics->num_window_groups-1] += 1; + } + } + + /* preparation of sect_sfb_offset for short blocks */ + for (g = 0; g < ics->num_window_groups; g++) + { + uint16_t width; + uint8_t sect_sfb = 0; + uint16_t offset = 0; + + for (i = 0; i < ics->num_swb; i++) + { + if (i+1 == ics->num_swb) + { + width = (frame_len/8) - swb_offset_128_window[fs_index][i]; + } else { + width = swb_offset_128_window[fs_index][i+1] - + swb_offset_128_window[fs_index][i]; + } + width *= ics->window_group_length[g]; + ics->sect_sfb_offset[g][sect_sfb++] = offset; + offset += width; + } + ics->sect_sfb_offset[g][sect_sfb] = offset; + } + return 0; + default: + return 1; + } +} + +/* + For ONLY_LONG_SEQUENCE windows (num_window_groups = 1, + window_group_length[0] = 1) the spectral data is in ascending spectral + order. + For the EIGHT_SHORT_SEQUENCE window, the spectral order depends on the + grouping in the following manner: + - Groups are ordered sequentially + - Within a group, a scalefactor band consists of the spectral data of all + grouped SHORT_WINDOWs for the associated scalefactor window band. To + clarify via example, the length of a group is in the range of one to eight + SHORT_WINDOWs. + - If there are eight groups each with length one (num_window_groups = 8, + window_group_length[0..7] = 1), the result is a sequence of eight spectra, + each in ascending spectral order. + - If there is only one group with length eight (num_window_groups = 1, + window_group_length[0] = 8), the result is that spectral data of all eight + SHORT_WINDOWs is interleaved by scalefactor window bands. + - Within a scalefactor window band, the coefficients are in ascending + spectral order. +*/ +void quant_to_spec(ic_stream *ics, real_t *spec_data, uint16_t frame_len) +{ + int8_t i; + uint8_t g, sfb, win; + uint16_t width, bin; + real_t *start_inptr, *start_win_ptr, *win_ptr; + + real_t tmp_spec[1024]; + real_t *tmp_spec_ptr, *spec_ptr; + + tmp_spec_ptr = tmp_spec; + for (i = frame_len/16-1; i >= 0; --i) + { + *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0; + *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0; + *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0; + *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0; + *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0; + *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0; + *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0; + *tmp_spec_ptr++ = 0; *tmp_spec_ptr++ = 0; + } + + spec_ptr = spec_data; + tmp_spec_ptr = tmp_spec; + start_win_ptr = tmp_spec_ptr; + + for (g = 0; g < ics->num_window_groups; g++) + { + uint16_t j = 0; + uint16_t win_inc = 0; + + start_inptr = spec_ptr; + + win_inc = ics->swb_offset[ics->num_swb]; + + for (sfb = 0; sfb < ics->num_swb; sfb++) + { + width = ics->swb_offset[sfb+1] - ics->swb_offset[sfb]; + + win_ptr = start_win_ptr; + + for (win = 0; win < ics->window_group_length[g]; win++) + { + tmp_spec_ptr = win_ptr + j; + + for (bin = 0; bin < width; bin += 4) + { + *tmp_spec_ptr++ = *spec_ptr++; + *tmp_spec_ptr++ = *spec_ptr++; + *tmp_spec_ptr++ = *spec_ptr++; + *tmp_spec_ptr++ = *spec_ptr++; + } + + win_ptr += win_inc; + } + j += width; + } + start_win_ptr += (spec_ptr - start_inptr); + } + + spec_ptr = spec_data; + tmp_spec_ptr = tmp_spec; + + for (i = frame_len/16 - 1; i >= 0; --i) + { + *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++; + *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++; + *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++; + *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++; + *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++; + *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++; + *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++; + *spec_ptr++ = *tmp_spec_ptr++; *spec_ptr++ = *tmp_spec_ptr++; + } +} + +void build_tables(real_t *iq_table, real_t *pow2_table) +{ + uint16_t i; + + /* build pow(x, 4/3) table for inverse quantization */ + for(i = 0; i < IQ_TABLE_SIZE; i++) + { + iq_table[i] = (real_t)exp(log(i) * 4.0/3.0); + } + + /* build pow(2, 0.25*x) table for scalefactors */ + for(i = 0; i < POW_TABLE_SIZE; i++) + { + pow2_table[i] = (real_t)exp(LN2 * 0.25 * (i-100)); + } +} + +static INLINE real_t iquant(int16_t q, real_t *iq_table) +{ + if (q > 0) + { + if (q < IQ_TABLE_SIZE) + return iq_table[q]; + else + return MUL(iq_table[q>>3], 16); + } else if (q < 0) { + q = -q; + if (q < IQ_TABLE_SIZE) + return -iq_table[q]; + else + return -MUL(iq_table[q>>3], 16); + } else { + return 0.0f; + } +} + +void inverse_quantization(real_t *x_invquant, int16_t *x_quant, real_t *iq_table, + uint16_t frame_len) +{ + int8_t i; + int16_t *in_ptr = x_quant; + real_t *out_ptr = x_invquant; + + for(i = frame_len/8-1; i >= 0; --i) + { + *out_ptr++ = iquant(*in_ptr++, iq_table); + *out_ptr++ = iquant(*in_ptr++, iq_table); + *out_ptr++ = iquant(*in_ptr++, iq_table); + *out_ptr++ = iquant(*in_ptr++, iq_table); + *out_ptr++ = iquant(*in_ptr++, iq_table); + *out_ptr++ = iquant(*in_ptr++, iq_table); + *out_ptr++ = iquant(*in_ptr++, iq_table); + *out_ptr++ = iquant(*in_ptr++, iq_table); + } +} + +static INLINE real_t get_scale_factor_gain(uint16_t scale_factor, real_t *pow2_table) +{ + if (scale_factor < POW_TABLE_SIZE) + return pow2_table[scale_factor]; + else + return (real_t)exp(LN2 * 0.25 * (scale_factor - 100)); +} + +void apply_scalefactors(ic_stream *ics, real_t *x_invquant, real_t *pow2_table, + uint16_t frame_len) +{ + uint8_t g, sfb; + uint16_t top; + real_t *fp, scale; + uint8_t groups = 0; + uint16_t nshort = frame_len/8; + + for (g = 0; g < ics->num_window_groups; g++) + { + uint16_t k = 0; + + /* using this 128*groups doesn't hurt long blocks, because + long blocks only have 1 group, so that means 'groups' is + always 0 for long blocks + */ + fp = x_invquant + (groups*nshort); + + for (sfb = 0; sfb < ics->max_sfb; sfb++) + { + top = ics->sect_sfb_offset[g][sfb+1]; + + scale = get_scale_factor_gain(ics->scale_factors[g][sfb], pow2_table); + + /* minimum size of a sf band is 4 and always a multiple of 4 */ + for ( ; k < top; k+=4) + { + *fp = MUL(*fp, scale); fp++; + *fp = MUL(*fp, scale); fp++; + *fp = MUL(*fp, scale); fp++; + *fp = MUL(*fp, scale); fp++; + } + } + groups += ics->window_group_length[g]; + } +} |